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Abstract The parameter uncertainty in hydrological modelling has been accorded much attention in the recent past. Parameter 
uncertainty is a major source of overall model unreliability. In this study, the HydroPSO R package was used to assess parameter 
identification and uncertainty for the Soil and Water Assessment Tool (SWAT) model applied in the upper reaches of Nzoia River 
Basin.  Fourteen parameters were selected based on previous studies and parameter sensitivity analysis using the Latin Hypercube 
Sampling method. Based on the optimum parameter set, the simulated flow corresponded well with the observed flow with daily 
Percent Bias (PBIAS), coefficient of determination (R2)  and Nash–Sutcliffe efficiency (NSE) of -1.4, 0.73 and 0.72, respectively. 
For monthly calibration, these values were -1.4, 0.78 and 0.77, respectively. The results of this study show uncertainty in parameter 
identification. The posterior distributions of the parameter values were not normally distributed and the uncertainty ranges of the 
parameters varied widely. The low flows (Q5) were overestimated with a 13.8% bias while the Q50 and Q95 flows were 
underestimated with -4.2% and -13.1% biases respectively. Further analysis indicated that the contribution of parameter uncertainty 
to stream flow simulation was substantial with 35% of the observed flow data falling within the 95% simulation confidence interval 
for the calibration period. Different parameter sets gave the same correlation between the simulated and observed flows. A multi-
objective analysis of the hydrological modeling uncertainties emanating from model selection, calibration procedure and 
calibration data errors in the basin is therefore recommended.

Keywords hydroPSO, parameter identification, uncertainty analysis, Nzoia Basin, hydrological models

1. Introduction
The development of hydrological models of varying 
nature, complexity and purpose is perhaps an exceptional 
achievement in the recent past [1]. The simulation of 
hydrological processes at local, regional and global scales 
has played a key role in addressing a wide range of 
environmental, social and water resources management 
challenges. Despite the growing interest in watershed 
modeling, uncertainty in model output is still a limitation 
in the simulation of hydrological processes. The model 

selection, calibration procedure, and calibration data 
errors are major sources of uncertainty [2]–[5]. 

The improvements in data resolution and 
computational power have contributed to the 
development of semi-distributed, physically-based 
hydrological model, such as the Soil and Water 
Assessment Tool (SWAT). The models are particularly 
important tools commonly used in modeling the land 
phase of the hydrological cycle based on hydrological 
response units. However, these models consist of a large 
number of parameters which are generally determined by 
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calibration due to high cost of field measurements [6]. 
The spatial-temporal variations in the optimum values of 
these parameters disclose a substantial amount of 
uncertainty with dire implications on water resource and 
watershed management [7], [8]. Thus effective utilization 
of these models requires robust calibration and 
uncertainty analysis techniques.

Parameter identification and estimation are two 
significant steps in model calibration. The former entails 
identification of sensitive parameters, mainly through a 
sensitivity analysis, while the latter involves manual or 
automatic estimation of the optimal or near-optimal
values of the sensitive parameters [9]–[12]. These 
processes are characterized by varying uncertainties 
leading to overall model parameter uncertainty. For 
instance, different parameter sets can be used to obtain 
similarly good fits between observed and simulated 
stream flow (“equifinality”) [13]. In addition, best 
parameters during the calibration period may not be 
reliable during other periods. Thus, parameter calibration 
should not only focus on the optimum parameter value but 
also its uncertainty. 

A wide range of studies have focused on the analysis of 
parameter uncertainty [3], [8], [14]–[19]. Consequently, a 
plethora of methods with varied philosophy, sampling 
strategies and underlying assumptions have been devised 
to address parameter uncertainty in hydrological 
modeling. These include Generalized Likelihood 
Uncertainty Estimation (GLUE) [13], Particle Swarm 
Optimization (PSO) algorithm [20], Differential 
Evolution Adaptive Metropolis (DREAM) algorithm 
[21], Shuffled complex evolution Metropolis algorithm 
[22], Sequential Uncertainty Fitting (SUFI) [23], 
Bayesian Total Error Analysis (BATEA) [24] and 
Parameter solutions (ParaSol) [25]. The population-based 
global optimization techniques have particularly been 
used to overcome the fore-mentioned model calibration 
challenges. 

In this paper, the focus was on the application of the 
HydroPSO R algorithm for SWAT model calibration and 
parameter uncertainty analysis in Nzoia Basin. PSO is an 
adaptive population-based stochastic optimization 
technique which closely resembles evolution-based 
optimization techniques such as genetic algorithms, and 
is capable of efficiently estimating best parameter values 
in highly non-linear and complex applications [20]. The 
algorithm globally searches the parameter space on the
basis of individual and neighborhood-based best-known 
“particle positions” (coordinates of particles in the 
parameter space) without evolutionary operators such as 
mutation or crossover. Thus, each particle in the 
population adjusts its ‘flying’ direction and speed 

(velocities) in the multidimensional search-space based 
on its own flying experience (personal best) and that of its 
companions (global best). In addition, the new position of 
each particle is determined by adding the new velocity 
from the achieved best solution to the current position 
[26]. The algorithm has been used widely in model 
parameter calibration and uncertainty analysis [27], [28]. 
It has also been modified into numerous variants ranging 
from the original PSO procedure to more adaptive 
versions for improved global optimization and model 
calibration [29],[30].

The multi-OS and model-independent hydroPSO R 
package developed by Zambrano-Bigiarini and Rojas, 
[31] was used in this study for SWAT model sensitivity 
analysis, calibration, and analysis of the results. As one of 
the most optimized versions of the PSO algorithm, the 
hydroPSO calibration engine combines the benefits of 
multiple PSO variants and fine-tuning options to enhance 
flexibility and efficiency in the calibration of different 
models. This package has shown improved performance 
in complex response surfaces such as in hydrological 
modeling applications [31]. A detailed description of the 
package can be obtained from [31].

2. Study area 
The upper reaches of the Nzoia Basin, a catchment in 
Western Kenya with a drainage area of 10,156 km2 was 
selected for this study (Fig. 1). The area has tropical-
humid climate with annual mean rainfall reaching 1400 to 
1800 mm and mean temperature ranging from 14 to 24ºC. 
The annual rainfall pattern is bimodal with minimal intra-
annual variability. The long and short rains occur between 
March and June and from September to November
respectively. The elevation in the area ranges from 878 m 
above sea level (m.a.s.l) at the lower point to 4304 m.a.s.l 
at the peak of Mt. Elgon. The main land use types are 
forests, bushland, large-scale and small-holder farmland. 
The weather stations used in this study are shown in Fig. 
1.

3. Materials and methods

3.1 SWAT model

SWAT is a physically based, semi-distributed 
hydrological model developed by the United States 
Department of Agriculture–Agricultural Research 
Service (USDA–ARS). It simulates surface runoff (using 
the SCS curve number or Green and Ampt infiltration 
equation), percolation, lateral flow, groundwater flow 
from shallow aquifers to streams, evapotranspiration 
(using the Hargreaves, Priestley-Taylor or Penman-
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Monteith method), transmission losses from streams and 
water storage, losses from ponds, and snowmelt in 
watersheds [32],[33]. The watershed hydrology in the 
SWAT model consists of the land and water or routing
phases and is simulated based on the water balance 
equation (equation 1). 

= +
(1)

where SWt (in mm) is the final soil water content; SW0 (in 
mm) is the initial soil water content on day i, t (day) is the 
time; Rday (in mm) is the amount of precipitation on day i, 
Qsurf (in mm) is the amount of surface runoff on day i, , Ea

(in mm) is the amount of evapotranspiration on day i, wseep

(in mm) is the amount of water entering the vadose zone 
from the soil profile on day i, and Qgw (in mm) is the 
amount of return flow on day i.

3.2 Data

In order to obtain model parameters in SWAT, a wide 
range of input datasets is required including, information 

on topography, vegetation, soil properties and weather. A 
Digital Elevation Model (DEM) with a 90 m resolution 
was obtained from the NASA Shuttle Radar Topography 
Mission (SRTM) [34] while a Land cover map of the area 
was acquired from the Joint Research Centre (JRC) of the 
European Commission Global Land Cover 2000 dataset 
[35] and reclassified according to SWAT model input 
requirements. The Kenya Soil and Terrain database 
(KENSOTER) [36] was used to derive soil characteristics 
in the area. Precipitation and temperature data covering 
the 1970-1998 period were obtained from the Kenya 
Meteorological Department. The missing values were 
estimated using the SWAT model weather generator.
Daily wind speed and relative humidity data was 
unavailable for the area hence were simulated using the 
weather generator. In order to compare simulated data, the 
daily discharge data for the 1DD01A River gauging 
station (Latitude 0.37 ºN, Longitude 34.49 ºE) were
obtained from the Water Resource Management 
Authority (WRMA).

3.3 SWAT model set up and parameterization

Using the river gauging station as the main outlet, 17 sub-
basins were delineated for the Nzoia Basin. Potential 

Fig. 1: Location of the study region and hydro-meteorological stations
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evapo-transpiration was estimated using the Hargreaves 
method while surface runoff was simulated using the 
modified Soil Conservation Service (SCS) curve number 
method. Routing of the surface runoff to river channels 
was simulated using the variable storage method [32]. 
Streamflow was simulated using 1984-1985 as model 
warm-up period and 1986-1990 as calibration period.

Watershed properties in the SWAT model are defined 
based on a large number of parameters. 14 parameters 
were selected for calibration in this study based on a 
literature survey, and results from Latin Hypercube-one 
factor at a Time (LH-OAT) parameter sensitivity analysis. 

Table 1 gives a summary of the selected parameters, 
calibration value ranges and processes they influence in 
the water cycle. These parameters correspond to baseflow 
and surface runoff generation, evaporation, soil types and 
channel routing. The lower and upper boundaries of the 
parameter ranges were modified prior to calibration in 
relation to the default values to ensure sufficient 
parameter space while at the same time ensuring a fast 
convergence.

Table 1: Parameters selected for SWAT model calibration

Name Definition Cal. Range Process 
CN2 SCS moisture condition II curve number for pervious areas 40-60 Runoff
ESCO Soil evaporation compensation coefficient 0.4-0.8 Evaporation
SURLAG Surface runoff lag coefficient 0.05-5 Runoff
RCHRG_DP Deep aquifer percolation fraction. 0-1 Groundwater
GWQMN Threshold water level in shallow aquifer for base flow (mm H2O) 1200-1900 Groundwater
GW_REVAP Groundwater "revap" coefficient. 0.02-0.1 Groundwater
GW_DELAY Groundwater delay (days) 45-65 Groundwater
ALPHA_BF Baseflow recession constant (days) 0.25-0.65 Groundwater
SOL_K Saturated hydraulic conductivity (mm/hr) 10-200 Runoff
EPCO Plant uptake compensation factor 0.2-0.6 ET
SOL_AWC Soil available water storage capacity (mm H2O/mm soil) 0.03-0.30 Runoff
CH_N2 Manning’s n value for main channel 0.016-0.1 Routing
CH_K2 Effective hydraulic conductivity in main channel alluvium (mm/hr). 40-80 Routing
OV_N Manning’s ‘‘n’’ value for overland flow 0.4-0.6 Runoff

    3.4 HydroPSO setup
The 1986 -1990 period was used for model calibration and 
calculating the goodness of fit between the simulated and 
observed flow based on the Nash-Sutcliff Efficiency 
(NSE) objective function. The algorithm was run for 1000 
maximum iterations, and 40 swarms of parameter 
particles. As recommended by Clerc [37], when the 
search space is not a hypercube parameter values were 
normalized to the [0,1] range during the optimization. The 
sampling of the initial particle position and velocity was 
improved by using Latin hypercube sampling over the full 
multi-dimensional search-space. The PSO2011 algorithm
was used to initialize particle direction and speed as well 
as maximizing the NSE value. 

In order to ensure proper convergence of the algorithm, 
three parameters were defined namely (i) the constriction 
factor, (ii) the cognitive acceleration coefficient, and (iii) 
the social coefficient. The constriction factor is used to 
prevent an unrestrained increase in the magnitude of 
velocities which may lead to particle displacement [38]. 
The cognitive acceleration and social coefficients affect 

the balance between the local exploitation and the global 
exploration search capabilities of the algorithm thus 
regulate the influence of the personal and the local best 
[39]. A constant value of 2.05 was used for the cognitive 
(c1) and social (c2) coefficients. In addition, definition of 
the factor clamping the velocities (lambda) was improved 
by using a linear variation between [1.0, 0.5]. The random 
topology  was used to control particle interaction using 
five informants [37]. In order to confine particles to 
physically meaningful parameter ranges, a multi-
dimensional vector defining the range of the search-space 
is used in HydroPSO.  In this study, the absorbing 
boundary condition was used, whereby the particle's 
position is set to the boundary value while the velocity is 
set to zero [37].

3.5 Model performance evaluation
The HydroPSO package provides a wide range of 
statistical and graphical techniques to robustly assess the 
different aspects of the hydrograph for model 
performance evaluation. Three statistical criteria were 
selected in this study: the Nash–Sutcliffe efficiency 
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(NSE), the coefficient of determination (R2) and Percent 
Bias (PBias). The NSE measures the model efficiency as 
a fraction of the measured stream flow variance 
reproduced by the model in replicating individual values 
[40]. It is therefore a normalized statistic, ranging 
between -
magnitude of the residual variance compared to the 
measured data variance. NSE values between 0.75 and 
0.36 are considered satisfactory while values are 
considered excellent [40].

The R2 measures the degree of co-linearity between 
simulated and measured values and ranges from 0 to 1, 
whereby values greater than 0.5 are generally considered 
acceptable [41]. PBias measures the percentage 
difference between the simulated and measured values. A 
positive (negative) PBias value indicates model 
underestimation (overestimation) bias while the optimal 
value is zero. PBIAS values < ±25 % are considered 
satisfactory [41].

4. Results and Discussion
4.1 Model calibration 

The global best parameter set was used to run the SWAT 
model for calibration performance evaluation. 

As shown in Fig. 2, the simulated flow matched the 
observed flow well in terms of overall patterns during the 
calibration period. However, some of the peak flows were 
not well simulated. The PBias, R2 and NSE values for 
daily simulation reached -1.4, 0.73 and 0.72, respectively,
while for monthly calibration these values were -1.4, 0.78 
and 0.77 respectively. Given that the NSE values are 
dependent on the mean flows, the low absolute difference 
between the mean observed and mean simulated flows 
(45.23 m3 s-1 and 44.58 m3 s-1 respectively) contributed to 
the satisfactory NSE values. 

The Kling-Gupta efficiency (KGE) metric introduced 
by Gupta et al. [42] was also used to circumvent the 
limitation of squared differences in NSE. The KGE values 
also indicated good performance at 82% and 86% for 
daily and monthly calibration respectively. Although the 
simulated flow patterns matched the observed flow, the 
discharge volumes were also analyzed. The Volumetric 
Efficiency (VE) metric formulated by Criss and Winston 
[43] serves to evaluate the timing  of the flow and ranges 
from 0 to 1. The VE values indicated that 72% and 75% 
of the water was delivered at the right time during the 
daily and monthly calibration, respectively. Compared to 
the ideal VE value of 1, the values showed that the model 
satisfactorily simulated discharge volume timing. 

4.2 Parameter identification
The identification of the sensitive parameters was 
analyzed to assess the effectiveness of the algorithm in 
SWAT model calibration. This was achieved by tracking 
the evolution and convergence of parameter values, 
global optimum and the Normalized Swarm Radius 
(NSR). Error! Reference source not found. shows the 
evolution of parameters CN2, 
ESCO, GW_REVAP and CH_K2. The convergence in all 
the parameters shows a narrow parameter space at 20,000 
model evaluations (Fig. 3). This shows that the algorithm 

was effective in SWAT 

model calibration. Frequency histograms of posterior 
parameter values for eight parameters are shown in Fig. 4. 
The identification of the parameter showed irregular and 
skewed distribution shapes which signify great 
uncertainty on their most probable optimum value.  
However, the parameters are well defined as the peak of 
the posterior distribution is sharp around the best value in 
all parameters expect ALPHA_BF and SOL_AWC. An
initial exploration phase occurs in global optimum up to 
about 100 iterations (Fig. 5). The initial exploration in 

Fig. 2: Simulated versus Observed streamflow (Q, m3/s) at the station 1DD01A (marked in Fig. 1)
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NSR occurs up to about 375 iterations. Both the global 
optimum and the NSR show a clear convergence around 
the NSE value of 0.67. Interaction between parameters at 

different NSE values between the observed and simulated 
streamflow is highlighted through the 2-dimensional 
dotty-plots shown in Fig. 6.

Fig. 3. Parameter value evolution for the 1000 model iterations and 40 swarm particles (making a total of 40,000 
model evaluations)
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Fig. 4. Frequency histograms for the calibrated parameters (full definitions of the parameters are shown in Table 1)
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Fig. 5. Evolution of the Global Optimum and the Normalized Swarm Radius ( norm) over the 1000 model iterations

Fig. 6. 2-dimensional dotty-plots showing the interaction between calibration parameters at different NSE values

24



Journal of Sustainable Research in Engineering Vol. 1 (3), 2014
______________________________________________________________________________________________JSRE 

In the simulation of hydrological process, input data 
errors, model structure inefficiencies and parameter 
calibration contribute to overall modeling uncertainties. 
In this paper, parameter uncertainty was analyzed in terms 
of a 95% confidence interval (CI) as shown in

Table 2. This was obtained by setting 0.5 as the 
threshold NSE value and ordering the parameter samples 
for the behavioral simulations to determine the 2.5% and 
97.5% threshold parameter values. A total of 
951parameter sets were sampled from the 40 swarms and 
1000 iterations. The distribution of parameter values in all 
sampled parameter sets showed statistically significant 
deviations from normality. The uncertainty range for CN2 
is from 46.4 to 50.4. The base flow recession constant 
(ALPHA_BF) affects the simulation of groundwater 
recharge and its uncertainty range varied from 0.46 to 

0.57.  The uncertainty range for the surface runoff lag 
coefficient (SURLAG) varied from 0.27 to 0.52.

The 95% CI parameter sets were used to simulate 
streamflow to determine the extent to which parameter 
uncertainty contributes to total uncertainties in 
streamflow modeling in the area (Fig. 7). The 95% CI is 
shown by grey shading while the solid line shows the 
observed streamflow. The more observations contained 
by the CI bracket, the greater the contribution of 
parameter uncertainty to overall simulation uncertainty. 
About 35% of the daily stream flow observations fall 
within the 95% CI (Fig. 7). Therefore, parameter 
uncertainty can only account for a small portion of the 
overall simulation uncertainty. In addition, the width of 
stream flow 95% CI showed a temporal variation 
corresponding to rainfall amount which emphasizes a
high level of uncertainty during the high rainfall season. 
However, this could also be 

Table 2: 95% CI for calibration parameters

Parameter 95%CI Parameter 95%CI

CN2 [50.4, 46.4] ALPHA_BF [0.46, 0.57]
ESCO [0.76, 0.67] SOL_K [35.03, 15.24]
SURLAG [0.27, 0.52] EPCO [0.53, 0.43]
RCHRG_DP [0.15, 0.06] SOL_AWC [0.25, 0.23]
GWQMN [1317.35, 1431.56] OV_N [0.58, 0.59]
GW_REVAP [0.04, 0.03] CH_N2 [0.03, 0.06]
GW_DELAY [58.24, 60.99] CH_K2 [74.83, 66.91]
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Fig. 7. Simulation uncertainty caused by parameter uncertainty in the 1986 to 1990 period.

attributed to rainfall events covering small spatial extents 
assumed to cover large areas in the SWAT model.

Fig. 8 shows the Empirical Cumulative Distribution 
Functions (ECDFs) of the 5, 50 and 95 quantiles and an 
estimation of the percentage bias for the specified 
quantiles. The vertical dashed-line represents the 
observed (black) and simulated (gray) quantiles. Low
flows were often overestimated (Bias= 13.8% for the Q5), 
while the Q50 and Q95 were underestimated with biases 
of -4.2% and -13.1%, respectively (Fig. 8).

The concept of “equifinality’ highlighted by Beven and 
Binley [13] was also evident in the estimation of optimum 
parameter values. This is shown in Table 3 whereby 
different parameter sets yielded the same NSE value 
hence indicating uncertainty in optimum SWAT 
parameter values for Nzoia Basin. In previous studies, this 
has been attributed to multiple factors affecting parameter 
identifiability during calibration, such as parameter 
correlations, scale (spatial and temporal) of the 
simulation, statistical characteristics of model errors, as 
well as parameter sensitivity or insensitivity [7]. 
Consequently, the SWAT model parameter identification
analysis is recommended under different model 
conceptualization and temporal scales in the area. 

Table 3: The equifinality of model parameters

Parameter Set 1 Set  2 Set  3
CN2 56.02 47.44 50.40
ESCO 0.56 0.57 0.76
SURLAG 0.05 0.35 0.27
RCHRG_DP 0.00 0.12 0.15
GWQMN 1522.45 1362.17 1317.35
GW_REVAP 0.07 0.05 0.04
GW_DELAY 54.09 58.45 58.24
ALPHA_BF 0.25 0.44 0.46
SOL_K 138.26 70.61 35.03
EPCO 0.58 0.45 0.53
SOL_AWC 0.15 0.21 0.25
OV_N 0.56 0.55 0.58
CH_N2 0.04 0.09 0.03
CH_K2 43.38 61.00 74.83
NSE 0.67 0.67 0.67
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Fig. 8. The Empirical Cumulative Distribution Functions (ECDFs) for 5%, 50% and 95% quantiles.

5. Conclusions
The efficient estimation of optimum parameters values 

is inevitable in hydrological modeling. In this paper, the 
HydroPSO R package was applied to SWAT model in R 
software to assess parameter identification and calibration 
in Nzoia Basin. Fourteen parameters representing the 
surface flow, subsurface flow and channel routing 
components of the water balance were selected for model 
optimization. The following conclusions can be drawn 
from the results of the study:
i. The SWAT model effectively simulated streamflow 

in the study area considering the three main 
performance evaluation metrics used. The simulated 
low flows showed overestimation, while the median 
and high flows were underestimated. The model 
parameters were not well identifiable as shown by the 
skewed posterior distribution of parameter sets. The 
evolution of parameter values against the model 
evaluations showed similar convergence for all the 11 
calibrated parameters.

ii. The HydroPSO R package can be successfully 
combined with the SWAT model in R software to 
harness the combined benefits of a distributed 
hydrological model and flexible computing capability 
of the open source R software.  

iii. Parameter uncertainty accounted for about 35% of the 
overall model uncertainty. However, we acknowledge 
that model error and input data are also major sources 
of uncertainty in hydrological modelling. It is 
therefore recommended that further studies focusing 
on multi-objective consideration of uncertainty 
sources in hydrological modelling of the Nzoia Basin
be carried out. Coordinated field studies and 
monitoring can also be conducted to determine 
important physical parameters for improved 
watershed management in the area.
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