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ABSTRACT

Missing data are commonly encountered in most medical research. Unfortunately,

they are often neglected or not properly handled during analytic procedures, and

this may substantially bias the results of the study, reduce the study power, and

lead to invalid conclusions. In this study, we introduce key concepts regarding

missing data in survey data analysis, provide a conceptual framework on how

to approach missing data in this setting, describe typical mechanisms of missing

data, and use a theoretical model for handling such data. We consider a case

where the variable of interest (response variable) is binary and some of the ob-

servations are missing and assume that all the covariates are fully observed. In

most cases, the statistic of interest, when faced with binary data is the preva-

lence. We develop a two stage approach to improve the prevalence estimates: in

the first stage, we use a logistic regression model to predict the missing binary

observations and then in the second stage we recalculate the prevalence using

the observed binary data and the imputed missing data. Finally we study the

asymptotic properties of the prevalence estimator. Such a model would be of

great interest in research studies involving HIV in which people usually refuse

to donate blood for testing yet they are willing to provide other covariates. The

prevalence estimation method is illustrated using simulated data and applied to

HIV/AIDS data from the Kenya AIDS Indicator Survey, 2007.

viii



CHAPTER 1

INTRODUCTION

1.1 Background of study

Prevalence in epidemiology is the proportion of a population found to have a

condition (typically a disease or a risk factor such as smoking or seat-belt use). It

is arrived at by comparing the number of people found to have the condition with

the total number of people studied, and is usually expressed as a fraction, as a

percentage or as the number of cases per people. It is difficult to overestimate the

importance of obtaining accurate information on the prevalence. Accurate esti-

mates of disease prevalence are critical for tracking the epidemic, designing and

evaluating prevention and treatment programs, and estimating resource needs. A

potential threat to the validity of survey-based prevalence estimates is that not

all individuals eligible to participate in a survey can be contacted, and some who

are contacted do not consent to be tested (Hogan et al., 2012).

If any data on any variable from any participant is not present, then the researcher

is dealing with missing or incomplete data. The problem of missing data is

a common occurrence in most medical research (Horton and Laird, 2001). In

clinical trials and observational studies, complete data are often not available

for every subject. Missing data may arise because of many circumstances: the

unavailability of converting measurements, survey nonresponse, study subjects

failing to report to a clinic for monthly evaluations, respondents refusing to answer

certain items on a questionnaire (Ibrahim et al., 2005). Respondents may refuse

to answer a question because of privacy issues or the person taking the survey

does not understand the question. Perhaps, the respondent would have answered,
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but the answer, he or she might have given was not one of the options presented.

Perhaps there wasn’t enough time to complete the questionnaire or the respondent

just lost interest. Every survey question without an answer is a missing data

point.

It is rare, even under the strictest protocols, to complete a biological or medi-

cal study with absolutely no missing values. While many investigators consider

missing data a minor nuisance, ignoring them is potentially very problematic

(Haukoos and Newgard, 2007). In fact, investigators should attempt to use all

available data to perform the most efficient study possible, to reduce bias, and

to provide the most valid estimates of risk and benefit. A bias which is known

as systematic error, may result directly from the inappropriate handling of miss-

ing values. A primary goal in the analysis of a medical study is to minimize

bias so that valid results are presented and appropriate conclusions are drawn.

While bias may be introduced into research through several other mechanisms

(e.g., study design, patient sampling, data collection, and or other aspects of

data analyses), native methods of handling missing data may substantially bias

estimates while reducing their precision and overall study power, any of which

may lead to invalid study conclusions. When a large proportion of missing data

exist or when there are missing data for multiple variables, these effects may be

dramatic. Despite these concerns and the development of sophisticated methods

for handling missing data that allow for valid estimates with preservation of study

power, many studies continue to ignore the potential influence of missing data,

even in the setting of clinical trials (Haukoos and Newgard, 2007).

Previous authors have suggested that non-participation may lead to bias in hu-

man immunodeficiency virus (HIV) prevalence estimates, but official estimates

of HIV prevalence in sub-Saharan Africa relies heavily on population-based sur-

veys, which often have low participation rates (Hogan et al., 2012). An analysis
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of the Demographic and Health Surveys (DHS), which are the most common

nationally representative surveys for HIV prevalence in sub-Saharan Africa, re-

veals average rates of non-participation in HIV testing of 23% for adult men and

16% for adult women in the region, with a high of 37% for men in Zimbabwe

2005–2006 and a low of 3% for women in Rwanda 2005 (Mishra et al., 2008),

and the most recent national population-based survey in South Africa reported

an overall non-participation rate of 32% for HIV testing among adults (Hogan

et al., 2012). Analyses of the DHS have adjusted HIV prevalence estimates for

testing non-participation by imputing missing HIV test results with probit re-

gressions, controlling for differences in observed characteristics between testing

participants and non-participants, such as gender, urban residence, wealth and

indicators of sexual behaviour (Mishra et al., 2008; Hogan et al., 2012). Based

on this conventional imputation approach, non-participants were estimated to

have higher HIV prevalence than participants in about half of the DHS exam-

ined, but this did not result in substantially different estimates of overall HIV

prevalence when compared with the complete-case estimates that ignored miss-

ing observations (Mishra et al., 2008). These results have been interpreted to

mean that non-participation in HIV testing surveys is likely to have minimal im-

pact on prevalence estimates (Mishra et al., 2008; Hogan et al., 2012). However,

the conventional imputation approach has two important limitations. First, it

assumes that no unobserved variables associated with HIV status influence par-

ticipation in HIV testing. Second, it ignores regression parameter uncertainty in

the imputation model, resulting in confidence intervals (CI) that are too narrow.

1.2 Statement of the problem

Accurate estimates of disease prevalence are critical for tracking the epidemic,

designing and evaluating prevention and treatment programs, and estimating
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resource needs. A potential threat to the validity of survey-based prevalence

estimates is that not all individuals eligible to participate in a survey can be

contacted, and some who are contacted do not consent to be tested. Incomplete

participation in testing can lead to selection bias, and a recent paper found evi-

dence for substantial downward bias in existing national HIV prevalence estimates

for Zambian men due to selective survey non-participation (Hogan et al., 2012).

For example in low and middle income countries data are often derived from

HIV testing conducted as part of household surveys, where participation rates

in testing can be very low. A low participation rates may be attributed to HIV

positive individuals being less likely to participate because they fear disclosure, in

which case, estimates obtained using conventional approaches to deal with non-

participation, such as imputation-based methods and complete-case (CC), will

be biased (Ibrahim et al., 2005). However, the conventional imputation approach

has two important limitations. First, it assumes that no unobserved variables

associated with HIV status influence participation in HIV testing. Second, it

ignores regression parameter uncertainty in the imputation model, resulting in

confidence intervals (CI) that are too small. The evaluation of possible bias in

HIV prevalence estimates for other African countries is thus important for HIV

research and policy (Hogan et al., 2012)

1.3 Justification of the study

Policy interventions targeted to control the diseases epidemic, improve popula-

tion health, and reduce diseases-related health disparities, are often motivated

by prevalence data obtained from testing as part of national or regional surveil-

lance (Beyrer et al., 2011; De Cock et al., 2006). Particularly in low and middle

income countries without developed health systems infrastructure, data obtained

from nationally representative samples of the population of interest are a power-
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ful source of information for establishing the current numbers of being positive

for a test, as well as the change in diseases prevalence over time (Boerma et al.,

2003). This information is important for governments to be able to cost policy

interventions, to implement these interventions, and to plan and forecast future

demands on the health care system and public finances. The development of new

antiretroviral treatment (ART) for reducing viral load and stabilizing the health

status of HIV positive individuals, and subsequent initiatives using treatment-

as-prevention (TasP), which aims to reduce the transmission of HIV by placing

infected individuals on treatment as soon as possible, is a very promising devel-

opment for combating the HIV epidemic (Marra et al., 2015).

However, to be most effective, these programs will require accurate prevalence

data on hard to reach and at risk populations (Kranzer et al., 2012). The recent

success of ART means that improving treatment access in sub-populations with

high HIV prevalence or which have seen increases in HIV prevalence will have po-

tentially large payoffs (Tanser et al., 2013; Bor et al., 2013). In addition to identi-

fying the most suitable groups for these policy interventions, prevalence data are

important for evaluating the effectiveness of large-scale programs. Establishing

whether a population-based policy or intervention acted to reduce disease preva-

lence will require population-based prevalence data. In low and middle income

countries, estimates of HIV prevalence obtained from nationally representative

household surveys are now considered the gold standard (Burma et al., 2003).

These data are generally obtained from home-based testing which takes place af-

ter survey respondents complete a standard interview (Marra et al., 2015). After

the interview, the surveyor conducting the interview will ask the respondent to

participate in a blood test for HIV, generally to be collected by finger prick, fol-

lowing the recommended guidelines specified by the World Health Organization

(WHO) and the Joint United Nations Program on HIV and AIDS (UNAIDS).
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Similar data collection procedures take place as part of the demographic surveil-

lance site, which track the residents of specific geographic areas, and which are

another important source of data in HIV prevalence (Tanser et al., 2008). For

HIV surveys which are designed to be nationally representative, a random sample

of the population is approached with an offer for HIV testing.

However, these HIV survey data can be affected by non-participation, because

some of those who are eligible for testing opt out. This non-participation can

occur through a variety of mechanisms, including directly declining to test for

HIV when a respondent is approached to test after an interview, or being an

eligible respondent for HIV testing, but not being present when the interviewers

seek to contact the person to interview (Marra et al., 2015). Even if, ex ante,

the eligible population for the survey is either the complete population of interest

(as at surveillance sites), or a random sample (in household surveys), ex post

the surveyed group who consent to HIV testing may not be representative of the

population of interest due to this non-participation. Selection bias can occur if

HIV prevalence among those who participate in testing differs from those who

do not participate in testing. In many contexts, the extent of non-participation

is substantial. For example, at some demographic surveillance sites, less than

half of eligible respondents participate in testing (Tanser et al., 2008). In the

nationally representative DHS, non-participation can also be common, for exam-

ple, 37% of eligible male respondents failed to participate in testing in Malawi

in 2004. In general, the treatment of missing information in survey data has the

potential to have a substantial impact on both the parameter estimates and the

policy recommendations derived from these surveys (Marra et al., 2015). In the

worst case scenario, where missing information caused by non-participation are

a symptom of selection bias, conventional estimates can be substantially biased.

Therefore, modeling this non-participation in HIV testing is important from a
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policy perspective.

1.4 Objectives of the study

1.4.1 General Objective

Our general objective in this study is to improve prevalence estimates using miss-

ing data approach.

1.4.2 Specific Objectives

(i) To estimate the prevalence when there are some missing cases

(ii) To study the asymptotic properties of the estimator

(iii) To use simulated data to ullistrate the method used and then applied it to

real data
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CHAPTER 2

LITERATURE REVIEW

2.1 Missing Values Mechanisms

We present three classifications of missing data, as discussed by Rubin (1976).

We denote the data we intended to collect, by Y , and we partition this into

Y = {Y 0, Y m}, where Y 0 is observed and Y m is missing. Note that some variables

in Y may be outcomes/responses, some may be explanatory variables/covariates.

Depending on the context, these may all refer to one unit, or to an entire dataset.

Corresponding to every observation Y , there is a missing value indicator R, de-

fined as:

R =


1 if y is observed

0 if y is missing

with R corresponding to Y .

The key question for analyses with missing data is, under what circumstances, if

any, do the analyses we would perform if the data set were fully observed lead

to valid answers? As before, “valid” means that effects and their standard errors

are consistently estimated, tests have the correct size, and so on, so inferences

are correct. The answer depends on the missing value mechanism. This is the

probability that a set of values is missing given the values taken from the observed

and missing observations, which we denote by:

Pr(R|Y 0, Y m).
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2.1.1 Missing Completely At Random (MCAR)

Suppose the probability of an observation being missing does not depend on

observed or unobserved measurements.

In mathematical terms, we write this as:

Pr(r|y0, ym) = Pr(r).

Then we say that the observation is Missing Completely At Random, (MCAR).

Note that in a sample survey setting MCAR is sometimes called uniform non-

response. If data are MCAR, then consistent results with missing data can be

obtained by performing the analyses we would have used had their been no missing

data, although there will generally be some loss of information. In practice, this

means that, under MCAR, the analysis of only those units with complete data

gives valid inferences (Roth, 1994; Schlomer et al., 2010).

2.1.2 Missing At Random (MAR)

After considering MCAR, a second question naturally arises. That is, what

are the most general conditions under which a valid analysis can be done using

only the observed data, and no information about the missing value mechanism,

Pr(r|y0, ym) ? The answer to this is when, given the observed data, the missing-

ness mechanism does not depend on the unobserved data. Mathematically, this

is written as:

Pr(r|y0, ym) = Pr(r|y0).

.

This is termed Missing At Random (MAR). This is equivalent to saying that

the behaviour of two units who share observed values have the same statistical

behaviour on the other observations, whether observed or not Schafer and Graham

(2002); Schlomer et al. (2010).
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2.1.3 Missing Not At Random (MNAR)

When neither MCAR nor MAR hold, we say the data are Missing Not At Ran-

dom, abbreviated MNAR. In the likelihood setting the missingness mechanism is

termed non-ignorable.

What this means is, even accounting for all the available observed information,

the reason for observations being missing still depends on the unseen observations

themselves. To obtain valid inference, a joint model of both Y and R is required

(that is a joint model of the data and the missingness mechanism).

Unfortunately, we cannot tell from the data at hand whether the missing observa-

tions are MCAR, NMAR or MAR (although we can distinguish between MCAR

and MAR). In the MNAR setting it is very rare to know the appropriate model

for the missingness mechanism.

Hence the central role of sensitivity analysis; we must explore how our inferences

vary under assumptions of MAR, MNAR, and under various models. Unfortu-

nately, this is often easier said than done, especially under the time and budgetary

constraints of many applied projects.

2.2 Survey of missing data techniques

Missing data are ubiquitous throughout the social, behavioral, and medical sci-

ences. For nearly a century, methodologists have been studying missing data

problems. Unfortunately, most of these techniques require a relatively strict as-

sumption about the cause of missing data and are prone to substantial bias.

These methods have increasingly fallen out of favor in the methodological lit-

erature (Enders, 2010; Wilkinson and Task Force, 1999), but they continue to

enjoy widespread use in published research articles (Enders, 2010; Peugh and En-

ders, 2004). Much has been written about statistical methods in order to handle
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incomplete data (Little and B, 1987) for a comprehensive review.

Many of these approaches have focused on missing outcomes. But covariates

in regression models are often missing, either by design or circumstance. Little

(1992) reviewed a number of approaches to estimation of regression models with

missing covariates, including complete case estimation, likelihood-based meth-

ods and ad hoc methods. Robins, Zhao and Rotnitzky, (1994) suggested a class

of semiparametric estimators based on inverse probability weighted estimating

equations similar to a method proposed by Zhao and Lipsitz (1992). Ibrahim

(1990) described a maximum likelihood method using the EM algorit (Dempster

et al., 1977) for generalized linear regression models with missing categorical co-

variates. The major breakthroughs came in the 1970s with the advent of multiple

imputation and maximum likelihood estimation routines (Dempster et al., 1977;

Horton and Laird, 2001). At the same time, Rubin (1976) outlined a theoretical

framework for missing data problems that remains in widespread use today. Mul-

tiple imputation and maximum likelihood have received considerable attention in

the methodological literature during the past 30 years. When a non - response is

unrelated to the missing values of the variables, then the non-response is said to

be incurable (Little and B, 1987).

The literature for generalized linear model with incomplete observations, however,

is sparse. Ibrahim et al. (2005) discussed incomplete data in the generalized

linear models. have proposed a method for estimating the parameters in binomial

regression models when the response variable is missing and the missing data

mechanism is non-ignorable. Ibrahim and Lipsitz (1996) proposed a conditional

model for incomplete covariates in parametric regression models. (Ibrahim et al.,

2005) proposed a method for estimating the parameters in generalized linear

models with missing covariates and a non-ignorable missing data mechanism.

Intuitively, when the subjects with missing covariate values differ from those
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with complete data with respect to the outcome of interest, then the results of

a traditional data analysis omitting the missing cases may no longer be valid.

Because standard techniques for regression models require full corporate infor-

mation, then one simple way to avoid the problem of missing data is to analyze

only those subjects who are completely observed. This method, known as a com-

plete case analysis, is the technique most commonly used with missing values in

the covariates and/or response. The complete case analysis is still the default

method in most software packages, despite the development of statistical meth-

ods that handle missing data more appropriately. It is known that when the data

are not missing completely at random (MCAR), the complete case analysis can

be biased. Further, when the data are MCAR so that the complete case analysis

is unbiased, as the fraction of missing data increases, the deletion of all subjects

with missing data is unnecessarily wasteful and quite inefficient. Another ad hoc

method for handling with missing covariate data is to exclude those covariates

subject to missingness from the analysis. Because this procedure can lead to

model misspecification then is not recommended (Ibrahim et al., 2005).

Researchers have been slow to adopt maximum likelihood and multiple imputa-

tion and still rely heavily on traditional missing data handling techniques (Enders,

2010; Peugh and Enders, 2004). In part, this may be due to lack of the software

options, as maximum likelihood and multiple imputation did not become widely

available in statistical package until the late 1990s. However, the technical nature

of the missing data literature probably represents another significant barrier to

the widespread adoption of these techniques. Unless missing data are a deliberate

feature of the study design, then it is important to try to limit them during data

collection, since any method for compensating for missing data requires unveri-

fiable assumptions that may or may not be justified. Since data are still likely

to be missing despite these efforts, it is important to try to collect covariates
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that are predictive of the missing values, so that an adequate adjustment can be

made. In addition, the process that leads to missing values should be determined

during the collection of data if possible, since this information helps to model

the missing-data mechanism when the incomplete data are analyzed. Then it

is reasonable to seek ways for incorporating incomplete cases into the analysis.

In this study, we purpose a two stage procedures for inferring missing data then

improving the estimated prevalence with the imputed values based on the logistic

model (Enders, 2010).

2.3 Review of the Generalized Linear Models (GLMs)

Introduced in a 1972 by Nelder and Wedderburn, Generalized Linear Models

(GLMs) analysis comes into play when the error distribution is not normal and/or

when a vector of non linear function of the response η(Y ) = (η(Y1), η(Y2), · · · , η(Yn))′,

has Y itself as expectation the vector Xβ .

It involves three components:

• An exponential family model for the response.

• A systematic component via a linear predictor.

• A link function that connects the means of the response to the linear pre-

dictor.

In GLM, the response variable distribution must be a member of the exponential

family of distribution.

A random variable that belongs to the exponential family with a single parameter

θ has a pdf :

f(u, θ) = s(u)t(θ) exp {a(u)b(θ)} (2.1)
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Where s,t,a,b are all known functions.

So Equation (2.1) can be written as:

f(u, θ) = exp {a(u)b(θ) + d(u) + c(θ)} (2.2)

Where a(u) = ln (s (u)) , c(θ) = ln (t(θ)).

When a(u) = u, the distribution is said to be in canonical form.

b(θ) is called the natural parameter.

Parameter other than the the parameter of interest θ are called nuisance param-

eters

2.3.1 Fitting the Generalized Linear Models (GLMs)

Suppose we have a set of independent observations
(
Yi,

∼
xi
′)

, i = 1, 2, · · · , n ,

∼
xi
′
= (xi1, xi2, · · · , xip) from some exponential type distribution of canonical form.

Then the joint pdf is

f(Y1, · · · , Yn, θ, φ) =
n∏
i=1

exp {yib(θi) + d(yi) + c(θi)} (2.3)

= exp

{
n∑
i=1

yib(θi) +
n∑
i=1

c(θi) +
n∑
i=1

d(yi)

}
(2.4)

θ is the vector of interest = (θ1, · · · · · · , θn) , and φ is the vector of nuisance

parameters.

We would hope that the variation in Yi or E(Yi) = θi values could be explained

in terms of the
∼
xi
′

values.

We would hope that we could find a suitable Link Function g(θi) such that the

model:

g(θi) =
∼
xi
′
β (2.5)

held where β = (β1, · · · , βp)′ is a vector of regression coefficients. This link

function is often the natural parameter.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

We restrict the models to a case where the response variable is binary and make

an assumption that all the covariates are available. The study introduces key

concepts regarding missing data in survey data analysis, provide a conceptual

framework for how to approach missing data in this setting. The theoretical

background and the method behind the analysis of the data are presented. We

develop a theoretical model for handling missing data by using logistic regression

technique, demonstrate how the prevalence can be estimated in the presence

of missing data by using the logistic regression model and develop a two stage

approaches to improve the prevalence estimates. In the first stage, we come

up with a model to predict the missing binary observations and then in the

second stage we recalculate the prevalence using the observed binary data and

the imputed binary data. The model is tested using simulated data.

3.2 Statistical Model

To predict the values for the missing data and to identify the underlying deter-

minants which have significant effect on the prevalence, a statistical model will

be employed. Therefore, due to the binary nature of the outcome variable in this

study, being positive or negative, a binary logistic regression model will be used

for the given data.
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3.2.1 The logistic Regression

Logistic regression was first proposed in the 1970s as alternative techniques to

overcome limitations of ordinary least square (OLS) regression in handling di-

chotomous outcome. Logistic regression has been used in epidemiological re-

search, where often the outcome variable is the presence or absence of some dis-

ease. In the logistic regression analysis the aim is to find the best fitting and most

parsimonious, yet biologically reasonable, a model for describing the relationship

between an outcome (dependent or response variable) and a set of independent

(predictor or explanatory) variables. The key quantity in any regression problem

is the mean value of the outcome variable, given the value of the independent

variable. This quantity is called the conditional mean and will be expressed as

E (Y/x), where Y denotes the binary or dichotomous outcome variable and x

denotes a value of the independent variable.

Many distribution functions have been proposed for use in the analysis of a di-

chotomous outcome variable (the response variable).

There are two primary reasons for choosing the logistic distribution.

(i) from a mathematical point of view it is an extremely flexible and easily used

function, and

(ii) it lends itself to a biologically meaningful interpretation.

Furthermore, assume that the outcome variable has been coded as 0 or 1 repre-

senting the absence or presence of the characteristic, respectively.

To fit the logistic regression model to a set of data requires that we estimate the

values of β
′
is , the unknown parameters. What distinguishes the logistic regression

model from the linear regression model is that the outcome variable in logistic

regression is categorical and most usually binary or dichotomous. Consider a

binary random variable Y which defines the absence or presence of characteristic

16



of a disease. Suppose we have a sample of size n independent observations of the

pair (xi, yi), where yi represents the observed values for the ith individual and

let y be the column vector containing the elements yi. Y can be considered as a

column vector of n Bernoulli random variables Yi. Let π be a column vector also of

length n with elements πi= P (Yi = 1/xi), this means that πi is the probability of

success for any given observation for the ith observation. In the linear component

of the model, we have the design matrix and the vector of parameters to be

estimated. The design matrix of the independent variables which are categorial

predictors, X, is composed of n rows and k + 1 columns, where k is the number

of independent variables which are specified in the model.

X =



1 x11 x12 · · · x1k

1 x21 x22 · · · x2k
...

...
... · · · ...

1 xn1 xn2 · · · xnk


(3.1)

In each row of the design matrix, the first element xi0 = 1 .This value xi0 is called

the intercept. The parameter vector, is a column vector of length k + 1.

β =



β0

β1
...

βk


(3.2)

In each of the k columns of independent variable settings in X, there is one

corresponding parameter, and plus β0, for the intercept.

The logistic regression model equates the logit transform, the log-odds of the

probability of a success, to the linear component:
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g(x) = log

(
πi

1− πi

)
=

k∑
j=0

xijβj (3.3)

i = 1, · · · , n

In this transformation, the importance is that g (x) has many of the desirable

properties of a linear regression model. The logit, g(x), is linear in its parameters,

may be continuous, and may range from −∞ to ∞ depending on the range of x.

By taking the exponential of Eq(3.3) , we find that the odds for the ith unit are

given by:

.

(
πi

1− πi

)
= exp

{
k∑
j=0

xijβj

}
(3.4)

i = 1, · · · · · · , n

Solving for the probability πi in the logit model in Equation (3.4) gives the fol-

lowing model

πi = E (Yi = 1/xi) =

exp

{
k∑
j=0

xijβj

}

1 + exp

{
k∑
j=0

xijβj

} (3.5)

3.3 Prevalence Estimation

Consider a population that, consists of n living individuals who can be infected

or not by a disease. The disease status of individual i is represented by the

binary indicator yi, which is equal to 1 if individual i is positive and is equal to

0 otherwise.
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yi =


1 if the ith individual has the desease

0 if the ith individual doesn′t have the desease

θ = Prevalence = Pr(T = 1) =

n∑
i=1

yi

n
(3.6)

where T is a random variable that represents the variability of the indicator of

disease status in the population.

Thus, disease prevalence is just the proportion of infected people. Our aim is to

estimate Pr(T = 1) from sample surveys when the disease status may be missing

for some cases.

By the law of total probability, we can write the disease prevalence as:

Pr(T = 1) = Pr(T = 1|R = 1)Pr(R = 1) + Pr(T = 1|R = 0)Pr(R = 0), (3.7)

where R is a binary indicator equal to 1 if disease status is known and to 0

otherwise.

R =


1 if yi is observed

0 if yi is missing

The missing data problem arises because the data tell us nothing about Pr(T =

1|R = 0).

Let I be the set of indices for the observed values and J be set of indices for the

missing values.

From 3.7 and the fact that Pr(A,B) = Pr(A/B)× Pr(B) , we have:

Pr(T = 1) = Pr(T = 1, R = 1) + Pr(T = 1, R = 0)
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Since

Pr(T = 1, R = 1) =

∑
iεI

y0i

n

,

and

Pr(T = 1, R = 0) =

∑
iεJ

ymi

n

,

Pr(T = 1) =

∑
iεI

y0i

n
+

∑
iεJ

ymi

n
(3.8)

From Eq(3.8), to estimate the prevalence Pr(T = 1), we will find the estimated

missing values. And for that we will use the logistic regression model to estimate

the probability of success for those missing values.

3.3.1 Fitting the Logistic Regression using the observed Outcomes

Denote Y 0 the matrix of the observed data and y0 the matrix of the corresponding

value i.e R = 1.

Let π0
i be the probability of success for the ith individual such that R=1.

Note that Y 0
i ∼ Bern (π0

i )

Denote by X0 be the matrix that contains all the explanatory variables corre-

sponding to Y 0.

To illustrate this, let us consider the following table:

y0i =


1 if the ith individual has the desease

0 if the ith individual doesn′t have the desease

By making an assumption that all the covariates are available, we can fit a lo-

gistic regression model considering only the observed data and the corresponding
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variables.

logit
(
π0
i

)
=
(
X0
i

)T
β (3.9)

Where X0
i is the vector of the explanatory variables such that R = 1.

From model (3.9), we can now estimate the parameters.

3.3.2 Parameter Estimation

Estimating the k + 1 unknown parameters in the logistic regression is one of our

goals in this study. To achieving this, we use the maximum likelihood estima-

tion which entails finding the set of parameters for which the probability of the

observed data is greatest. In linear regression, the method used most often to

estimate unknown parameters is least squares. In this method, we choose those

values of βi that minimize the sum of squared deviations of the observed values of

Y from the predicted values based upon the model. Under the usual assumptions

for linear regression, the least squares method yields estimators with a number

of desirable statistical properties. Unfortunately, when the least squares method

is applied to a model with a dichotomous outcome the estimators no longer have

these desirable properties. The maximum likelihood equation is derived from the

probability distribution of the dependent variable.

To be able to use this method, the likelihood function which expresses the proba-

bility of the observed data as a function of the unknown parameters must be first

constructed. The maximum likelihood estimators of these parameters are chosen

to be those values that maximize this function. Thus, the resulting estimators

are those that agree most closely with the observed data no longer have these

same properties. The general method of estimation that leads to the least squares

function under the linear regression model (when the error terms are normally

distributed) is maximum likelihood. This is the method used to estimate the
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logistic regression parameters. In a very general sense, the maximum likelihood

method yields values for the unknown parameters that maximize the probability

of obtaining the observed set of data.

This will be denoted by Pr (Y = 1|x). It follows that the quantity 1 − πi gives

the conditional probability that Y is equal to zero given x, Pr (Y = 0|x).

Thus, for those pairs (xi, yi), where yi = 1, the contribution to the likelihood

function is πi, and for those pairs where yi = 0, the contribution to the likelihood

function is 1− πi, where the quantity πi denotes the value π computed at xi

A convenient way to express the contribution to the likelihood function for the

pair (x0i , y
0
i ) is through the term

ξ
(
x0i
)

=
(
π0i
)y0i [1− π0i ]1−y0i (3.10)

Because of the independence of the observation, the likelihood function is obtained

by taking the product of the terms given in (3.10)

l
(
y0/β

)
=

n∏
i=1

ξ
(
x0i
)

(3.11)

To derive estimates of the unknown β parameters, as in the univariate case, we

need to maximize this likelihood function. We follow the usual steps, including

taking the logarithm of the likelihood function, taking (k+ 1) partial derivatives

with respect to each β parameter and setting these (k + 1) equations equal to

zero, to form a set of (k+ 1) equations in (k+ 1) unknowns. Solving this system

of equations gives the maximum likelihood equations. The maximum likelihood

equations in the logistic regression are nonlinear β′js, and thus require special

methods for finding their solution. These methods are iterative in nature and

have been programmed into available logistic regression software
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Let us consider the following two first likelihood equations∑
iεI

(
y0i − π0

i

)
= 0 (3.12)

and ∑
iεI

x0i
(
y0i − π0

i

)
= 0 (3.13)

Each such solution, if any exists, specifies a critical point. The critical point will

be a maximum if the matrix of second partial derivatives is negative definite;

that is, if every element on the diagonal of the matrix is less than zero. Another

useful property of this matrix is that it forms the variance-covariance matrix of

the parameter estimates.

3.3.3 Testing for the significance of the model

After having estimated the coefficients in the regression, it is standard practice to

assess the significance of the variables in the model. This usually involves testing

a statistical hypothesis in order to determine whether the independent variables

in the model are “significantly” related to the outcome variable. One approach

to testing for the significance of the coefficient of a variable in any model is to see

whether the model that includes the variable in question tells us more about the

outcome (or response) variable than a model that does not include that variable.

This can be done by doing a comparison between the observed values of the

response variable with those predicted by each of the two models; the first with

and the second without the variable in question. The mathematical function

used in comparing the observed and predicted values depends on the particular

problem. If the predicted values with the variable in the model are better, or

more accurate in some sense, than when the variable is not in the model, then

we can say that the variable in question is significant. It is important to note

that we are not considering the question of whether the predicted values are an
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accurate representation of the observed values in an absolute sense (this would

be called goodness of fit). Instead, our question is posed in a relative sense.

For the purposes of assessing the significance of an independent variable we com-

pute the value of the following statistic:

G = −2 ln

(
likelihood without the variable

likelihood with the variable

)
(3.14)

The first step in this process is usually to assess the significance of the variables

in the model. The likelihood ratio test for overall significance of the k coefficients

for the independent variables in the model is performed based on the statistic G

given in (3.14). Under the null hypothesis that the k “slope” coefficients for the

covariates in the model are equal to zero, the distribution of G is chi-square with

k degrees of freedom.

Rejection of the null hypothesis (that all of the coefficients are simultaneously

equal to zero) has an interpretation analogous to that in multiple linear regression;

we may conclude that at least one, and perhaps all k coefficients are different from

zero.

Before concluding that any or all of the coefficients are nonzero, we may wish to

look at the univariate Wald test statistics which is obtained by comparing the

maximum likelihood estimate of the slope parameter, βj , with an estimate of its

standard error,

Wj =
β̂j

ŝe
(
β̂j

) (3.15)

Under the hypothesis that an individual coefficient is zero, these statistics will

follow the standard normal distribution. Thus, the value of these statistics may

give us an indication of which of the variables in the model may or may not be

significant.
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Considering that the overall goal is to obtain the best fitting model while mini-

mizing the number of parameters, the next logical step is to fit a reduced model,

containing only those variables thought to be significant, and compare it with the

full model containing all the variables. The likelihood ratio test comparing these

two models is obtained using the definition of G given in Equation (3.14).

It has a distribution that is chi-square with k degrees of freedom under the hy-

pothesis that the coefficients for the variables excluded are equal to zero and has

a P value of P [χ2 (k) > G].

If the P value is large, we conclude that the reduced model is as good as the full

model.

3.3.4 Interpretation of the Coefficients in the Logistic Regression

After fitting a model the emphasis shifts from the computation and assessment

of significance of the estimated coefficients to interpretation of their values. The

interpretation of any fitted model requires that we can draw practical inferences

from the estimated coefficients in the model. The question addressed is:

What do the estimated coefficients in the model tell us about the research ques-

tions that motivated the study?

For most models, this involves the estimated coefficients for the independent

variables in the model. The estimated coefficients for the independent variables

represent the slope or rate of change of a function of the dependent variable per

unit of change in the independent variable. Thus, interpretation involves two

issues:

(i) determining the functional relationship between the dependent variable and

the independent variable, and

(ii) appropriately defining the unit of change for the independent variable.
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For a linear regression model we recall that the slope coefficient, β1 , is equal

to the difference between the value of the dependent variable at x + 1 and the

value of the dependent variable at x, for any value of x. In the logistic regression

model β1 = g(x + 1) − g(x). That is, the slope coefficient represents the change

in the logit for a change of one unit in the independent variable x. Proper

interpretation of the coefficient in a logistic regression model depends on being

able to place meaning on the difference between two logits.

3.3.5 Missing Values Estimation

Now From the selected model, we estimate the probability π̂i
m, i.e the probability

of success for each missing outcome as follow:

π̂mi =
exp

{
(Xm

i )T β̂
}

1 + exp
{

(Xm
i )T β̂

} (3.16)

Where β̂ is the vector of the coefficients estimated from model (3.9) and Xm
i is

the vector of the explanatory variables such that R is equal to 0.

π̂i
m is called the maximum likelihood estimate of πmi . This quantity provides

an estimate of the conditional probability that Y m
i is equal to 1, given that x is

equal to xmi . As such, it represents the fitted or predicted value for the logistic

regression model.

Once we have the estimated probabilities π̂i
m, we define ŷmi

ŷmi =


1 if π̂mi ≥ α

0 if π̂mi < α

(3.17)

Where α is a value that depends on the data.

This means that from those who were missing, if the predicted probability π̂mi is

greater than or equal to α, then one can conclude that individual i is positive.

If π̂mi is strictly less than α, then that individual i is negative.
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We defineŶ m as the dataset containing all the imputed missing values. We can

now calculate the estimated prevalence denoted by {Prevalence}est using the full

data set containing
{
Y 0, Ŷ m

}
.

We define:

z =
∑
iεI

y0i +
∑
iεJ

ŷmi (3.18)

z is now the number of individuals who have the disease in the full dataset{
Y 0, Ŷ m

}
.

Now the estimated prevalence from the full data set
{
Y 0, Ŷ m

}
is given by:

θ̃ = Prevalenceest =
z

n
=

∑
iεI

y0i

n
+

∑
iεJ

ŷmi

n

And θ̃ is the observed value of a random variable Θ̂, the estimator of θ in eq. (3.8),

which is:

Θ̂ =
Z

n
=

n∑
i=1

Yi

n
=

∑
iεI

Y 0
i +

∑
iεJ

Ŷ m
i

n

Where

Z =
∑
iεI

Y 0
i +

∑
iεJ

Ŷ m
i

Θ̂ is the estimator of the estimate prevalence θ̃.

3.4 Asymptotic Properties of the Estimator Θ̂

3.4.1 Consistency

In statistics, a consistent estimator or asymptotically consistent estimator is an

estimator a rule for computing estimates of a parameter θ0 having the prop-

erty that as the number of data points used increases indefinitely, the resulting

sequence of estimates converges in probability to θ0. This means that the distri-
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butions of the estimates become more and more concentrated near the true value

of the parameter being estimated, so that the probability of the estimator being

arbitrarily close toθ0 converges to one. In other words, a consistent sequence of

estimators is a sequence of estimators that converge in probability to the quan-

tity being estimated as the index (usually the sample size) grows without bound.

Mathematically, a sequence of estimators {tn;n ≥ 0} is a consistent estimator for

parameter θ if and only if, for all ε > 0, no matter how small, we have

lim
n→∞

Pr (|tn − θ| < ε) = 1

In practice, however, we often make use of more convenient conditions that are

easier to verify and that guarantee the above definition of consistency is met.

Theorem. 3.1

Assume that {X1, X2, ...} is a sequence of independent random variables, each

with finite expected value µi and variance σ2
i .

If Tn is a sequence of estimators of τ(θ) satisfying

lim
n→∞

Biasθ (Tn) = 0 (3.19)

lim
n→∞

V arθ (Tn) = 0 (3.20)

for all θ, then Tn is consistent for τ(θ). Here Biasθ(Tn) = E(Tn)− θ.

We Have

E
(

Θ̂
)

=

∑
iεI

E (Y 0
i ) +

∑
iεJ

E
(
Ŷ m
i

)
n

(3.21)

=

∑
iεI

π0
i +

∑
iεJ

π̂mi

n
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=

n∑
i=1

πi

n

Where πi now represents the probability of success in the full data set
{
Y 0, Ŷ m

}
From the likelihood equations, an interesting consequence of (3.12) by fitting the

model in the full data set with the imputed missing values is that
n∑
i=1

yi =
n∑
i=1

πi

This implies that:
n∑
i=1

πi

n
=

n∑
i=1

yi

n

This implies that:

E
(

Θ̂
)

=

n∑
i=1

yi

n
= θ

This implies that Θ̂ is an unbiased estimator of θ.

Furthermore,

V ar
(

Θ̂
)

=

∑
iεI

V ar
(
Y 0
i

)
+
∑
iεJ

V ar
(
Ŷ m
i

)
n2

= ∑
iεI

π0
i

(
1− π0

i

)
+
∑
iεJ

π̂mi (1− π̂mi )

n2

This implies that:

V ar
(

Θ̂
)

=

n∑
i=1

πi (1− πi)

n2

since πi (1− πi) ≤ 1
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This implies that:

V ar
(

Θ̂
)

=

n∑
i=1

πi (1− πi)

n2
≤ n

n2
=

1

n
(3.22)

This implies that:

V ar
(

Θ̂
)
−→ 0,

as

n −→∞

From the above theorem, Θ̂ is consistent for θ

3.4.2 Normality

An asymptotically normal estimator is a consistent estimator whose distribution

around the true parameter θ approaches a normal distribution as the sample size

n grows.

Mathematically, a consistent estimator Θ̂ of a parameter θ, is defined to have an

asymptotic normal distribution if

Θ̂− θ√
V (θ)

n

d−→ N (0, 1) as n −→∞

for some quantity V (θ)

Theorem. 3.2 (Lyapunov CLT)

Suppose {X1, X2, ...} is a sequence of independent random variables, each with

finite expected value µi and variance σ2
i . Define

s2n =
n∑
i=1

σ2
i (3.23)

If for some δ > 0, the Lyapunov’s condition
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lim
n→∞

1

s2+δn

n∑
i=1

E (|Xi − µi|)2+δ = 0 (3.24)

is satisfied, then a sum of
Xi − µi
sn

converges in distribution to a standard normal

random variable, as n goes to infinity:

1

sn

n∑
i=1

(Xi − µi)
d−→ N (0, 1) .

Equivalent to:

√
n

X̄ − µ̄nsn√
n

 d−→ N (0, 1)

Where:

X̄ =
n∑
i=1

Xi (3.25)

and

µ̄n =
n∑
i=1

µi (3.26)

Since our Yi
′s are following bernoulli (πi) and they are independent from each

other.

E (Yi = 1|xi) = πi (3.27)

and

V ar (Yi = 1|xi) = πi (1− πi) (3.28)

s2n =
n∑
i=1

πi (1− πi) (3.29)

Let

Xni = Xi − πi (3.30)

for any δ > 0,

E |Xni|2+δ ≤ E
(
X2
ni

)
= πi (1− πi) ≤ 1 (3.31)
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This implies that

1

s2+δn

n∑
i=1

E |Xni|2+δ ≤
1

s2+δn

n∑
i=1

V ar (Xni) =
1

sδn
(3.32)

Therefore,

if sn −→∞(which is clearly true because πi is bounded away from 0 and 1), the

Lyapunov condition is satisfied and so
n∑
i=1

Xni

sn

d−→ N (0, 1) (3.33)

This implies that

√
n

(Ȳ − π̄n)sn√
n

 d−→ N (0, 1) (3.34)

Where:

Ȳ =

n∑
i=1

Yi

n
, (3.35)

π̄n =

n∑
i=1

πi

n
, (3.36)

sn =

√√√√ n∑
i=1

πi (1− πi), (3.37)

From the likehood equations:
n∑
i=1

(yi − πi) = 0 (3.38)

This implies that the true prevalence is:

θ =

n∑
i=1

πi

n
=

n∑
i=1

yi

n
(3.39)
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Since

Θ̂ =

n∑
i=1

Yi

n
(3.40)

and

V ar
(

Θ̂
)

=

n∑
i=1

πi (1− πi)

n2
(3.41)


(

Θ̂− θ
)

Vn (θ)

n

 d−→ N(0, 1)

Where:

Vn (θ) =
sn
n

(3.42)

Thus, we conclude that the estimator Θ̂ has an asymptotic normal distribution.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Simulated Data

We simulate 3000 binary observations from a logistic regression model where

the outcome variable is called Disease and covariates Age, Sex, Ever married,

Urban, Educational level, Condom use and other. For the first time, we assume

that both the outcome variable and the covariates are fully observed, then we

compute the true prevalence. After that, we consider a case where the variable

of interest (response variable or outcome variable) is binary and some of the

observations are missing and assume that all the covariates are fully observed.

In this simulation study, we consider two steps. Firstly, we create randomly

10%, 20%, 30% and 50% of missing data along the outcome variable over 1000

simulation runs using Monte Carlo simulation. Now after creating these missing

values, we use the method described above to estimate the prevalence over the

1000 simulation and then take the average estimates of the prevalence of each of

these four scenarios. Secondly we only create missing values among those whose

disease status is positive to examine the sensitivity to a non random missing data.

We also use our method to estimate the prevalence. It is well known that it is

possible to estimate the probability of occurrence of disease status from a logistic

model. The estimates prevalence without the missing values and the estimates

prevalence from our method are further compared with the true prevalence. A

Wald test statistic based on the parameter estimate divided by its standard error

estimate was used to calculate the proportion of rejections for a Wald test of the

null hypothesis that the true parameter is equal to the chosen parameter. When
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the null hypothesis was that the true parameter value was zero, a likelihood ratio

test for the significance of the variable was computed.

These values of Wj in eq.(3.13) are given in the fourth column in Table 4.1 Under

the hypothesis that an individual coefficient is zero, these statistics will follow

the standard normal distribution. The p − values are given in the fifth column

of Table 4.1

Table 4.1: Estimated Coefficients of all variables from the from the fitted model

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.259 0.151 -1.717 0.086

condom use (yes) 0.226 0.075 3.008 0.002

Sex (Male) -0.198 0.075 -2.644 0.008

Ever married (yes) 0.043 0.075 0.586 0.558

Urban (yes) 0.065 0.075 0.873 0.382

Age 0.012 0.002 6.032 1.62e-09

If we use a level of significance of 0.05, then we can conclude that only the variables

condom use, Sex and Age are significant and the others are not significant.

If our goal is to obtain the best fitting model while minimizing the number of

parameters, the next logical step is the reduced model containing only those

variables thought to be significant, and compare it to the full model containing

all the variables. The results of fitting the reduced model are given in Table 4.2
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Table 4.2: Estimated Coefficients for the variables age, condom use and sex from
the reduced model

Estimate Std. Erro z value Pr(>|z|)

(Intercept) -0.262 0.120 -2.184 0.028

Age 0.012 0.002 6.051 1.44e-09

Condom use Yes 0.229 0.075 3.053 0.002

Sex Male -0.202 0.075 -2.697 0.007

The value of the statistic comparing the models in Table 4.1 and in Table 4.2 is

G = −3.7454

Which has a p− value Pr(χ2 (k) > −3.7454) = 0.8086, where k is the number of

degrees of freedom in this case. Since the p − value is large, exceeding 0.05, we

conclude that the reduced model is as good as the full model. Thus there is no

advantage to include the other variables in the model.
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4.1.1 Simulation Results

Table 4.3: Average estimates of the prevalence, their average bias and their 95%
confidence intervals over 1000 simulation runs for 10%, 20%, 30%, 40% and 50%
of missng values. The true prevalence is 0.603

% of missing Average estimates of the Average Estimates Bias 95 % CI

values Prevalence withoutmissing values of the Prevalence

10% 0.601 0.596 -0.007 0.578-0.613

20% 0.596 0.611 0.008 0.593-0.628

30% 0.594 0.591 -0.012 0.574-0.609

40% 0.594 0.609 0.006 0.592-0.627

50% 0.591 0.590 -0.005 0.572-0.607

True Prevalence 0.603

Table 4.3 displays the average estimates of the prevalence based on our method,

their bias and their 95% confidence intervals and the average estimates of the

prevalence without the missing values over 1000 simulation runs using Monte

Carlo simulation. These are compared to the true prevalence (0.603) shown in

the last line of this table, which uses the full database before creating the miss-

ing values from the disease status. We find that these average estimates of the

prevalence based on our method described above are almost identical to those in

column 2 which were based only on observations without missing data. These

averages estimate of prevalences are both close to the true prevalence. We note

also that the prevalence obtained by ignoring the missing values and the estimates

prevalence obtained from our method are very similar. The estimated prevalences

based on our approach presented similar estimates of prevalence that are close

to the true prevalence. From these results, we can see that if the missingness
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is created randomly or involves only those which are negative, the prevalence

without the missing values is close to the true prevalence, meaning that the true

prevalence might not be affected. However, our method can still be used to es-

timate the prevalence for some missing cases as shown in the table. There are

two other important features of these results. First, we find that the estimates

prevalence based on this approach and the one obtained by ignoring the missing

cases are almost identical to the true prevalence. Second, the confidence intervals

obtained from our method contains always the true prevalence. These confidence

intervals are not so wide, and they include the true prevalence, indicating that

the uncertainty to rule out selection bias is not higher. When the amount of

missing observations increased, we realise that our method still continues to pro-

duce almost unbiased estimates. However, our approach is easy to implement, it

does not require any assumptions about the nature of the missing data, and it

allows us to obtain reliable intervals from a statistical point of view. Therefore,

we conclude that even if the prevalence without the missing data is close to the

true prevalence, our method can still be used to find the estimated prevalence

that will be closed to the true prevalence.

Now let us consider the case where we assume that all the missing observations

are positive.
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Table 4.4: Summary of the disease status when there are some missing cases
among those whose disease status is positive

Sample size N= 3000

% of missing values Positive disease status Negative disease status Number of missingness

0 % 1800 1200 0

10 % 1620 1200 180

20 % 1440 1200 360

30 % 1260 1200 540

40 % 1080 1200 720

50 % 900 1200 900

Table 4.5: Estimated Prevalence when there are only missing values among those
whose disease status is positive

% of missing Prevalence without Estimated Prevalence Bias 95 % CI

values the missing values

10% 0.574 0.597 -0.006 0.575-0.608

20% 0.545 0.587 -0.016 0.568-0.603

30% 0.512 0.618 0.015 0.600-0.636

40% 0.473 0.612 0.012 0.594-0.630

50% 0.428 0.598 -0.002 0.581-0.615

True Prevalence 0.60

Table 4.5 shows the estimate prevalence when there are only some missing cases

among those whose disease status is positive. To examine the sensitivity to a non

random missing data, missing values were created among those whose disease

status is positive. Even if it is rare, it is possible because individuals might know
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they are positive because they have been tested before or fear they are positive

because of private information on own sexual behavior. Those who refuse to take

the test may simply not believe that the results cannot be traced back to the

individual, and they may fear for exposure of being found out to be infected with

the disease. This fear is likely to be higher among those with high-risk behavior,

which in turn is an unobserved determinant of the disease-status. For the first

time, we use the full database without any missing values and calculate the true

prevalence. For the second time, we create 10%, 20%, 30%, 40% and 50% of

missing values, then we compute the prevalence without the missing values for

each of these four scenarios. Finally, we use the method described above to

estimate the prevalence using both the observed values and the imputed missing

values. Using simulated data, we find that when the missing cases are among

those whose disease status is positive, the true disease prevalence can be affected

by the presence of missing values. Our results show that the estimated prevalence

from the method described above is better than the prevalence calculated by

ignoring the missing values. As the number of missing values increases, the

prevalence without those missing values decreases. According to our results,

the prevalence could be much lower, as a larger part of the non respondents

could be infected. This can be seen from the table by comparing the prevalence

calculated by ignoring the missing values from the true prevalence. If we ignore

the missing data and compute directly the prevalence from the observed data we

realise that the prevalence can be different from the true prevalence because of

the missing data. When the number of missing values is higher, the estimates

prevalence from our method are significantly higher than the prevalence without

the missing values. As we can see from the table, an important finding is that

when the number of missing values is higher, the estimates prevalence without

the missing values substantially underestimate the true prevalence. But from

the table, when using our method to estimate the prevalence by using the full

40



dataset containing both the observed and the predicted missing values, we obtain

a prevalence that is very close to the true prevalence.We can see also from the

table that the true prevalence is always lying inside the confidence interval. Thus

the method described in this study can still be used to estimate the disease

prevalence when there are some missing cases.

4.2 HIV Data from Kenya

The 2007 KAIS was conducted among a representative sample of households se-

lected from all eight provinces in the country, covering both rural and urban

areas. A household was defined as a person or group of people related or un-

related to each other who live together in the same dwelling unit or compound,

share similar cooking arrangements, and identify the same person as the head of

household. The household questionnaire was administered to consenting heads

of sampled, occupied households. All women and men aged 15-64 years in se-

lected households who were either usual residents or visitors present during the

night before the survey were eligible to participate in the individual interview

and blood drawn, provided they gave informed consent. For minors aged 15-17

years, parental consent and minor assent were both required for participation.

Participants could consent to the interview and blood draw or to the interview

alone. The inclusion criteria may have captured non-Kenyans living as usual

residents or visitors in a sampled household. Military personnel and the insti-

tutionalized population (e.g. imprisoned) are typically not captured in similar

household-based surveys may have been included in the 2007 KAIS if at home

during the survey.

Administratively, Kenya is divided into eight provinces. Each province is di-

vided into districts, each district into divisions, each division into locations, each

location into sub-locations, and each sub-location into villages. For the 1999 Pop-
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ulation and Household Census, the Kenya National Bureau of Statistics (KNBS)

delineated sub-locations into small units called Enumeration Areas (EAs) that

constituted a village, a part of a village, or a combination of villages. The pri-

mary sampling unit for Kenya’s master sampling frame, and for the 2007 KAIS,

is a cluster, which is constituted as one or more EAs, with an average of 100

households per cluster.

The master sampling frame for the 2007 KAIS was the National Sample Survey

and Evaluation Programme IV (NASSEP IV) created and maintained by KNBS.

The NASSEP IV frame was developed in 2002 based on the 1999 Census. The

frame has 1800 clusters, comprised of 1,260 rural and 540 urban clusters. Of

these, 294 (23%) rural and 121 (22%) urban clusters were selected for KAIS. The

overall design for the 2007 KAIS was a stratified, two-stage cluster sample for

comparability to the 2003 KDHS. The first stage involved selecting 415 clusters

from NASSEP IV and the second stage involved the selection of households per

cluster with equal probability of selection in the rural-urban strata within each

district. The target of the 2007 KAIS sample was to obtain approximately 9,000

completed household interviews. Based on the level of household non- response

reported in the 2003 KDHS (13.2% of selected households), 10,375 households in

415 clusters were selected for potential participation in the 2007 KAIS.

Table 4.6: Summary of the HIV status

Sample size N = 11338

Number of missingness Positive disease status Negative disease status % of missing values

3401 641 7296 30 %
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Table 4.7: Estimated Coefficients from the fitted model

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.303 0.340 -9.710 < 2e-16

herpes (Yes) 2.148 0.115 18.682 < 2e-16

Age 20-24 0.495 0.273 1.813 0.069

Age 25-29 0.561 0.273 2.051 0.040

Age 30-34 0.694 0.275 2.525 0.011

Age 35-39 0.490 0.279 1.753 0.079

Age 40-44 0.351 0.286 1.228 0.219

Age 45-49 0.175 0.291 0.603 0.546

Age 50-54 0.118 0.308 0.384 0.701

Age 55-59 -0.604 0.353 -1.711 0.087

Age 60-64 -0.774 0.407 -1.899 0.057

Final Marital status Married,+2 partner 0.248 0.142 1.742 0.081

Final Marital status Divorced / Separated / Widowed 0.909 0.110 8.257 < 2e-16

Final Marital status Never Married 0.096 0.158 0.611 0.541

Ever used condom No -0.537 0.092 -5.777 7.62e-09

Education level Primary 0.059 0.103 0.576 0.564

Education level Secondary -0.204 0.141 -1.442 0.149

Education level Higher -0.664 0.210 -3.157 0.001

STI No -0.660 0.204 -3.231 0.001

Now we can analyze the model fitting and interpret what the model is telling us.

As for the statistically significant variables, all the variables have a small p-value

suggesting a strong association of these variables with the probability of being

positive.
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Table 4.8: Table of deviance

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 7936 4507.9

herpes 1 569.69 7935 3938.2 < 2.2e-16

Age 9 63.09 7926 3875.1 3.382e-10

FinalMaritalstatus 3 69.15 7923 3806.0 6.494e-15

Ever used condom 1 31.08 7922 3774.9 2.481e-08

educationlevel 3 16.18 7919 3758.7 0.001

STI 1 9.60 7918 3749.1 0.001

The difference between the null deviance and the residual deviance shows how

our model is doing against the null model (a model with only the intercept). The

wider this gap, the better. Analyzing the table, we can see the drop in deviance

when adding each variable one at a time. A large p-value here indicates that the

model without the variable explains more or less the same amount of variation.

From the Table 4.8, we can see that these variables are significant according to

their p-value.
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4.2.1 Results from the HIV Data

Table 4.9: Estimated HIV Prevalence and its confidence interval

Prevalence without the missing values Estimated Prevalence 95 % CI

0.080 0.095 0.090 - 0.101

This Table 4.9 shows the HIV estimated prevalence from Kenya when there are

some missing cases by using our method described above. Using HIV/AIDS data

from the Kenya AIDS Indicator Survey 2007 HIV, where there are some missing

cases along the outcome variable, we find that the true HIV prevalence might be

affected by the presence of missing as shown in our simulation studies. Our results

show that the estimated prevalence from our method is higher than the prevalence

calculated by ignoring those missing values. According to the simulation studies,

the estimates prevalence from our method are always close to the true prevalence

and the confidence intervals contain also true prevalence, thus we can conclude

that this estimated prevalence (0.095) from our method would be close the true

prevalence which could be contained in the confidence interval (0.090 - 0.101)

from the table
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

Incomplete data are a pervasive problem in medical research, and ignoring them

or handling them inappropriately may bias study results, reduce power and ef-

ficiency. Appropriate handling of censored values in medical research especially

when dealing with prevalence should be a substantial concern of investigators,

and planning for the integration of valid incomplete data methods into the anal-

ysis is important. This study shows that non-participation in disease testing may

be an important source of bias in disease prevalence estimates. However, our

approach is easy to implement. It does not require many assumptions, and it

allows to obtain the estimated prevalence and reliable confidence intervals from a

statistical point of view. This method allows to have disease estimated prevalence

that can be close to the true prevalence.

Moreover, we stress the fact that it is important to design well surveys to reduce

non response, either unit and item non response. It is also critical to include in the

data information, such as interviewer’s characteristics, fieldwork procedures etc,

as they can be used as instrumental variables. Two approaches to the problem are

to reduce the frequency of missing data in the first place and to use appropriate

statistical techniques that account for the missing data.
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