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Abstract

Cognitive Radio has been invented to provide wireless communications with

efficient radio spectrum utilization. The secondary users (SUs) can therefore,

access opportunistically licensed band by sensing spectrum holes without inter-

fering with primary users (PU) or keeping the interference, if it happens below

a tolerable threshold. Main functions of cognitive radio are: Spectrum sensing,

spectrum management, spectrum mobility and spectrum sharing. This research

focuses on sensing and spectrum access optimization in cooperative multi-hop

cognitive radio networks. In a cooperative spectrum sensing, nodes located in

their vicinities can experience spatially correlated fading and it leads to a de-

graded detection performance. To combat that effect, it is has been demon-

strated in several works that by selecting only spatially independent nodes, good

results can be obtained. A fuzzy-based user selection is investigated to cope with

the aforementioned issues in a multi-hop clustered cooperative spectrum sensing

architecture. Moreover, many researchers have based their work on single-hop

cognitive radio network architecture. However, this architecture does not portray

practical environments whereby nodes can be located far from each other and will

hence need their communication to be forwarded through relays. By optimizing

fuzzy inputs, we are able to achieve a high detection performance in a multi-hop

architecture by selecting only less correlated users to cooperate. By considering

uncorrelated users individually, the developed fuzzy based detection system out-

performs the distance based one by providing probability of detection 40% more

than the distance-based one when the decorrelation distance is 30 meters. On

the other hand, when the decorrelation distance takes respectively values of 65m

and 100m, the system does not show any gain compared to the distance-based

one. Finally, when using only uncorrelated users, the detection performance is

approximately the double of the one when using correlated users.

v



Résumé

La radio cognitive a été inventé pour fournir des communications sans fil avec

une utilisation efficace du spectre radio. Les utilisateurs secondaires peuvent donc

accéder à une bande sous licence de manière opportuniste en détectant des trous

de spectre sans interférer avec les utilisateurs primaires (PU) ou en maintenant les

interférences si elles se produisent en-dessous d’un seuil tolérable. Les principales

fonctions de la radio cognitive sont: la détection du spectre, la gestion du spec-

tre, la mobilité du spectre et le partage du spectre. Cette recherche se concentre

sur la détection et l’optimisation de l’accès au spectre dans les réseaux coopérat-

ifs de radio cognitive multi-hop. Dans une détection de spectre coopérative, les

nœuds situés trop proches peuvent souffrir d’ombrage spatiallement correlé ce

qui entraîne une dégradation de la performance de détection. Pour combattre

ce phénomène, il a été démontré dans plusieurs travaux que, en sélectionnant

uniquement des nœuds spatialement indépendants, de bons résultats peuvent

être obtenus. Une sélection d’utilisateurs basée sur la logique floue est étudiée

pour faire face aux défis mentionnés ci-dessus dans une architecture multi-hop

coopérative de spectre de détection. De plus, de nombreux chercheurs ont basé

leur travail sur l’architecture de réseau à un saut. Cependant, cette architecture

ne représente pas fidèlement un environnement pratique où les nœuds peuvent

être situés loin les uns des autres et auront donc besoin de leurs pairs en tant

que relais pour transmettre des données. En optimisant les variables d’entrées,

nous sommes en mesure d’atteindre une performance de détection élevée en sélec-

tionnant uniquement les utilisateurs moins correlés à coopérer. Si l’on considère

les utilisateurs non correlés individuellement, le système de détection développé

basé sur la logique floue surpasse celui basé sur la distance en fournissant une

probabilité de détection 40 % supérieure lorsque la distance de décorrelation est

de 30 mètres. D’autre part, lorsque la distance de décorrelation prend respective-

ment des valeurs de 65m et 100m, le système ne présente aucun gain par rapport

à celui basé sur la distance. Enfin, lorsqu’on utilise uniquement des utilisateurs

non correlés, la performance de détection est approximativement le double de
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celle atteinte en utilisant des utilisateurs correlés.
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Chapter 1

Introduction

1.1 Background of study

During the last few decades, we have witnessed a very high increase of wireless

devices simultaneously with spectrum greedy multimedia applications. Though,

most of the spectrum bands have been allocated to licensed users, it has been

noticed by regulatory structures that they were not efficiently used while radio

spectrum was already a limited resource. Based on measurements of the Federal

Communications Commission (FCC) done in New York State, temporal and ge-

ographical variations in the utilization of the allotted spectrum range from 15%

to 85%[1]. While certain frequency bands like military and paging frequencies

are under-utilized, cellular networks are encumbered in most parts of the world.

To deal with this inefficient radio spectrum utilization, Cognitive Radio Network

(CRN) have arisen. Cognitive radio is based on the well-known "Software-Defined

Radio" but improves it by bringing some intelligence in detection of spectrum

holes in the licensed users’ radio band using spectrum sensing Figure 1.1[2].

It was during a seminar at the Royal Institute of Technology in Stockholm

in 1998 that Joseph Mitola III originally suggested the cognitive radio’s concept

which was published in an article, the following year, by Mitola and Gerald Q.

Maguire, Jr.. It was a breakthrough in wireless communications, described by

Mitola as: "The point in which wireless Personal Digital Assistant (PDA) and the

related networks are sufficiently computationally intelligent about radio resources

and related computer-to-computer communications to detect user communications

needs as a function of use context, and to provide radio resources and wireless

services most appropriate to those needs" [3]. Cognitive radio has been proposed

to increase spectrum efficiency by having the cognitive radios as secondary users

to opportunistically access underutilized frequency bands. Spectrum sensing es-
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Figure 1.1: Contrasting (a) SDR and (b) Cognitive Radio

timations have to be trustworthy enough to avoid noise and harmful interference,

and lead to accurate spectrum access decisions [4]. Actually, many researches are

focused on achieving a good Dynamic Spectrum Access in CRN.

1.2 Problem statement

Cognitive Radio Networks have been proposed to deal with the wasteful radio

spectrum utilization. Spectrum sensing is a major feature in CRN and actually

many publications showed that cooperative spectrum sensing is the most used

spectrum sensing technique which resolves the shadowing and multipath fading,

and the receiver uncertainty problems by exploiting spatial diversity. A relevant

survey is provided in [5, 6]. The cooperative gain is the result enhancement due to

spatial diversity. To achieve a significant cooperative gain, many factors should be

considered[5]. For example, when several cognitive users closely located at differ-

ent positions are facing the same shadowing effects, it is called spatially correlated

shadowing, thus the reporting results of those users are correlated. Correlated

shadowing yields to a degraded performance of the overall sensing system. To

alleviate correlated shadowing, the users cooperating should be selected in such
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a way that they are experiencing independent fading[7].

The first part of this work will be focused on implementing a smart fuzzy-

based user selection to combat correlated shadowing while the second part will

focus on optimizing the probability of detection in a clustered multi-hop network

architecture where nodes can relay each other information.

1.3 Justification of the study

This study is being conducted owing to the fact that:

i) The design of a smart scheme based on fuzzy logic, to resolve the spatially

correlated shadowing challenge, remains a fresh area inefficiently covered.

ii) To the best of our knowledge there is no research work on spectrum sensing

and access optimization by using in combination cooperative spectrum sens-

ing and fuzzy logic to combat correlated shadowing in Multi-Hop Cognitive

Radio Network (MHCRN).

1.4 Objectives of the study

1.4.1 General objective

The main objective is to optimize the detection performance of the secondary

network by combating correlated shadowing through a smart user selection based

on Fuzzy Logic in multi-hop cognitive networks.

1.4.2 Specific objectives

i) To develop a smart fuzzy based user selection to combat the spatially correlated

shadowing;

ii) To implement a detection approach based also on fuzzy logic where less cor-

related users cooperate in a clustering fashion;

iii) To provide an optimal overall system of detection in MHCRN.

3



1.5 Scope of the study

The scope of this thesis is limited to the technical and analytical features of

an optimized cooperative spectrum sensing scheme based on fuzzy logic for dy-

namic spectrum sensing in MHCRN. The aim is to combat spatially correlated

shadowing by selecting uncorrelated users to cooperate. Since our work is deal-

ing with a specific type of fading which is the correlated shadowing, it does not

consider any other condition which can degrade the Signal to Noise Ratio (SNR)

values. The work is concerned about realization complexity in computation and

system overall performance. Some analytical assumptions are made hoping that

the results will provide awareness for further works in MHCRN under more real-

istic assumptions. The scope of the work is not to develop an algorithm of path

selection but implementing a multi-hop architecture based on a fuzzy logic user

selection system.

1.6 Structure of the thesis

The thesis is structured in five chapters. The study is introduced in the first

Chapter. The second Chapter summarizes the theoretical state of the art on

cognitive radio and fuzzy logic. Further in the same chapter, works related to

the topic are presented through existing implementation of multi-hop cognitive

radio networks under correlated shadowing based on fuzzy logic. Chapter three

describes thoroughly the system and how it operates. The first section is about

the smart user selection based on fuzzy logic and the second section on the other

hand, provides details about detection system optimization. The fourth Chapter

presents widely our results and discussions are carried on them. The study is

concluded in Chapter five and potential future works addressed.
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1.7 Note on publication

Willy M. Attikey, Peter Kihato, Vitalice Oduol, Fuzzy Logic Based Smart User

Selection for Spectrum Sensing under Spatially Correlated Shadowing, Journal

of Sustainable Research in Engineering, Volume 3, No 2 (2016)

[Available at http://sri.jkuat.ac.ke/ojs/index.php/sri/index ]
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Chapter 2

Literature review

In this chapter, we provide an overview of MHCRN and fuzzy logic theory.

We particularly emphasize on works related to correlated shadowing as well as

optimization of cluster-based cooperative spectrum sensing in MHCRN using

fuzzy logic.

In Section 2.1 we discuss the main characteristics of the CRN. This is followed

by a review of fuzzy logic aspects and its applications in CRN in sections 2.2 and

2.3.

2.1 Cognitive Radio Network

Wireless based applications are increasing exponentially, which makes spec-

trum more and more scarce. Systems providers, national regulatory bodies and

international institutions are more concerned with this. Spectrum is a shared

resource between different types of services and it has been, up to date, ineffi-

ciently utilized either spatially or temporally. These challenges prompted recent

technologies to efficiently tackle spectrum rarity.

2.1.1 Definition of cognitive radio

According to International Telecommunication Union (ITU), Cognitive Radio

System (CRS) is defined as : "A radio system employing technology that allows

the system to obtain knowledge of its operational and geographical environment,

established policies and its internal state; to dynamically and autonomously ad-

just its operational parameters and protocols according to its obtained knowl-

edge in order to achieve predefined objectives; and to learn from the results

obtained"[8]. Haykin [9] defines Cognitive Radio (CR) as a smart wireless com-

munication system that is aware of its surrounding environment, learns from the
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environment and adapts its internal states to statistical variations in the incom-

ing RF stimuli by making matching changes in certain operating parameters in

real time. Joseph Mitola III was the first to use the term cognitive radio in [10].

He defined it as a radio driven by a large store of a priori knowledge, searching

out intelligent ways to provide the facility the users want. Based on the previous

definitions we can notice that cognitive radio has two principal characteristics

such as:

• highly reliable communications whenever and wherever needed;

• efficient utilization of the radio spectrum.

The concept of cognitive radio is to detect a spectrum hole known also as white

space, which is a band of frequencies allocated to a primary user, but not utilized

at a particular time and specific geographic location by that user. Spectrum

utilization can be improved significantly by making it possible for a secondary

user (who is not being serviced) to access a spectrum hole unoccupied by the

primary user at the right location [11]. Figure 2.1[11] depicts the dynamic and

efficient usage of spectrum whereby when the primary user(PU), also known as

licensed user, wants to use a certain band, the cognitive radio leaves to another

white space to avoid interfering with the PU.

Figure 2.1: Spectrum hole concept

The basic cognitive cycle is shown in Figure 2.2[11] and the corresponding

spectrum management functionalities are spectrum sensing, spectrum decision,

7



spectrum mobility and spectrum sharing [11].

Spectrum sensing: Detecting unused spectrum and sharing the spectrum with-

out harmful interference with other users.

Spectrum decision: Capturing the best available spectrum to meet user com-

munication requirements.

Spectrum mobility: Maintaining seamless communication requirements dur-

ing the transition to better spectrum.

Spectrum sharing: Providing the fair spectrum scheduling method among

coexisting CR users. We will further detail the spectrum sensing functionality.

Figure 2.2: Cognitive radio cycle

2.1.2 Spectrum sensing

Spectrum sensing is the feature of a CR to detect unused spectrum and share

it with its peers without causing harmful interference to the licensed user. In a

nutshell, the cognitive radio is able to measure the electromagnetic activities due

to the current radio transmissions over different spectrum bands and to capture

the parameters related to such bands[12].

A cognitive radio should take real-time decisions about which bands of fre-

quency to sense, when, and for how long. To achieve accurate conclusions regard-

ing the radio environment, the cognitive radio must have enough information on
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the sensed spectrum. Moreover, spectrum sensing has to be fast enough to cope

with the temporal changes in radio environment. Spectrum sensing falls in two

categories of architecture: centralized and distributed[2]. In the centralized spec-

trum sensing, a base station senses the target frequency band, and the outcome

is shared with other nodes in the system. In distributed spectrum sensing, the

cognitive users do not cooperate which means that each CR user will individually

detect the channel, and in case one CR detects the primary user it will vacate

the channel without informing the other users(distributed uncoordinated) or the

cognitive users build up a network without the need of a base station(distributed

coordinated)[13]. Spectrum sensing is basically measured using two parameters:

Probability of Detection (PD) and Probability of False alarm (PF). Spectrum

sensing techniques are broadly classified in three groups:

• Transmitter detection or non-cooperative sensing: It is based on the ability

of CR users to detect that a primary user is transmitting. A hypothesized

model is derived for transmitter detection in [14, 15] that is:

y(k) = n(k)..............................H0

y(k) = h(k) ∗ s(k) + n(k).........H1 (2.1)

H0 : primary user is absent

H1 : primary user is present

where y(k) is the received signal by the SU, h(k) is the channel gain of the

sensing channel between the PU and the SU, s(k) is the signal sent by the

PU, n(k) is the Additive White Gaussian Noise (AWGN) with zero mean

and variance σ2
n. This technique comprises several approaches such as en-

ergy based detection, matched filter (MF) based detection, cyclostationary

based detection which are the most common.

– Energy detection is a spectrum sensing method that detects the pres-

ence or absence of a primary user just by measuring the received signal

power[16]. The most often used approaches in the energy detection are

based on the Neyman-Pearson (NP) lemma whereby the probability of
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detection is increased for a given probability of false alarm[17]. Figure

2.3[13] shows the block diagram for the energy detection technique.

The signal is first passed through a band pass filter of W bandwidth

and is integrated over time interval. The integrator output is then

compared to a predefined threshold. The existence of a primary user

is concluded if the output is greater than the threshold and the ab-

sence otherwise. Though energy detection is not optimal, it is widely

Figure 2.3: Energy detection

used due to its simplicity and no requirement on a priori information

of the primary user.

– The matched filter detector[18, 19] was first proposed in [20]. The

matched filter (also referred to as coherent detector), can be consid-

ered as a best sensing technique if CR has a priori knowledge of PU

signal[17]. The block diagram is shown on Figure 2.4[13].

The operation of a matched filter is given by:

Figure 2.4: Matched filter detection

Y [n] =
∞∑

K=−∞
h[n− k]x[k] (2.2)

Where h the impulse response that is matched to the reference sig-

nal, is convolved with x the unknown signal for maximizing the SNR.
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Matched filter detector uses less detection time and is optimal in sta-

tionary Gaussian noise but has the disadvantage that prior knowledge

of primary user signal is required.

– Cyclostationary feature detection makes use of the periodicity in the

received primary signal(sinusoidal carriers, pulse trains, spreading code,

hopping sequences or cyclic prefixes) to detect the presence of PU.

Block diagram of cyclostationary feature detection is shown in Figure

2.5[13]. Even though this technique has better performance than en-

Figure 2.5: Cyclostationary feature detector

ergy detection especially in low SNR regions, and has robustness to

noise uncertainties, it suffers from high computational complexity and

long sensing time.

– MultiTaper based Estimation is a method developed by David J. Thom-

son. It consists of a set of optimal band pass filters instead of rectangu-

lar windows as in periodogram. MultiTaper based Estimation basically

uses orthonormal tapers to generate a single spectrum estimate with

less spectral leakage and good variance.

Figure 2.6 [21] describes the steps to calculate MultiTaper based Es-

timation as follows:

i) Collect the sample data of the input.

ii) Calculate the product of the data samples with taper coefficients

to get tapered data samples.

iii) Produce the eigen spectrum by computing the Fourier transform

for each of the tapered data samples and by squaring each of the

resulted data

iv) Join all the eigen spectrum to obtain a single spectrum estimate.
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Figure 2.6: Multitaper spectral estimation block diagram

This spectral estimation method can use two different types of tapers

which are:

∗ MultiTaper based Estimation uses orthonormal slepian tapers.

The tapers concentrate the maximum energy in the bandwidth

[-W,W] and rejects as much as possible out of band energy.

∗ Sinusoidal tapers are orthogonal tapers used for the estimation.

Here, the number of tapers required increases with the frequency

band.

When the number of tapers is high, slepian MultiTaper based Estima-

tion introduces bias unlike the sinusoidal MultiTaper based Estima-

tion.

– Filter bank based spectrum estimation (FBSE) is considered as the

simplified version of MultiTaper based Estimation. It uses only one

prototype filter for each band. FBSE is based on the same concept of

maximal energy concentration in the bandwidth [-W,+W]. MTSE is

better for small samples whereas FBSE is better for large number of

samples[13].
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– Covariance based Detection does not require any knowledge of noise

and signal power for the choice of the detection threshold thus its

ability to avoid noise effect caused by uncertainty. It uses space-time

signal correlation for signal detection[22]. The covariances of signal

and noise are generally different and that is how this method is able

to differentiate the primary user signal from background noise

Figure 2.7[13] compares different detection techniques of spectrum sensing.

As we can notice, implementation of matched filter based detection is com-

plex, but provides the highest accuracy. On the contrary, the energy based

detection is the easiest to implement and least accurate compared to other

approaches. In between the two previous techniques, are the others with

balanced complexity and accuracy.

Figure 2.7: Sensing accuracy and complexity of various sensing methods

Figure 2.8[23] shows all the aspects related to spectrum sensing including

the challenges, the different sensing techniques and the architectures among

others. Two of these sensing techniques are described below:

• Cooperative detection: It refers to spectrum sensing methods where infor-

mation from multiple cognitive users is included for primary user detection.

• Interference based detection: It refers to spectrum sensing methods where
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CR users operate in Ultra Wide Band (UWB). This technique includes the

primary receiver detection and the interference temperature management[24].

Figure 2.8: Various aspects of spectrum sensing for cognitive radio

2.1.3 Cooperative spectrum sensing

Cooperative spectrum sensing takes place when a group or network of CRs

share the sense information to decide accurately about the presence or absence of

PU. In Cognitive Radio Network, cooperative spectrum sensing has a key role in

the detection by improving sensing performance especially in the fading, shadow-

ing and noise uncertainty[25][26]. Several research works have proposed different

methods to achieve a better spectrum utilization by using cooperative spectrum

sensing[27, 28, 29, 30]. However, many publications have shown that high coop-

erative gain is achieved when cognitive users observations are not made through

fading environments which is not realistic [25, 31, 32]. Selecting secondary users

optimally for cooperative sensing is important in determining the performance of

cooperative sensing since it helps to increase cooperative gain and tackle the over-

head challenges [5]. Sensor selection has been extensively studied[33, 34, 35, 36].

The authors in [33] showed that correlated shadowing leads to the overall per-

formance degradation. Furthermore, they pointed out that sufficiently spatially

dispersed cooperating nodes experiencing independent fading, can alleviate the

effect of the correlated shadowing. They concluded therefore that an ideal user
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selection in cooperative spectrum sensing can efficiently increase the system per-

formance as well as its security. In [34, 35], they developed respectively decen-

tralized and centralized user detection schemes to improve sensing performance

in cooperative spectrum sensing. The authors in [36] provided a sensor selec-

tion algorithm, based on the level of correlation, whereby only the less correlated

users collaborate to sense the primary frequency. In [35], they provided three

different algorithms to perform optimal centralized user detection. The sensor

selection algorithms partition in active and passive sets, the nodes which have

been selected from the total number of nodes as being able to perform sensing.

Based on an appropriate compromise between energy consumption and sensing

performance, the active set is comprised of nodes which will cooperate in sensing

at a certain time. The first algorithm is an integer optimization problem based

on correlation measure by using knowledge on the location of the sensors and the

corresponding uncertainty to form an active set. The second algorithm is based

on estimation of location of cooperating sensor nodes and the decorrelation dis-

tance to find an optimal uncorrelated nodes. The last algorithm, is based on

radius knowledge, that is the distance between the remaining nodes and the ones

chosen for cooperation. When large number of CRs are involved in cooperative

detection, centralized user selection suffer from prohibitively large control channel

bandwidth and much increased reporting delay [7].

Though conventional cooperative spectrum sensing brought a better reliable

sensing, it can suffer, among others, from performance degradation due to flawed

reporting channels. Clustering is a technique which solves the previously cited

shortcoming and bring various advantages compared to the the conventional

cooperation[37]. Several publications have widely studied clustering in spectrum

sensing[4, 34, 38]. Malady et al. in [4] investigated four clustering approaches for

distributed cooperative spectrum sensing. Firstly, random clustering in which

the knowledge about the location of both CRs and PUs are not available and

each cluster has the same number of CRs. Secondly, reference-based clustering

whereby clusters are formed according to their positions with regards to a certain

reference. Thirdly, statistical clustering where the nodes are clustered using a sta-
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tistical method based on their relative vicinities. Lastly, distance-based clustering

in which the locations of CRs and PUS as well are known and only the k closest

users to the PU, out of the K CR users, participate in the distributed spectrum

sensing cooperation. In [39], the authors studied the impact of the trade off, be-

tween the probability of detection of the PU and the cost in terms of false alarm

probability, on the sensing performance through cooperative spectrum sensing.

They suggested distributed cooperation schemes, modeled as a non-transferable

coalitional game (i.e. each user has its particular utility function), through game

theory. They derived a distributed algorithm for making autonomous coalitions

based on a merge-and-split rule. In [38], to address the energy-efficiency chal-

lenge they developed a cluster-and-forward based distributed spectrum sensing

scheme. The CR users are dynamically clustered in groups in which the cluster

heads (CHs) are selected. To achieve spectrum sensing reliability and low power

consumption even in poor Signal-to-Noise Ratio (SNR) conditions, the chosen

CH plays the role of fusion center (FC) to collect the sensing results from the

nodes and make the final decision.

2.2 Fuzzy logic concepts

It is common to cope with uncertainty during real world problem solving.

Fuzzy set theory is most applicable when the boundary conditions of the set

is not clear, also when the information is incomplete/imprecise and non-linear

functions of arbitrary complexity can be effectively and quickly modeled. The idea

of fuzzy logic was first introduced by Lotfi Zadeh of the University of California at

Berkeley in the mid-1960s. Fuzzy set theory based approaches is most useful when

dealing with poorly defined operations/imprecise data; approximation concepts

are in consideration; utilizing nonlinear functions of arbitrary complexity. User

interactions are more natural when using fuzziness in software engineering. For

example, fuzziness in spectrum sensing can result in more intuitive and better

PU detection. As another example, spatial correlation between CR users can be

fuzzified. Often, correlated shadowing is modeled using a mathematical model
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but how it can impact SUs sensing capability and therefore the overall detection

system can be fuzzy and that is where a fuzzy membership function can help

out. This section will explain the basic notion of fuzzy sets and will discuss

fuzzy set operators; it introduces linguistic variables, fuzzy logic and approximate

reasoning; and it shows applications of fuzzy sets in cognitive radio networks.

2.2.1 Fuzzy sets

A fuzzy set is a set without distinct or sharp (crisp) boundaries or without

full membership characteristics[40]. In a fuzzy set, it is possible for an element to

partially belong to the set unlike in a crisp set where each element either belongs

or not to the set. The definition of a fuzzy set is expressed by the characteristic

function also known as the membership function[41]:

µF : U −→ [0, 1] (2.3)

The degree to which an element belongs to a fuzzy set is called degree of mem-

bership. For example, considering the membership function µFhot, the human

opinion can judge 37◦C as fairly hot and 38◦C as hot but not as hot as 40◦C and

higher. Figure 2.9[41] represents this process of partial and full membership of

the function µFhot. The universe of discourse is a set U which contains every set

of interest for specific problems. Elements of the universe are noted u.

Figure 2.9: The Membership Function µFhot

A fuzzy set F can also expressed as:

F = {(x, µF (x)|(x))x ∈ U} (2.4)
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Where F is the fuzzy set, (x, µF (x)|(x)) is the membership function and U is the

universe of discourse. For discrete U , F is given by:

F = µF (x1)/(x1) + µF (x2)/(x2) + . . .+ µF (xn)/(xn) =
∑

µF (xi)/(xi) (2.5)

and for continuous U by:

F =

∫
U

µF (x)/(x) (2.6)

2.2.2 Fuzzy membership functions

In fuzzy logic, four types of Membership Function (MF) are usually consid-

ered. There are: triangular, trapezoidal, Gaussian and generalized bell functions.

Triangular MF

A triangular MF is defined by three parameters(a,b,c) as follows:

triangle(x; a, b, c) =



0, x ≤ a.
x− a
b− a

, a ≤ x ≤ b.

c− x
c− b

, b ≤ x ≤ c.

0, c ≤ x.

(2.7)

The parameters a, b, c (with a < b < c) define the x coordinates of the three

edges of the triangular MF. Figure 2.10(a) shows a triangular MF for triangle (x;

20, 60, 80).
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Figure 2.10: Different Membership Functions: (a) triangle, (b) trapezoid, (c)
Gaussian, (d) bell

Trapezoidal MF

A trapezoidal MF is defined by four parameters(a,b,c,d) as follows:

trapezoid(x; a, b, c, d) =



0, x ≤ a.
x− a
b− a

, a ≤ x ≤ b.

1, b ≤ x ≤ c.
d− x
d− c

, c ≤ x ≤ d.

0, d ≤ x.

(2.8)

The parameters a, b, c, d (with a < b <= c < d) define the x coordinates of

the four edges of the trapezoidal MF. Figure 2.10(b) shows a trapezoidal MF for

trapezoid (x; 10, 20, 60 95).
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Gaussian MF

A Gaussian MF is defined by two parameters(c and σ):

gaussian(x; c, σ) = e
−

1

2

(x− c
σ

)2

(2.9)

In a Gaussian MF, c and σ represent the MF centre and the MF width respec-

tively. Figure 2.10[42](c) plots a Gaussian MF for Gaussian(x; 50, 100). Figure

2.10 provides different membership functions for the following values: (a) triangle

(x; 20, 60, 80); (b) trapezoid (x; 10, 20, 60, 95); (c) Gaussian (x; 50, 100); (d)

bell (x; 20, 4, 50).

Generalized Bell MF

A generalized bell MF (or Bell-shaped Function) is defined by three parame-

ters a, b, c:

bell(x; a, b, c) =
1

1 +

∣∣∣∣x− ca
∣∣∣∣2b

(2.10)

The parameter b is usually positive otherwise it results in an upside-down bell

MF. Because of their smoothness and concise notation, Gaussian and bell MFs

are becoming more and more popular for specifying fuzzy sets. The bell MF has

one more parameter than the Gaussian MF, so it has one more degree of freedom

to adjust the steepness at the crossover points. Although the Gaussian MFs and

bell MFs achieve smoothness, they are unable to specify asymmetric MFs, which

are important in certain applications[42].
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2.2.3 Properties of fuzzy sets

The support set

The support set is a crisp subset of the universe. Crisp set containing all the

elements (in the universe) whose membership grade is greater than 0.

S(F ) = {x ∈ X|µF (x) > 0} (2.11)

The width of a fuzzy set F

width(F ) = max(S(F ))−min(S(F )) (2.12)

It is possible to have left and right width for asymmetrical functions.

The nucleus of fuzzy set F

It given by:

nucleus(F ) = {x ∈ X|µF (x) = 1} (2.13)

2.2.4 Operations on fuzzy sets

The classical fuzzy logic operations are: intersection, union and complement.

These operations correspond respectively to their crisp logical counterparts and,

or and not. The classical methods advanced by Zadeh to represent intersection

and union are the most used.

Let consider two fuzzy sets A and B in the same universe U.

Intersection

The intersection of the sets A and B is a fuzzy set C = A∩B where ∩ is the

operator defining the intersection. The characteristic function of the resulting

fuzzy set is given by:

µA∩B(x) = min[(µA(x), µB(x))] ∀x ∈ U (2.14)
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The intersection results in a fuzzy set which contains all the elements that are

present simultaneously in sets A and B. Figure 2.11[40] depicts the intersection

operation of two fuzzy sets.

Figure 2.11: Fuzzy-set intersection

Union

Figure 2.12: Fuzzy-set union

Figure 2.12[40] represents the union fuzzy operator. The union of the sets

A and B is a set C = A ∪ B where ∪ is the operator defining the union. The

resulting fuzzy set C contains all the elements which reside in each of the sets.

The membership function of fuzzy set C is given by:

µA∪B(x) = max[(µA(x), µB(x))] ∀x ∈ U (2.15)
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Complement(negation, NOT)

Let consider a fuzzy set A in a universe U. The complement of A noted Ā or

A′ is a fuzzy set given by:

µ′A(x) = 1− µA(x) ∀x ∈ U (2.16)

Representation of the complement operation is shown on Figure 2.13[40].

Figure 2.13: Complement

2.2.5 Fuzzy system design

There are usually four steps to develop a fuzzy system.

i. Fuzzification

It calculates a crisp input degree of membership or converts it in a fuzzy

value. It is done through the following steps:

– Definition of the universe of discourse;

– Identification and definition of the linguistic variables(low, moderate,

high);

– Definition of the membership functions within the universe of dis-

course;
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– Graphical representation of the membership functions(triangular, trape-

zoidal, Bell or Gaussian)

ii. Knowledge base

It is a collection of conditional fuzzy IF-THEN rules in which the an-

tecedents and the consequents involve linguistic variables. An example of

a conditional statement is expressed by: IF x is big THEN y is small. The

general rule structure shown above is commonly known as Zadeh-Mamdani

rule. The knowledge base characterizes also a simple relation between the

system inputs and outputs.

iii. Inference

The inference process, based on the knowledge base, manipulates the knowl-

edge representation resulted from the fuzzification step. Inference helps to

fire the rules by matching fuzzy antecedents against fuzzy facts. There are

two types of inference process. The Mamdani[43, 44, 45] approach also

termed as MAX-MIN approach is the widely used one. Another popular

fuzzy inference model is the Takagi-Sugeno[44, 46] model which appears to

be more accurate.

iv. Defuzzification

Defuzzification has the opposite role of fuzzification. It transforms back

to crisp values the fuzzy values from the fuzzy system. The two common

defuzzification methods are the Center of Gravity (CoG) or CENTROID

method and Mean of Maxima (MoM) or MAXIMUM method[47].

In the CoG method, the crisp value of the output variable is computed

by finding the variable value of the center of gravity of the membership

function for the fuzzy value. This is described by the following equation.

CoG(z) =

∫
µC(z) · zdz∫
µC(z)dz

(2.17)

In the MoM method, one of the variable values at which the fuzzy subset

24



has its maximum truth value is chosen as the crisp value for the output

variable. There are several variations of the MoM method that differ only

in what they do when there is more than one variable value at which this

maximum truth value occurs. One of these, the AVERAGE-OF-MAXIMA

method[47], returns the average of the variable values at which the maxi-

mum truth value occurs.

Architecture of a typical fuzzy logic controller is shown on Figure 2.14.

Figure 2.14: Typical fuzzy logic controller architecture

2.3 Application of Fuzzy Logic in Cognitive Radio

Networks

Fuzzy logic has shown its ability and efficiency to deal with uncertainty. Many

works[48, 49, 50, 51] have adopted fuzzy concepts to resolve challenges in Cogni-

tive Radio Network by considering different parameters in order to increase the

sensing performance.

In [48], the authors propose a new method using Fuzzy Logic to manage the

opportunistic spectrum access problem in CRN. Their fuzzy logic system takes as

inputs three descriptors which are: spectrum utilization efficiency of the SU, its

degree of mobility, and its distance to the primary user. They derived 27 fuzzy

rules for the knowledge base by using the knowledge of 5 network experts. The
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output of the system is the probability of a SU to be selected to use an available

spectrum band. Their system show a good performance in providing opportunis-

tic access to radio band of frequencies without interfering with the PU but they

did not consider a clustering scheme where a centralized base station can coor-

dinate SUs spectrum access. A comparative study is made between Mamdani

and Takagi-Sugeno models in [44] by using the same fuzzy logic system previ-

ously cited. Their results show that the Takagi-Sugeno model performs slightly

better than its Mamdani counterpart because the former offers more accuracy

and computational efficiency yet the latter is widely used for its ease of use in

model formalization. The authors in [49] developed a fuzzy cooperative decision

approach by comparing the performance of the "OR" and the "AND" rules. They

introduced two different thresholds to achieve a more reliable decision scheme and

derived the detection and the false alarm probabilities by using the "OR" and

the "AND" rules. Results showed that their system improved performance over

than the conventional sensing approach.

From the above literature, works have been done on uncorrelated users selec-

tion either by using distance or correlation coefficient but without combining their

methods to fuzzy logic in both cases. Also, they considered conventional energy

detection techniques either in a clustering fashion or by taking nodes individually

but more practical environment would consider a multi-hop architecture where

nodes can relay on each other to forward their observations to the fusion centre.

The contribution of this work is to develop two fuzzy-based systems which uses

the advantages brought by clustering technique and multi-hop architecture. The

first, an user selection system helps to combat spatially correlated shadowing by

choosing only uncorrelated users. The second, a detection system helps to senses

the spectrum band and to detect accurately any primary user.
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Chapter 3

Design and Implementation

In this chapter, we detail the methods used to fulfill the objectives listed in

the first chapter.

3.1 Fuzzy logic

Fuzzy logic provides an approach to resolve a problem based on inaccurate,

noisy, and incomplete information. Fuzzy logic uses a set of fuzzy membership

functions and knowledge base to achieve the solution that meets objectives de-

sirable.

3.1.1 Spatially correlated shadowing and smart user selec-

tion

Cooperative sensing is more effective when cooperating nodes experience in-

dependent fading and shadowing[52, 53]. The probability of detection is degraded

in correlated shadowing, hence deteriorating the overall sensing performance of

MHCRN. In [7], it is shown that when collaborating SUs are located far apart it

gives robust defense against fading and shadowing. Therefore, the fundamental

challenge to alleviate correlated shadowing is optimally select CR user ensuring

that all cooperating CRs experience independent fading and shadowing condi-

tions. Selecting CR users cautiously in CSS enhances the throughput as well as

the reliability and security of the overall system and reduces the energy consump-

tion. CR selection, also referred to as user selection, based on centralized and

decentralized topologies is discussed in literature [34, 35]. In centralized user se-

lection, Fusion Center (FC) chooses independent CRs which will cooperate based

on their location estimation. Gudmundson in [54] was first to develop a mathe-

matical model to express correlated shadowing between two nodes. The model is
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given by:

Rij = exp−
dij
D (3.1)

where Rij is the correlation coefficient, dij represents distance between any two

users and D is called the decorrelation distance and depends on the environment.

His paper shows that correlated shadowing between two CRs is a degrading ex-

ponential function of the distance separating radios and hence there exists a

decorrelation distance beyond which the cooperating users can be considered to

undergo uncorrelated shadowing. Centralized user selection suffers from large

control channel bandwidth and high reporting delay for large CRNs[7]. Dis-

tributed selection technique results therefore in optimal user selection especially

for large networks. Different clustering methods are proposed in [4] based on dis-

tributed approach. These clustering techniques, which can be either statistical,

random, reference-based or distance-based, are based on the availability of loca-

tion information of primary and secondary users. Bomfin et al. in their work [55]

develop a three-dimensional correlated shadowed channel model based on grid

points. From that model, a closed formula is derived to obtain the correlation

between any two points of the grid. In [36], an algorithm is developed to select

uncorrelated cognitive radios by relying on the correlation experienced by the

radios. We based our work on the centralized user selection and to avoid the

shortcomings that is brought by large networks we use a relatively small CRN.

System model

Cooperative spectrum sensing can result in cooperative sensing overhead due

to reciprocal exchange of massive information among CR users[56]. For the simu-

lations, we use therefore a set of 60 nodes, so that after selection we remain with

a fair number of nodes. They are randomly spread on a 150m x 150m field and

sense the primary frequency to detect the presence or not of any licensed user as

described in the Figure 3.1.

Among the set of 60 nodes, the fuzzy user selection system has selected 27

nodes as uncorrelated to cooperate. From that set of 27 uncorrelated users, we
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Figure 3.1: Network model for user selection

choose an even number of 24 users so that we can spread them into uniforms

clusters. Spectrum sensing is done in a centralized fashion by the SUs. Hence the

Fusion Centre is aware of the relative distance between cognitive users and the

PU by using GPS technology. We adopt two fuzzy logic systems, one to model the

spatial correlation and the second to implement the spectrum sensing. At this

stage, SUs who will cooperate are selected based on the correlation coefficient

which represents the output of the first fuzzy system. There are two inputs for

the first fuzzy system which are respectively the distance separating the nodes and

the decorrelation distance D. The latter varies from 30 ∼ 100 meters for outdoor

systems [57, 58]. Since the decorrelation distance varies in a specific range, we

study the cases where D takes respectively three different values: 30, 65 and

100 meters which represents the minimum, the mean and the maximum values.

We selected these values to show better how the system can behave when we use

different decorrelation distances and also because for close values the impact is not

well distinguished. The crisp values of the correlation coefficient obtained for each

input are compared to a threshold εd = e−(D/D) = e−1 = 0.37 which represents

the maximum correlation coefficient, based on Gudmundson’s model (equation
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3.1) [54], that should not be exceeded. The SUs whose correlation coefficient

is above the threshold are considered correlated and will not participate in the

CSS. Among the SUs remaining, the 24 least correlated users are selected and

their correlation coefficient will be used as input for the second stage. The inputs

are generated randomly in the simulation tool(Matlab 2016). Below is the fuzzy

system on Figure 3.2 which is used to select less correlated users.

Figure 3.2: Fuzzy based User selection system

Framework

To apply fuzzy logic to correlated shadowing, we come up with a simple fuzzy

system which takes as inputs two parameters and gives one parameter as output

as shown on Figure 3.3.

The proposed fuzzy system has two inputs with three membership functions

each and one output with five membership functions. The distance membership

functions are labeled as close, average and far which show how close or far two

specific SUs are. The distance is the separation between any two CR users and

is given, for ith and pth CR users, by:

dip =
√

(xi − xp)2 + (yi − yp)2 + (zi − zp)2 (3.2)

Regarding the decorrelation distance, the membership functions are labelled as

low, medium and large. The names of the membership functions of the correlation

coefficient, which is the output, are very low, low, normal, high and very high

which indicates how correlated two SUs are. Min-Max is used as the implication

and aggregation methods and centroid as defuzzification method[40]. We use
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Figure 3.3: Membership functions of the User selection system

triangular membership functions of same shape for both inputs and output. The

latter is normalized on a scale of 0 to 1 and compared to a threshold of εd =

e−(D/D) = e−1. SUs with a correlation coefficient less than the threshold are

said not correlated and correlated otherwise. The knowledge base of the fuzzy

system is presented in Table 3.1. There are a total of 9 rules. For example, if

the distance input is average and the decorrelation distance input is low then the

combined fuzzy decision is very low and that means the nodes on that link are

not correlated.

Table 3.1: Rules base for fuzzy based user selection
Input1 Input2 output
close low normal
close medium high
close large very high
average low very low
average medium low
average large normal
far low very low
far medium low
far large normal
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3.2 Cluster-based Fuzzy Logic CSS

Cooperative spectrum sensing has been shown to be the most efficient spec-

trum sensing which deals with multipath fading and shadowing[7, 25]. Cooper-

ative spectrum sensing occurs when CR users contribute to sense licensed band

and to detect PU[59]. CSS can be classified in 3 types of networks: centralized

[25, 60], distributed[61], and relay-assisted which are shown on Figure 3.4[5]. A

centralized cooperative spectrum sensing is used in this work. Basically, CSS is

comprised of 3 steps such as: local sensing, reporting and, information fusion. .

Figure 3.4: Classification of cooperative sensing (a) centralized, (b) distributed,
and (c) relay-assisted

3.2.1 Local sensing

Prior to the local sensing, uncorrelated CR users selected based on our smart

user selection system, are clustered in six uniform clusters of four members each

using distance clustering algorithm[4]. Because we are using a centralized CSS

architecture, the position knowledge of each node is managed by the FC, and

that eases the clustering formation. Selecting uncorrelated users comes to select

users separated by a minimum decorrelated distance since correlated shadowing

is exponentially related to the distance. Our local sensing is based on a fuzzy

detection system instead of the common well-know sensing techniques(energy

detection, matched filter detection,etc). The detection performance is assessed

by using one important parameter that is the probability of detection Pd. At
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this stage, the correlation coefficients of the 24 least correlated users for the three

different decorrelation distances, are collected and combined to signal to noise

ratio (SNR) variables as inputs for a spectrum sensing system based on fuzzy

logic. Considering ith SU, the SNR formula is given by

SNRpi = |hpi|2EpNo (3.3)

where hpi is the channel gain between the PU and ith SU, Ep is the energy of

primary signal and No is the variance of AWGN. As shown on Figure 3.5 the

output here is the probability of detection for different values of decorrelation

distances.

Figure 3.5: Detection system based on Fuzzy logic

To design the fuzzy logic based spectrum sensing system, the twenty four least

correlation coefficients of the first fuzzy system are taken as one of the inputs.

The second input is the SNR values of each SU which vary from -40 to 30 dB. This

range of SNR is used to represent better the behavior of the system in different

SNR conditions[50]. The output, the probability of detection varies between 0 to

1.

Both input have five membership functions named as very weak, weak, zero,

high and very high for the SNR and the correlation coefficient input named as

in the previous system. The output has also five membership functions labeled

very low, low, medium, high and very high. Figure3.6 represents the different

membership functions of detection system based on fuzzy logic. Here, Gaussian

membership functions are used for both inputs and the output. We use Gaussian

membership functions, because of the smoothness of their slope which supports
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Figure 3.6: Membership functions

more the characteristic of fuzzy logic between two successive ranges. We study

with this system the probability of detection with correlation coefficients obtained

for 3 different values of decorrelation distance. This will show the impact of

correlation between close users on the detection system. Also here Min-Max is

used as the implication and aggregation methods and centroid as defuzzification

method. Since we do not consider any other fading conditions which can degrade

the SNR values, it is assumed therefore, that in condition of low correlation

coefficient, the SNR is relatively good. Starting from the same assumption, we

just consider 18 rules out of 25 for the knowledge base displayed in Table 3.2. For

example the rule if correlation coefficient is high and SNR is strong, probability is

medium is left aside because when two SUs are correlated, which means there are

relatively too closed and are blocked by the same obstacle, their SNR is degraded

because of the fading effect and therefore we assume that the SNR could not be

strong while the correlation coefficient is high.

3.2.2 Reporting

After being clustered, each node senses its environment and send their local

observations to their respective CH which is chosen randomly among the CR

users.
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Table 3.2: Rules base for fuzzy based spectrum sensing
Input1 Input2 output
very weak normal low
very weak high very low
very weak very high very low
weak low very low
weak normal very low
weak high very low
weak very high very low
zero very low medium
zero low low
zero normal low
zero high very low
zero very high very low
zero average low
strong very low very high
strong low high
strong normal medium
very strong very low very high
very strong low very high
very strong normal low

3.2.3 Information fusion

The CH of each cluster, according to the information collected from the nodes,

make a cluster decision ( i.e. a PU is detected on a certain band or not). This

information gathering is made based on a data fusion technique. There are 3

common data fusion techniques namely: soft combining, quantized soft combining

and hard combining. In this work, the hard combining technique is used in order to

reduce the transmission overhead since CR users after making their local decision

send only their one-bit decision to the CH.

Let ui be the local decision of SU i, d the decision made per CH and D the

final decision made by the fusion centre. ui, d and D are binary variables. A

binary "1" represents when a PU is present (H1) and a binary "0" when it is

absent (H0). As fusion rule, we will use the OR-Rule whereby the fusion center

concludes H1 when there is at least one CR user which transmits "1". It has been

proved in [62] that the OR-Rule performs better than the majority rule as well

as the AND combining rules in different cases of interest. Moreover, the OR-Rule
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helps to avoid any interference with the PU signal. Therefore, in cooperative

spectrum sensing the probability of detection using the OR-Rule is given by:

Qd = 1−
K∏
i=1

(
1− P (i)

d

)
(3.4)

where P (i)
d is the probability of detection of the ith CR in its local spectrum

sensing and K the number of cooperating SUs. Since we are in a clustered archi-

tecture, the probability of detection at the jth CH is given by:

Qd = 1−
UC∏
i=1

(
1− P (i)

d

)
(3.5)

where P (i)
d is the probability of detection of the ith CR in its local spectrum

sensing and UC the number of SUs in that cluster.

3.3 Multi-hop spectrum sensing model

The selected uncorrelated users once clustered, can send their local decisions

to their Cluster Head (CH). Figure 3.7 shows the multi-hop clustered topology.

We assume that the intra-cluster channel(channel between SUs and their CH) and

the inter-cluster channel(channel between different CH and between CHs and the

FC) are not prone to communication error. Since all the CHs are not in the

same transmission range from the FC, the farthest ones will forward their cluster

decisions to any nearest CH and so on till the decisions of all CHs reach the FC

which makes a global decision on the presence or not of PU using also the OR

fusion rule. We assume that the clusters are arranged in a layered topology and

that the CHs only forward their cluster decisions through any other close CH. By

assuming we have L hops in our architecture, the overall sensing performance is

given by the probability of detection expressed as follows:

QD =
1

2

(
1−

L∏
j=1

(
1− 2×Q(j)

d

))
(3.6)
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Figure 3.7: Multi-hop architecture model

where Q(j)
d is the probability of detection of cluster j. For example, on Figure

3.7 where we have three layers and layer one is by assumption the nearest to

the PU, any CHL1 will forward his decision to any CH of layer 2 located in his

transmission range which in turn will combine with its own decision, and then

forward that combined decision to the last layer CH which repeats the same

process. All the decisions combined are received at the FC who takes the final

decision.
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Chapter 4

Results and Discussion

This Chapter aims to provide the different results from the systems developed

in this work. We further discuss about how it improves the spectrum sensing

mechanism thus the probability of detection by combating correlated shadowing

compared to when uncorrelated users are selected based on distance.

4.1 Selection of uncorrelated users

Several works have widely studied the degrading impact of correlated users in

cooperative spectrum sensing. In our work, we proposed a user selection based

on fuzzy logic whereby only uncorrelated SUs are chosen to cooperate. Even

though our system seems less aggressive than the distance-based one it remains

optimal. As shown on Figure 4.1, the lowest correlation coefficients are obtained

when distance separating two nodes is 55 meters and above for a decorrelation

distance less than 60 meters because nodes are less likely to be correlated when

distance separating them is greater than the decorrelation distance value.

Figure 4.1: Surface plot of the fuzzy based user selection

This portion of the surface represents actually the uncorrelated users since

38



the correlation coefficient in that region is less than the threshold of e−1. For

the same distance range, the correlation coefficient increases of 25% for the first

time when the decorrelation distance varies from 60 meters to 80 meters and

for the second time when the decorrelation distance exceeds 80 meters. This

can be explained by the fact that when the decorrelation distance is close or

greater than the separation distance between any two given nodes, they tend to

be correlated. The region of distance less than 50 meters records the highest

correlation coefficients which results in highly correlated users. It follows the

same growth scheme of 25 % as the decorrelation distance increases and reaches

the peak values for decorrelation distance above 80 meters.

4.2 Probability of detection based on fuzzy logic

Figure 4.2 depicts the fuzzy based probability of detection in three differ-

ent cases of the decorrelation distance: 30, 65 and 100 meters. We select these

three values to show clearly the importance of the decorrelation distance since

too close values will affect only slightly the correlation coefficient hence the detec-

tion performance. It is shown on Figure 4.1 how the correlation coefficient only

increases around the mentioned values. In this experiment nodes are considered

individually in a single hop architecture without being clustered.

Figure 4.2: Probability of detection of fuzzy logic user selection compared with
distanced based selection
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Actually, the lowest correlation coefficients are obtained with the 30m decor-

relation distance. On the other hand, a decorrelation distance of 100m yields to

high correlation coefficient which in turn degrades the probability of detection.

This is explained by the fact that when the decorrelation distance is high enough

in a case where distance separating SUs is not quite high, SUs tend to experience

correlated shadowing. These remarks reflect the fuzzy systems we designed.

We compare our results to the distance-based algorithm since the area of user

selection in cooperative spectrum sensing, especially in fighting correlated shad-

owing, has not been extensively investigated. We can see that our fuzzy based

system performs well especially in very low SNR conditions. In the distance-based

algorithm, uncorrelated CR users are selected based on the distance separating

them and the probability of detection is computed using energy detection tech-

nique. Furthermore, our system is able to achieve high detection performance

when the decorrelation distance is very low (30 meters) which shows the benefit

of nodes being located far from each other at least for a distance equal or greater

than the decorrelation distance.

The negative impact of correlated users on the detection system is well shown

on Figure 4.3.

Figure 4.3: Probability of detection of correlated users

Compared to the probability of detection when only uncorrelated users are

selected, the probability of detection here reaches only 0.5 in good SNR condition
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for the same value of 30m as decorrelation distance. This shows better the gain

achieved by selecting first only uncorrelated users to cooperate.

4.3 Cluster-based CSS

The results on Figure 4.4 show the gain achieved when using clustering tech-

nique to make a final decision. This cooperative gain is clearly noticed when

decorrelation distance is equal to 30 meters. For this decorrelation distance, us-

Figure 4.4: Cluster-based CSS probability of detection for different decorrelation
distances

ing clustering technique the probability of detection increases of 45% in the region

of low SNR (less than 0dB). The same improvement is noticed for high SNR val-

ues and the probability of detection reaches its maximum value when SNR is

beyond 20 dB by gaining a 10% improvement. For SNR values less than 0dB, the

probability of detection increases of 10% when decorrelation distances are 65m

and 100m. Then, for 65m as decorrelation distance, the detection performance

increases of 45% for SNR=[5dB,20dB] and reaches the maximum value after 20

dB while for 100m as decorrelation distance, the detection performance increases

of 40% and remains at 0.85 for the highest SNR values.

The multi-hop architecture also introduces an improvement in the detection

performance which is represented on Figure 4.5. Here when the decorrelation

distance is of 30m, the detection performance increases of 10% and reaches and
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Figure 4.5: Multi-hop Probability of detection for different decorrelation distance

remains at the maximum value throughout the range of study of the SNR. The

probability of detection when decorrelation distance are 65m and 100m show the

same improvement here. A 45% gain is achieved from -20dB to -15dB and an

average gain of 25% is achieved from -15dB up to 5dB. From 5dB, the detection

performance increases slightly, reaches its maximum value from 10dB and re-

mains there. By using the fusion rule OR we ensure that no harmful interference

is caused to the PU, hence our system reaches better detection performance. The

detection performance is degraded for decorrelation distances 65 meters and 100

meters since it leads to more correlated users because of the network size we con-

sidered(150m x 150m). This means since the decorrelation distance is higher (half

of network size and above) and the SUs are randomly spread over the network,

most of inter-users distances are short.

In summary, high detection performance is noticed especially in the region

of good SNR conditions regardless of the decorrelation distance or the network

topology. Also, multi-hop architecture achieves higher gain than when only clus-

tering is used which in turn achieves higher gain than when nodes are considered

individually. This is shown in Figures 4.2, 4.4, and 4.5. The clustering scheme

achieves better than individual nodes because CR users observations are first

gathered by the CH which makes a final decision. It helps to overcome the bi-

ased observations of some nodes. Multi-hop architecture achieves better than
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the clustering because each CH after making a decision from its cluster members

observations, forwards it to the nearest CH so and so till it reaches the FC who

makes the final decision. By being forwarded from CH to CH information are less

likely to be biased and it results in an accurate and high detection performance.
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Chapter 5

Conclusions and Future work

5.1 Conclusion

One of the objectives of cooperative spectrum sensing is to deal with the multi-

hidden node problem. However, SUs in CSS can suffer from spatially correlated

shadowing which will drastically degrade the detection performance. To resolve

the cooperative overhead brought by CSS in MHCRN, we based our detection

method on clustering technique and on fuzzy logic. The contribution of our work

is two-fold.

1) Firstly, we presented a fuzzy-based user selection scheme whereby only un-

correlated users are selected to cooperate. It has been shown that selecting

uncorrelated cognitive users rather than correlated users can result in better

sensing performance. For instance, when the decorrelation distance is 30

meters our system provides a performance which is actually double the one

when correlated users are selected. Also, our approach has demonstrated

to be accurate enough by selecting the least correlated users specifically

SUs between which the correlation coefficient was less than the threshold

of e−1 = 0.368.

2) Secondly, we developed a spectrum sensing technique which shows its perfor-

mance by exhibiting good probability of detection. This spectrum sensing

technique is based on fuzzy logic and considers two parameters which are

the correlation coefficient and the SNR. We analyzed it in different cases

of decorrelation distance to show how correlated users can affect the detec-

tion of primary user in a Multi-Hop Cognitive Radio Network. By selecting

uncorrelated users only to cooperate, the developed fuzzy-based system is

able to achieve 40% gain compared to the detection system when the nodes
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are selected based on distance. In addition, using a clustering technique in

a multi-hop architecture resulted in a detection performance as high as 0.9

to 1 when decorrelation distance is 30m and 0.65 to 1 when decorrelation

distance is 65m and 100m. We can recommend for good detection perfor-

mance, the decorrelation distance should be set regarding the size of the

network. In a nutshell, the higher the size of the network, the higher the

decorrelation distance and inversely. But by implementing the network, we

have to ensure that nodes are located from each other at a distance greater

or equal to the chosen decorrelation distance.

5.2 Future work

In our study, we consider only spatially correlated shadowing which is not

the only type of fading in practical situations. Therefore, future work can take

into consideration different fading conditions to simulate a more practical envi-

ronment. In addition, more parameters such as probability of false alarm can be

considered. Finally, more intelligence can be added to the system by using suit-

able artificial intelligence so that the system gets the ability to learn and adapt

itself to the network topology, size, and location of nodes among others.
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Appendix A

Smart user selection based on fuzzy

logic

%%Code wr i t t en by Wil ly ATTIKEY

%% Msc Student at Pan African Un i v e r s i t y − Nairobi , Kenya

%%Email : a t t i k e y . w i l l y@s tuden t s . j k ua t . ac . ke

[ System ]

Name=’ F i r s t−s tage ’

Type=’mamdani ’

Vers ion=2.0

NumInputs=2

NumOutputs=1

NumRules=9

AndMethod=’min ’

OrMethod=’max ’

ImpMethod=’min ’

AggMethod=’max ’

DefuzzMethod=’ c en t r o i d ’

[ Input1 ]

Name=’ d i s t anc e ’

Range=[0 150 ]

NumMFs=3

MF1=’ Close ’ : ’ t r im f ’ , [ 0 0 5 6 . 2 5 ]

MF2=’ Average ’ : ’ t r im f ’ , [ 3 7 . 5 75 1 12 . 5 ]
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MF3=’Far ’ : ’ t r im f ’ , [ 94 .5436507936508 150.793650793651

150 .793650793651 ]

[ Input2 ]

Name=’ de co r r e l a t i on−d i s t ance ’

Range=[30 100 ]

NumMFs=3

MF1=’Low ’ : ’ t r im f ’ , [ 3 0 30 60 ]

MF2=’Medium ’ : ’ t r im f ’ , [ 5 0 65 80 ]

MF3=’ Large ’ : ’ t r im f ’ , [ 7 0 100 100 ]

[ Output1 ]

Name=’ c o r r e l a t i o n−c o e f f i c i e n t ’

Range=[0 1 ]

NumMFs=5

MF1=’Very−Low ’ : ’ t r im f ’ , [ 0 0 0 . 2 ]

MF2=’Low ’ : ’ t r im f ’ , [ 0 . 1 5 0 .2753 0 . 4 ]

MF3=’High ’ : ’ t r im f ’ , [ 0 . 6 0 .7247 0 . 8 5 ]

MF4=’Normal ’ : ’ t r im f ’ , [ 0 . 3 5 0 .5 0 . 6 5 ]

MF5=’Very−High ’ : ’ t r im f ’ , [ 0 . 8 1 1 ]

[ Rules ]

1 1 , 2 (1 ) : 1

1 2 , 3 (1 ) : 1

1 3 , 5 (1 ) : 1

2 1 , 1 (1 ) : 1

2 2 , 2 (1 ) : 1

2 3 , 4 (1 ) : 1

3 1 , 1 (1 ) : 1

3 2 , 1 (1 ) : 1

3 3 , 4 (1 ) : 1
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Appendix B

Fuzzy logic detection system

%%Code wr i t t en by Wil ly ATTIKEY

%% Msc Student at Pan African Un i v e r s i t y − Nairobi , Kenya

%%Email : a t t i k e y . w i l l y@s tuden t s . j k ua t . ac . ke

[ System ]

Name=’ second−s tage ’

Type=’mamdani ’

Vers ion=2.0

NumInputs=2

NumOutputs=1

NumRules=25

AndMethod=’min ’

OrMethod=’max ’

ImpMethod=’min ’

AggMethod=’max ’

DefuzzMethod=’ c en t r o i d ’

[ Input1 ]

Name=’SNR ’

Range=[−40 30 ]

NumMFs=5

MF1=’Very−Weak ’ : ’ gaussmf ’ , [ 5 . 7 3 3 −39.25]

MF2=’weak ’ : ’ gaussmf ’ , [ 4 . 2 4 7 −20]

MF3=’ zero ’ : ’ gaussmf ’ , [ 5 . 4 7 8 −2.95]

MF4=’ s t rong ’ : ’ gaussmf ’ , [ 4 . 2 4 7 15 ]

55



MF5=’ very−s t rong ’ : ’ gaussmf ’ , [ 4 . 4 2 9 . 5 ]

[ Input2 ]

Name=’ Corre la t i on−Co e f f i c i e n t ’

Range=[0 1 ]

NumMFs=5

MF1=’ low ’ : ’ gaussmf ’ , [ 0 . 0 5298 0 . 2 753 ]

MF2=’Normal ’ : ’ gaussmf ’ , [ 0 . 0 6 3 7 0 . 5 ]

MF3=’ high ’ : ’ gaussmf ’ , [ 0 . 0 5318 0 . 7 247 ]

MF4=’ very−high ’ : ’ gaussmf ’ , [ 0 . 0 7 6 1 ]

MF5=’ very−low ’ : ’ gaussmf ’ , [ 0 . 0 7644 0 . 0 1 ]

[ Output1 ]

Name=’ p robab i l i t y−of−de t e c t i on ’

Range=[0 1 ]

NumMFs=5

MF1=’ very−low ’ : ’ t r im f ’ , [−0.25 0 0 . 2 ]

MF2=’ low ’ : ’ t r im f ’ , [ 0 . 1 0 .25 0 . 4 ]

MF3=’medium ’ : ’ t r im f ’ , [ 0 . 3 0 . 5 0 . 7 ]

MF4=’ high ’ : ’ t r im f ’ , [ 0 . 6 0 .75 0 . 9 ]

MF5=’ very−high ’ : ’ t r im f ’ , [ 0 . 8 1 1 . 2 5 ]

[ Rules ]

1 2 , 1 (1 ) : 1

1 3 , 1 (1 ) : 1

1 4 , 1 (1 ) : 1

2 1 , 1 (1 ) : 1

2 2 , 1 (1 ) : 1

2 3 , 1 (1 ) : 1

2 4 , 1 (1 ) : 1

3 5 , 3 (1 ) : 1
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3 1 , 2 (1 ) : 1

3 2 , 2 (1 ) : 1

3 3 , 1 (1 ) : 1

3 4 , 1 (1 ) : 1

4 5 , 5 (1 ) : 1

4 1 , 4 (1 ) : 1

4 2 , 2 (1 ) : 1

5 5 , 5 (1 ) : 1

5 1 , 5 (1 ) : 1

5 2 , 3 (1 ) : 1

1 5 , 1 (1 ) : 1

1 1 , 1 (1 ) : 1

2 5 , 1 (1 ) : 1

4 3 , 2 (1 ) : 1

4 4 , 1 (1 ) : 1

5 3 , 1 (1 ) : 1

5 4 , 1 (1 ) : 1
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Appendix C

Probability of detection Based on Fuzzy

logic

%%Code wr i t t en by Wil ly ATTIKEY

%% Msc Student at Pan African Un i v e r s i t y − Nairobi , Kenya

%%Email : a t t i k e y . w i l l y@s tuden t s . j k ua t . ac . ke

clc

close a l l

clear a l l

dcor_min = 30 ;

dcor_max = 100 ;

dist_min = 0 ;

dist_max = 150 ;

snr_min = −40; %dB

snr_max = 30 ; %dB

co r r e l a t i on_th r e sh = 2.7183^(−1);

l e s s_co r r e l a t e d = [ ] ;

index2 = 1 ;

nb_links = 105 ; % for 25 nodes ; ( ( n^2)−n)/2

dcorr_distance1_hor ( 1 : nb_links ) = 30 ; %in meters

dcorr_distance2_hor ( 1 : nb_links ) = 65 ;

dcorr_distance3_hor ( 1 : nb_links ) = 100 ;

dcorr_distance1 = ( dcorr_distance1_hor ) ’ ;
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dcorr_distance2 = ( dcorr_distance2_hor ) ’ ;

dcorr_distance3 = ( dcorr_distance3_hor ) ’ ;

d i s t ance = ( dist_max − dist_min ) . ∗ rand ( nb_links , 1 ) + dist_min ;

for index1 = 1 :3 %compute the c o r r e l a t i o n c o e f f i c i e n t s f o r each

%l i n k f o r d i f f e r e n t d e c o r r e l a t i o n d i s t ance

for index2 = 1 : nb_links

f i smat = r e a d f i s ( ’ shadow−fuzzy ’ ) ;

i f index1 == 1

corr_coef f30_hor ( index2 ) = e v a l f i s ( [ d i s t anc e ( index2 )

dcorr_distance1 ( index2 ) ] , f i smat ) ;

e l s e i f index1 == 2

corr_coef f65_hor ( index2 ) = e v a l f i s ( [ d i s t anc e ( index2 )

dcorr_distance2 ( index2 ) ] , f i smat ) ;

else

corr_coef f100_hor ( index2 ) = e v a l f i s ( [ d i s t anc e ( index2 )

dcorr_distance3 ( index2 ) ] , f i smat ) ;

end

end

end

co r r_coe f f 30 = ( corr_coef f30_hor ) ’ ;

co r r_coe f f 65 = ( corr_coef f65_hor ) ’ ;

co r r_coe f f 100 = ( corr_coef f100_hor ) ’ ;

%Sort the c o r r e l a t i o n c o e f f i c i e n t va l u e s

%from sma l l e s t to l a r g e s t

so r t30 = sort ( co r r_coe f f 30 ) ;

s o r t65 = sort ( co r r_coe f f 65 ) ;

so r t100 = sort ( co r r_coe f f 100 ) ;
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par={ ’ Distance ’ ’ Deco r r e l a t i on ␣Distance ␣ f o r ␣30m’

’ Co r r e l a t i on ␣ Co e f f i c i e n t ␣ f o r ␣30m’ ’ s o r t i n g ␣ f o r ␣30m’

’ Deco r r e l a t i on ␣Distance ␣ f o r ␣65m’ ’ Co r r e l a t i on ␣ Co e f f i c i e n t ␣ f o r ␣65␣m’

’ s o r t i n g ␣ f o r ␣65m’ ’ Deco r r e l a t i on ␣Distance ␣ f o r ␣100m’

’ Co r r e l a t i on ␣ Co e f f i c i e n t ␣ f o r ␣100m’ ’ s o r t i n g ␣ f o r ␣100m’ ; . . .

d i s t ance dcorr_distance1 co r r_coe f f 30 so r t30 dcorr_distance2

co r r_coe f f 65 so r t65 dcorr_distance3 cor r_coe f f 100 so r t100 } ;

mypar=[ d i s t anc e dcorr_distance1 co r r_coe f f 30 so r t30 dcorr_distance2

co r r_coe f f 65 so r t65 dcorr_distance3 cor r_coe f f 100 so r t100 ] ;

save par

s1=x l sw r i t e ( ’C: \ Users \MWA\Documents\MATLAB\myvalues . x l s ’ , par ,

’ w i l l y ’ , ’B1 ’ ) ;

s2=x l sw r i t e ( ’C: \ Users \MWA\Documents\MATLAB\myvalues . x l s ’ , mypar ,

’ w i l l y ’ , ’B3 ’ ) ;

%second fu z z y system fo r smart p r e d i c t i on

sorted40_for30m = x l s r e ad ( ’ myvalues . x l s ’ , ’ w i l l y ’ , ’E3 : E42 ’ ) ;

sorted40_for65m = x l s r e ad ( ’ myvalues . x l s ’ , ’ w i l l y ’ , ’H3 : H42 ’ ) ;

sorted40_for100m = x l s r e ad ( ’ myvalues . x l s ’ , ’ w i l l y ’ , ’K3 :K42 ’ ) ;

snr_compar = (snr_max − snr_min ) . ∗ rand ( nb_links , 1 ) + snr_min ;

snr_compar_size = numel ( snr_compar ) ;

snr = snr_compar (randperm( snr_compar_size , 4 0 ) ) ;

for index3 = 1 :3

f ismat_second = r e a d f i s ( ’ second−s tage ’ ) ;

for i i =1:40

i f index3 == 1

probab i l i t y 30 ( i i ) = e v a l f i s ( [ snr ( i i )

sorted40_for30m ( i i ) ] , f ismat_second ) ;
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e l s e i f index3 == 2

probab i l i t y 65 ( i i ) = e v a l f i s ( [ snr ( i i )

sorted40_for65m ( i i ) ] , f ismat_second ) ;

else

probab i l i t y100 ( i i ) = e v a l f i s ( [ snr ( i i )

sorted40_for100m ( i i ) ] , f ismat_second ) ;

end

end

end

% snr ( i )

% sor ted10 ( i )

% p r o b a b i l i t y

probabi l i ty30_column = ( p robab i l i t y 30 ) ’ ;

probabi l i ty65_column = ( p robab i l i t y 65 ) ’ ;

probabi l i ty100_column = ( probab i l i t y100 ) ’ ;

%%Send the inpu t s va l u e s to the f u z z y system and s t o r e

%% i t and the output in e x c e l s h e e t s%%

par2={ ’SNR ’ ’ 40␣Lowest␣ Cor r e l a t i on ␣ c o e f f i c i e n t ␣ f o r ␣30m’

’ P robab i l i t y ␣ f o r ␣30m’ ’ 40␣Lowest␣ Cor r e l a t i on ␣ c o e f f i c i e n t ␣ f o r ␣60m’

’ P robab i l i t y ␣ f o r ␣60m’ ’ 40␣Lowest␣ Cor r e l a t i on ␣ c o e f f i c i e n t ␣ f o r ␣100m’

’ P robab i l i t y ␣ f o r ␣100m’ ; . . .

snr sorted40_for30m probabi l i ty30_column sorted40_for65m

probabi l i ty65_column sorted40_for100m probabi l i ty100_column } ;

mypar2=[ snr sorted40_for30m probabi l i ty30_column sorted40_for65m

probabi l i ty65_column sorted40_for100m probabi l i ty100_column ] ;

save par2

s3=x l sw r i t e ( ’C: \ Users \MWA\Documents\MATLAB\myvalues . x l s ’ , par2 ,

’ second_system ’ , ’A1 ’ ) ;
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s4=x l sw r i t e ( ’C: \ Users \MWA\Documents\MATLAB\myvalues . x l s ’ , mypar2 ,

’ second_system ’ , ’A3 ’ ) ;

% % %%%%%%%%%%%%%%%%% COMPARISON fo r 30m %%%%%%%%%%%%%%%%%%%%

corr_coeff_compar_30 = x l s r e ad ( ’ myvalues . x l s ’ , ’ w i l l y ’ , ’D3 : D107 ’ ) ;

fismat_compar = r e a d f i s ( ’ second−s tage ’ ) ;

for j j =1:105

probabi l i ty_compar ( j j ) = e v a l f i s ( [ snr_compar ( j j )

corr_coeff_compar_30 ( j j ) ] , fismat_compar ) ;

end

probability_column_compar = ( probabi l i ty_compar ) ’ ;

par3={ ’SNR ’ ’ Co r r e l a t i on ␣ c o e f f i c i e n t ’ ’ P robab i l i t y ␣ f o r ␣ comparison ’ ;

snr_compar corr_coeff_compar_30 probability_column_compar } ;

mypar3=[snr_compar corr_coeff_compar_30 probability_column_compar ] ;

save par3

s5=x l sw r i t e ( ’C: \ Users \MWA\Documents\MATLAB\myvalues . x l s ’ , par3 ,

’ comparison ’ , ’A1 ’ ) ;

s6=x l sw r i t e ( ’C: \ Users \MWA\Documents\MATLAB\myvalues . x l s ’ , mypar3 ,

’ comparison ’ , ’A3 ’ ) ;
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Appendix D

Algorithm of multi-hop architecture

%%Code wr i t t en by Wil ly ATTIKEY

%% Msc Student at Pan African Un i v e r s i t y − Nairobi , Kenya

%%Email : a t t i k e y . w i l l y@s tuden t s . j k ua t . ac . ke

clc

close a l l

clear a l l

node = 3 ;

c l u s t e r = 6 ;

snr = x l s r e ad ( ’ myvalues . x l s ’ , ’ second_system ’ , ’A2 : A41 ’ ) ;

co lorVec = hsv ( 4 ) ;

prob_30 = x l s r e ad ( ’ myvalues . x l s ’ , ’ second_system ’ , ’C2 : C41 ’ ) ;

prob_65 = x l s r e ad ( ’ myvalues . x l s ’ , ’ second_system ’ , ’E2 : E41 ’ ) ;

prob_100 = x l s r e ad ( ’ myvalues . x l s ’ , ’ second_system ’ , ’G2 :G41 ’ ) ;

%%For comparison%%

snr_compar_30 = x l s r e ad ( ’ myvalues . x l s ’ , ’ Sheet2 ’ , ’A1 : A33 ’ ) ;

prob_compar_30 = x l s r e ad ( ’ myvalues . x l s ’ , ’ Sheet2 ’ , ’C1 : C33 ’ ) ;

xx = numel ( prob_compar_30 ) ;

Qd_compar_30 = 1−(1−prob_compar_30 ) . ^ 3 ;

f igure ( 3 ) ;

plot ( snr_compar_30 ,Qd_compar_30 , ’−.g∗ ’ )
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hold on ;

% t i t l e ( ’ P r o b a b i l i t y o f d e t e c t i on f o r d i f f e r e n t d e c o r r e l a t i on

%dis tance ’ )

xlabel ( ’SNR ’ ) % x−ax i s l a b e l

ylabel ( ’ P robab i l i t y ␣ o f ␣Detect ion ’ ) % y−ax i s l a b e l

%legend ( ’D = 30m’ , ’D = 65m’ , ’D = 100m’ , ’ Location ’ , ’ sou theas t ’ )

hold o f f ;

%%End comparison%%

%% For 30m de co r r e l a t i o n d i s t ance %%

Qd_30_3 = 1−(1−prob_30 ) . ^ 3 ;

Qd_65_3 = 1−(1−prob_65 ) . ^ 3 ;

Qd_100_3 = 1−(1−prob_100 ) . ^ 3 ;

f igure ( 1 ) ;

plot ( snr ,Qd_30_3, ’−.g∗ ’ )

hold on ;

plot ( snr ,Qd_65_3, ’−−ro ’ )

plot ( snr ,Qd_100_3 , ’ : bs ’ )

xlabel ( ’SNR ’ ) % x−ax i s l a b e l

ylabel ( ’ P robab i l i t y ␣ o f ␣Detect ion ’ ) % y−ax i s l a b e l

legend ( ’D=30m’ , ’D=65m’ , ’D=100m’ , ’ Locat ion ’ , ’ s outheas t ’ )

hold o f f ;

Qd_total_30_3 = 0.5∗(1−(1−2∗Qd_30_3) .^ c l u s t e r ) ;

Qd_total_65_3 = 0.5∗(1−(1−2∗Qd_65_3) .^ c l u s t e r ) ;

Qd_total_100_3 = 0.5∗(1−(1−2∗Qd_100_3) .^ c l u s t e r ) ;

f igure ( 2 ) ;
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% P l o t t i n g Qd and Qf t o t a l

plot ( snr , Qd_total_30_3 , ’−.g∗ ’ )

hold on ;

plot ( snr , Qd_total_65_3 , ’−−ro ’ )

plot ( snr , Qd_total_100_3 , ’ : bs ’ )

% t i t l e ( ’ Multi−hop P r o b a b i l i t y o f d e t e c t i on f o r

d i f f e r e n t d e c o r r e l a t i o n d i s tance ’ )

xlabel ( ’SNR ’ ) % x−ax i s l a b e l

ylabel ( ’ P robab i l i t y ␣ o f ␣Detect ion ’ ) % y−ax i s l a b e l

legend ( ’D=30m’ , ’D=65m’ , ’D=100m’ , ’ Locat ion ’ , ’ s outheas t ’ )

hold o f f ;
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Abstract Cognitive Radio has been invented to provide wireless communications with efficient radio spectrum utilization. 

Cooperative spectrum sensing, was introduced to alleviate the hidden terminal problem resulting from spectrum sensing.  However, 

cooperation gain is affected among others by correlated shadowing in the sensing and the reporting channels respectively.  

In this paper, we propose a two-stage fuzzy logic based local spectrum sensing scheme. In the first stage, less correlated users are 

selected from a set of randomly spread nodes. In the second stage, the output from stage 1 is combined to generated signal-to-

noise-ratio values to provide an enhancement in detection of primary user. The simulation shows that our scheme can achieve high 

accurate spectrum sensing which in effect gives a higher probability of detection than the distance-based user selection approach. 

 

Keywords Cognitive radio, Cooperative spectrum sensing, Fuzzy logic, Spatially correlated shadowing. 

 

1. Introduction 

Spectrum sensing is a key feature in cognitive radio 

networks (CRN). These networks, have arisen to cope 

with spectrum wastage which is a serious challenge in 

wireless communication due to the finite availability of 

bandwidth. According to the Federal Communications 

Commission (FCC), regarding time or location, spectrum 

band utilization ranges from 15% to 85% [1]. In CRN, 

secondary users (SUs) access opportunistically the 

licensed band of frequency after sensing the absence of 

primary users (PU) and should vacate it when their 

presence is sensed without causing harmful interference. 

Practically, in real environments, spectrum sensing might 

experience different issues like multipath fading and 

shadowing which will yield to a degradation of the overall 

performance of the system [2]. This is where cooperative 

spectrum sensing (CSS) came up as a breakthrough to 

solve the aforementioned challenges. 

CSS uses spatial diversity to make SU to cooperate by 

gathering their local sensing outcomes and thereby 

achieves more accurate detection and increases the 

sensing performance [3]. Many researchers have studied 

widely cooperative sensing [4] [5] and have showed that 

CSS is a threefold process: Local Sensing, Reporting and 

Data Fusion. During local sensing, each SU senses the 

environment and makes its own decision (presence or 

absence of PU) which is sent to the fusion centre (FC) in 

the course of the reporting period. Finally, during the data 

fusion, the FC gathers all the decisions received and make 

a final one which is forwarded to all the SUs.  

Cooperative gain, known as the improvement obtained 

from CSS, can be degraded when observations of SUs are 

made under spatially correlated shadow fading [6]. The 

latter happens when nodes located close to each other are 

blocked by the same obstacle which can result in 

misdetection of the PU and therefore, severely degrade the 

performance of the system. Gudmundson [7] developed a 

distance dependent correlation model which has been 

adopted in several literatures. In [8], Ghasemi and Sousa 

were able to show the degrading effect of the correlated 
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shadowing on the detection performance in a 

collaborative scheme. By using two SUs located at 

various distances, the probabilities of detection and false 

alarm were compared and each of the probabilities got 

worse as well as the SUs were located too close. 

Correlated shadowing reduces cooperative gain and hence 

it is better for a few independent SUs to collaborate than 

several correlated nodes [4]. In [9], a correlation aware 

algorithm is developed whereby the least correlated users 

are selected to cooperate.  

We propose in this paper, a smart user selection method 

to combat correlated shadowing based on Fuzzy logic in 

order to improve the efficiency of the detection system. 

Many papers have extensively studied the adoption of 

fuzzy logic in cognitive radio networks [10] [11] [12]. By 

using Fuzzy Logic, we bring intelligence based on expert 

knowledge and the system is twofold. Firstly, the smart 

user selection is based on a decreasing correlation 

function developed by Gudmundson. The proposed 

correlation model is given by: 
ipd

De


  (1.1) 

where dip represents distance between any two users and 

D is called the decorrelation distance and depends on the 

environment. The decorrelation distance can be explained 

as the minimum separation distance from which any two 

CR users do not undergo shadowing correlation. The 

higher D is, the more any given two CR users tend to 

suffer spatially correlated shadowing. Secondly, the 

output of the previous system is combined with other 

parameters through another fuzzy logic based system to 

decide efficiently on the presence or the absence of a PU. 

The rest of this paper is organized as follows. In Section 

II, the system model is presented and analyzed. The 

proposed fuzzy logic based systems are thoroughly 

detailed in Section III. In section IV, simulations and 

results are discussed. Finally, conclusions are made in 

Section V. 

2. System model 

We consider a cognitive radio network made of N nodes, 

randomly spread on a 150m x 150m field, which sense the 

primary frequency to detect the presence or absence of 

any licensed user as described in the Figure 1: Network 

model.  

 
Fig. 1. Network model 

Among the set of N nodes, we will select the 20 less 

correlated to cooperate. To do so, SUs and a PU are 

located in a close area. Spectrum sensing is done in a 

centralized fashion by the SUs. We assume cognitive 

users are aware of the relative distance between each other 

and the PU by using Global Positioning System(GPS) 

technology. We adopt two fuzzy logic systems, one to 

model the spatial correlation and the second to implement 

the spectrum sensing. The proposed method can be 

described in the following steps: 

Firstly, SUs who will cooperate are selected based on 

the correlation coefficient stated in Equation (1.1) which 

represents the output of the first fuzzy system. There are 

two inputs which are respectively the distance separating 

the nodes and the decorrelation distance D which varies 

from 30 to 100 meters for outdoor systems [13] [14]. The 

distance is the separation between any two CR users and 

is given, for ith and pth CR users, by 

2 2( ) ( )ip i p i pd x x y y   
  (1.2) 

The paper studies the cases where D takes respectively 

three different values: 30, 60 and 100 meters. The crisp 

values of the correlation coefficient obtained for each 

input are compared to a threshold 
( / ) 1D D

d e e  
 

which represents the maximum correlation coefficient, 

based on Gudmundson's model [7], that should not be 

exceeded. The SUs whose correlation coefficient is above 

the threshold, are considered correlated and will not 

participate in the CSS. Assuming M SUs are remaining, 

the 20 less correlated users are selected and their 
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correlation coefficient will be used as input for the second 

stage. The inputs are generated randomly in the simulation 

tool. Below is the fuzzy system on Figure 2 which is used 

to select less correlated users. Figures 3 and 4 depict the 

diagrammatic representation of the inputs and outputs 

membership functions of the two fuzzy systems.  

 

Fig. 2. Smart User selection based on Fuzzy logic 

 

 

Fig. 3. Membership function plots a) distance, b)decorrelation 

distance, c)Correlation coefficient of first fuzzy system 

At the second stage, the correlation coefficients of the 

twenty less correlated users for the three different 

decorrelation distances, are collected and combined to 

generated signal to noise ratio (SNR) variables as inputs 

for a spectrum sensing system based on fuzzy logic. 

Considering a SU ith, the SNR formula is given by  

2

pi pi pSNR h E No                    (1.3) 

where hpi is the channel gain between the PU and ith SU, 

Ep is the energy of primary signal and No is the variance 

of Additive White Gaussian Noise (AWGN). Spectrum 

sensing at each CR user can be represented as a binary 

hypothesis test given in  

0

1

( )               (  is absent )
( )

( ) ( )    (  is present)

n t H Pu
r t

hs t n t H Pu


 


  (1.4) 

where r(t) is the received signal, s(t) is the primary 

transmitted signal, n(t) is AWGN and h is the channel 

gain. H0 indicates the absence of primary user (spectrum 

hole available) and H1 the presence of primary user 

(spectrum hole not available). As shown on Figure 4 the 

output here is the probability of detection for different 

values of decorrelation distances. 

 

Fig. 4. Probability of detection based on Fuzzy logic 

 

Fig. 5. Membership function plots a)SNR, b)correlation-

coefficient, c)probability of detection of second fuzzy system 

3. Framework 

3.1. Smart User Selection 

To apply fuzzy logic to correlated shadowing, we come 

up with a simple fuzzy algorithm which takes as inputs 

two parameters and gives one parameter as output.  

The proposed fuzzy system has two inputs with three 

membership functions each and one output with five 

membership functions. The distance membership 

functions are labeled as close, average and far which 

show how close or far two specific SUs are. Regarding the 

decorrelation distance, the membership functions are 

called as low, medium and large. The names of the 

membership functions of the correlation coefficient, 

which is the output, are very low, low, normal, high and 

very high which indicates how correlated two SUs are. 

Min-Max is used as the implication and aggregation 

methods and centroid as defuzzification method [15]. We 

use triangular membership functions of same shape for 

both inputs and output. The latter is normalized on a scale 

of 0 to 1 and compared to a threshold of 
( / ) 1D D

d e e  

. SUs with a correlation coefficient less than the threshold 

are said not correlated and correlated otherwise. The 

knowledge base of the fuzzy system is presented in Table 

1. There is a total of 9 rules. For example, if the distance 

input is average and the decorrelation distance input is 
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low then the combined fuzzy decision is very low and that 

means the nodes on that link are not correlated.  

Table 1: Rules base for fuzzy based user selection 

 

Distance 
Decorrelation 

distance 

Correlation 

coefficient 

close low normal 

close medium high 

close large very high 

average low very low 

average medium low 

average large normal 

far low very low 

far medium low 

far large normal 

 

3.2. Designing the Fuzzy Logic System for 

Spectrum Sensing Problem 

To design the fuzzy logic based spectrum sensing system, 

the twenty lowest correlation coefficients of the first fuzzy 

system are taken as one of the inputs. The second input is 

generated SNR which varies from - 40 to 30 dB. The 

output, the probability of detection varies between 0 to 1. 

For the sake of simplicity, both inputs have five 

membership functions named as very weak, weak, zero, 

high and very high for the SNR and the correlation 

coefficient input named as in the previous system. The 

output has also five membership functions labelled very 

low, low, medium, high and very high. For the inputs, 

Gaussian membership functions are used while triangular 

ones for the output. We use Gaussian membership 

functions here, because of the smoothness of their slope 

which supports more the characteristic of fuzzy logic 

between two successive ranges. We study with this system 

the probability of detection with correlation coefficients 

obtained for 3 different values of decorrelation distance. 

This will show the impact of correlation between close 

users on the detection system. Also, here Min-Max is used 

as the implication and aggregation methods and centroid 

as defuzzification method. Since this paper is dealing with 

a specific type of fading which is the correlated 

shadowing, it does not consider any other condition which 

can degrade the SNR values. It is assumed therefore, that 

in condition of low correlation coefficient, the SNR is 

relatively good. Starting from the same assumption, we 

just consider 18 rules out of 25 for the knowledge base 

displayed in Table 2. For example, the rule if correlation 

coefficient is high and SNR is strong, probability is 

medium is left aside because when two SUs are correlated, 

which means there are relatively too closed and are 

blocked by the same obstacle, their SNR is degraded 

because of the fading effect and therefore we assume that 

the correlation coefficient could not be high while the 

SNR is strong. 

Table 2: Rules base for fuzzy based spectrum sensing 

 

SNR 
Correlation 

coefficient 

Probability of 

Detection 

very weak normal low 

very weak high very low 

very weak very high very low 

weak low very low 

weak normal very low 

weak high very low 

weak very high very low 

zero very low medium 

zero low low 

zero normal low 

zero high very low 

zero very high very low 

strong very low very high 

strong low high 

strong normal medium 

very strong very low very high 

very strong low very high 

very strong normal low 

 

4. Simulation 

As shown on Figure 6, the lowest correlation 

coefficients are obtained when distance separating two 

nodes is 55 meters and above for a decorrelation distance 

less than 60 meters. This portion of the surface represents 

actually the uncorrelated users since the correlation 

coefficient in that region is less than the threshold of  
1 0.3679e . For the distance range mentioned 

previously, the correlation coefficient increases by 25% 

twice. It increases the first time when the decorrelation 

distance varies from 60 meters to 80 meters and the 

second time when the decorrelation distance exceeds 80 

meters. The region of distance less than 50 meters records 

the highest correlation coefficients which results in highly 

correlated users. This high correlation between the CR 

users can be explained by the short distance between them 

making them to be prone to correlated shadowing. This 

relation between the distance and the correlation 

coefficient follows the same growth scheme of 25 % as 

the decorrelation distance increases and reaches the peak 

values for decorrelation distance above 80 meters. 
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Fig. 6.  Surface plot of the fuzzy based smart user selection 

 

Figure 7 depicts the fuzzy based probability of detection 

in three different cases of the decorrelation distance: 30, 

60 and 100 meters. Actually, the lowest correlation 

coefficients are obtained with the 30m decorrelation 

distance. This is more clarified by the fact that the 

considered network is of 150m x 150m size. Therefore, 

the chances for any two CR users to be separated by a 

distance of less than 30m is reduced leading also to less 

users affected by spatially correlated shadowing. 

Contrarily, a decorrelation distance of 100m yields to a 

high correlation coefficient which in turn degrades the 

probability of detection. This is explained by the fact that 

when the decorrelation distance is high enough(100m) in 

a case where distance separating SUs is not quite higher, 

the latter tend to experience correlated shadowing. 

By comparing our results to the distance-based 

algorithm, we can see that our fuzzy based system 

performs better. Furthermore, we can notice that in very 

low SNR conditions and for the lowest value of 

decorrelation distance, our system outperforms the 

distance-based one. Furthermore, our system is able to 

achieve high detection performance when the 

decorrelation distance is very low which shows how 

correlated users can degrade the overall system.   

 

Fig. 7. Fuzzy based Probability of Detection for different 

decorrelation distance values 

5. Conclusions 

The contribution of this paper is in two-fold. Firstly, we 

presented a smart user selection scheme whereby only 

uncorrelated users are selected to cooperate. This 

approach has demonstrated to be accurate enough by 

selecting the less correlated users. Secondly, we 

developed a spectrum sensing technique which shows its 

performance by exhibiting good probability of detection. 

We analysed it in different cases of decorrelation distance 

to show the impact of correlated users on the detection of 

primary user where the probability of detection is higher 

when the decorrelation distance is low. In addition, the 

system performs better than the distance-based user 

selection.  

The future work will be to take into consideration 

different fading conditions to simulate a more practical 

environment.   
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