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ABSTRACT 

In this study, the problem of nonparametric estimation of finite population total using 

multiplicative bias correction technique is considered. A review of the model-based, 

design-based, model-assisted, randomization-assisted and nonparametric approaches to 

finite population total estimation is explored. A robust estimator of the finite population 

total based on multiplicative bias correction is derived. The properties of the estimator 

are developed and comparative study with the existing model based and design based 

estimators is carried to assess the performance of the estimator developed using the 

simulated sets of data. It is observed that the estimator is asymptotically unbiased and 

statistically consistent when certain conditions are satisfied. It has been shown that 

when the model based estimators are used in estimating the finite population total, there 

exists bias-variance trade-off along the boundary. The multiplicative bias corrected 

estimator has recorded better results in estimating the finite population total by 

correcting the boundary problems associated with existing model based estimators. The 

theoretical and empirical results led to the suggestion that the multiplicative bias 

corrected estimator can be highly recommended in survey sampling estimation of the 

finite population total.  
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CHAPTER ONE 

INTRODUCTION 

1.0 Background 

In most scenarios, auxiliary information is available for all elements in the population 

under consideration. Auxiliary information aids in the prediction of finite population 

parameters and as such it forms a central part of sample surveys. This type of 

information is very important and is always required frequently as it acts as a basis for 

good planning in various sectors of the economy.  

It therefore follows that a model–based approach is used to increase the precision of the 

estimators by incorporating auxiliary variables. As an approach to such a problem, a 

superpopulation model is used to describe the relationship between the auxiliary 

variable and the study variable. 

Previous work was mostly concerned with the behaviour of these estimators under 

model misspecification. With this concern of robustness, it is proper to consider a 

nonparametric class of models since they allow the models to be correctly specified for 

a large class of functions.  

Nonparametric regression is motivated by the fact that it provides a flexible way of 

studying the relationships between variables and also results in good estimators thus 

increasing their efficiency compared to estimators obtained using design-based 

approaches. 
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In this framework, the main concern is the prediction of population totals using a 

multiplicative bias correction approach to nonparametric regression. A nonparametric 

estimator of population totals is therefore proposed with the aid of a superpopulation 

model. A methodology to study the properties of the proposed estimator is also offered. 

1.1 Statement of the Problem 

Given a finite population   of   identifiable units, let   denote the survey variable with 

population values    where          . Also let   denote the auxiliary variable with 

corresponding population values    for          . Assume that the auxiliary values 

   are all known but the survey values    are only known for a sample   of size   

where    . Survey sampling involves the estimation of population parameters with 

highest precision. Existing methods of estimating the population parameters exhibit 

shortcomings such as bias-variance trade-off along the boundary. This study therefore 

focuses on the estimation of finite population total using multiplicative bias correction 

approach to nonparametric regression as a technique of correcting the boundary 

problems.. 

1.2 Objectives 

i. General Objective 

Let            be population measurements representing some survey characteristics. 

The goal is to estimate the population total defined as 

    ∑   
 
                                                                                                             (1.11)            
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via the simple random sampling without replacement scheme. The survey values of 

interest    are realized values of an assumed working model     (  )     that 

incorporates auxiliary information where  (  ) is a smooth function,    is the error 

term with  (  )    and  (  
 )    

ii. Specific Objectives 

1) To determine a nonparametric estimator of the finite population total using a 

multiplicative bias correction procedure. 

2) To study the asymptotic properties of the proposed estimator ( that is asymptotic 

unbiasedness, variance and consistency). 

3) To compare the performance of the proposed estimator to that of Nadaraya 

Watson and ratio estimators using simulated data. 

1.3 Rationale 

Sample survey is an important field of study in statistics. It is through this field that 

researchers are able to estimate population parameters using samples drawn from 

populations of interest. 

This study focuses on the estimation of finite population total using Multiplicative Bias 

Correction (MBC) approach. Unlike previous design-based and nonparametric methods 

of estimation, the proposed MBC estimator performed better by solving the boundary 

problems. The MBC estimator is therefore recommended for use in the precise 

estimation of various population parameters such as population total, mean value of 

population total and variation of the population total. The results obtained can be of 
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great importance and can be used for purposes of policy implementation and planning 

in various sectors of the economy such as education, planning, health and 

manufacturing. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Robust Estimation of Finite Population Total  

In this approach, a regression model is used to quantify the contribution of the auxiliary 

variable   to the survey variable   per unit value   to summarize the relationship 

between the two variables to predict the survey variable for a given value   and to 

extrapolate the results beyond a given range of auxiliary values. 

The nonparametric regression approach currently offers results to researchers where 

other approaches such as design based approaches have failed. Some advantages of 

nonparametric regression are:  

1) It gives predictions of observations yet to be made without reference to a fixed 

parametric model. 

2) It provides a tool for finding spurious observations by studying the influence of 

isolated points. 

3) It provides a versatile method of exploring the relationship between the auxiliary 

variable and the survey variable. 

Given a population of   identifiable units            the estimation of finite 

population total   ∑   
 
    needs to be done assuming that there exists the required 

auxiliary information for all the population units. 
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The nonparametric estimation problem is therefore concerned with the estimation of 

population total,    using a model based approach where the model is of the form  

    (  )    (  )                                                                                                  (2.1) 

Where  (  ) and   (  ) are smooth functions of    and  

 (          )   (  )                                                                                             (2.2) 

    (                  )  {
  (  )          

                           
                                   (2.3)                                               

This nonparametric approach doesn’t restrict the form of distribution nor does it specify 

the stochastic properties such as expectation, variance and Mean Squared Error. 

In the next subsection, existing nonparametric estimators are reviewed. 

2.1.1 The Nadaraya-Watson Estimator 

The estimation of finite population totals has received considerable attention in previous 

research works. In his work, Dorfman (1992) introduces a nonparametric regression 

estimator for finite population totals based on a sample drawn from the population. 

Taking into consideration a population consisting of   units, the author seeks to 

estimate the finite population total defined by  

   ∑                                                                                                      (2.4)  

 The estimation of finite population totals was carried out by first expressing equation 

(2.4) as the sum of sample component and nonsample component  
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   ∑     ∑                                                                                                        (2.5)                                                               

Where   is the sample size and   is the population size. The task was to estimate the 

non-sampled values of the second part of equation (2.5). To do this and assuming 

availability of auxiliary variables, the author used the model  

    (  )   (  )                                                                                                    (2.6)                                        

where   is independent and identically distributed with zero mean and constant variance 

and  (  ) is a Lipchitz function, to estimate the function  (  ). Using a symmetric 

density function, Dorfman (1992) used the Nadaraya-Watson weights defined by  

  ( )  
  (    )

∑   (    ) 
   

 , where   is the bandwidth, to estimate  ( ) thus yielding the 

Nadaraya-Watson estimator  

 ̂( )  ∑  ( )                                                                                                         (2.7) 

The kernel function is always under the user’s control and is defined by  ( )  

 

  
 .

     

 
/  The assumption made is that the kernel is a symmetrical function 

satisfying the following properties (Silverman, 1986) 

1)  ( )    for all   

2) ∫ ( )     

3) ∫   ( )     

4) ∫    ( )      

5) ∫ , ( )-     
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6)  ( )   (  ) 

For      in the sample, the estimator for the population total is then defined by 

 ̂  ∑       ∑  ̂(  )                                                                                            (2.8) 

The relative mean squared error of the estimator diminishes to zero as long as the 

standard conditions,                are met. The ratio of the bias to that of the 

standard error was found to be asymptotically zero, suggesting that a wide choice of 

bandwidth could be satisfactory in practice. 

After a series of simulations, the estimator was found to be more efficient than the 

design-based estimators, Dorfman (1992). The larger the bandwidth, the broader and 

flatter the density function, the more equal are the weights and the smoother the 

estimated function. However, the estimator was found to be of greatest efficiency when 

the variance was assumed to be proportional to the square of the auxiliary variable.  

Also in their work, Dorfman and Hall (1993) considered the estimation of the 

distribution function of a given variable over a finite population for a given sample of 

units. They defined the distribution function for a variable of interest   by  

 ( )  
 

 
{∑  (    )  ∑  (    )  } where   indicates sample values,   indicates 

nonsample units and  ( ) is the standard indicator function. The task is to estimate the 

nonsample values. 
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To estimate  ( ) Dorfman and Hall (1993) worked under the assumption that a 

regression relationship exists between the survey variable and the auxiliary variables. 

Dorfman and Hall (1993) considered three relationships that are likely to arise in 

practice namely: 

1)              for         with  (    ),    (  )     and 

   (     )    

2)     (  )      for         with  (  )   ,    (  )     and  (  ) is a 

smooth  function. 

3) A relationship between  (  )    (    ) and    was assumed so that 

 ( (  ))   (  ) where  (  ) is a smooth function. 

Dorfman and Hall (1993) considered design-based and model-based estimators when 

either model (1) or (2) was utilized, and design calibrated and model calibrated 

estimators when model (1) was utilized. 

The nonparametric calibrated estimator performed best and its bias was of the same 

order as that of model-based estimators when the model was correctly specified but it 

did not share in their vulnerability if the model was misspecified. 

2.1.2 Local Polynomial Estimator 

Breidt and Opsomer (2000) re-looked at the Horvitz–Thompson estimator of the 

population total given by  ̂  ∑
  

  
     where    is the inclusion probability. 
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The Horvitz-Thompson estimator does not depend on auxiliary information and 

therefore their work was to improve on the efficiency of the estimator by incorporating 

the auxiliary information into the model of population totals. They used the local 

polynomial approach and the survey values    are realized values of the model defined 

in equation (2.6). 

Using a continuous kernel function   and a bandwidth   , they defined a local 

polynomial kernel estimator of degree   based on the entire population. By letting 

   ,  -    
 be a  -vector of survey values in the finite population, they defined a 

matrix of dimension   (   ) by    
 [

 
 
 

     

 
     

 
 
 

(     )
 

 
(     )

 
]  and a 

    matrix by    
     2

 

  
 .

     

  
/3 

With    being a vector with a   in the    position and   elsewhere, the estimator of the 

regression function at  (  ) is then given by 

     
 (   

    
   

)
  

   

    
                                                                                (2.9) 

  as long as    

    
   

 is invertible. 

The designed-unbiased estimator of the population total,     is then given by  

  
  ∑

     

  
    ∑       

                                                                                       (2.10)                                                          

which is a generalized difference estimator with variance defined by 
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  (  
 )  ∑ (        )

     

  
      

     

  
                                                                (2.11)                                                                      

However, the estimator in equation (2.9) is based on the entire finite population. The 

sample based consistent estimator of the regression function  (  ) is then given by 

 ̂ 
    

 (   

    
   

)
  

   

    
                                                                                   (2.12)                                                            

The regression estimator of the population total is  

 ̃ 
  ∑

    ̂ 
 

  
    ∑  ̂ 

 
    

                                                                                     (2.13)                                                   

For observations less than (   ), the matrix    

    
   

 is singular. Therefore Breidt 

and Opsomer (2000) considered an adjusted sample based estimator that is guaranteed 

to exist for any sample drawn from the population. The adjusted sample smoother is 

given by  

 ̂    
 (   

    
   

     2
 

  3
   

   

)
  

   

    
                                                       (2.14)                                  

The estimator of the population total is  

 ̃  ∑
    ̂ 

  
    ∑  ̂     

                                                                                       (2.15)                                 

The sample based estimator of population totals is a linear combination of the survey 

values with weights being the inverse inclusion probabilities. The estimator, ̃ , that uses 

the adjusted sample smoother in equation (2.14) was found to be asymptotically design 

unbiased and design consistent. The variance of the estimator was also found to be 
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design unbiased and design consistent for the asymptotic mean squared error. The 

estimator satisfied the property of asymptotic normality and was found to be robust in 

the sense that it attained the Godambe-Joshi lower bound. 

The performance of the estimator was compared with that of other parametric and 

nonparametric estimators. Both parametric and nonparametric regression estimators 

performed better than the Horvitz-Thompson estimator. However, the local polynomial 

regression estimator by Breidt and Opsomer (2000) was the best estimator among the 

nonparametric estimators that were considered. 

In their work, Odhiambo and Mwalili (2000) considered the application of 

nonparametric regression to the estimation of finite population error variance for a 

given sample drawn from the population. The error variance obtained by Dorfman 

(1992) was a function of   (  )   that are unknown.   

By considering the squared residual  ̂ 
  .    ̂(  )/

 

 and using some mild 

assumptions on  (  ) and    
   , the authors showed that  ( ̂ 

       )    (  )  

 (   ) is an asymptotic unbiased estimator of   (  ). They obtained an improved 

estimator of   (  ) by smoothing  ̂ 
  for     and (     )   being sample points close 

to (     ). 

Letting the smoothing parameter be   and defining the weights   ( ) then  ̂  
 (  )  

∑   (  )    ̂ 
  so that the error variance is estimated by 
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    ∑   
 (  ) ̂  

 (  )    ∑  ̂  
 (  )                                                                 (2.16)                                           

The expectation of equation (2.16) yields  

 (  )  ∑ 0  
 (  ) 

 (  )  
  

 
  (  )  1    ∑ 0  (  )  

  

 
  (  )  1          (2.17)                             

where    ∫    ( )  

     

 
       

 

. 

For     and    ,  (  )     ( ̂    ) asymptotically. Thus    was found to be 

robust against model misspecification. 

Ombui (2008) used local polynomial regression in the estimation of finite population 

totals. Using the model defined in equation (2.6), he applied the technique of using a 

strip of data around the covariate   in order to fit a line through the set of data (     ) 

          

The estimator yielded better results in estimating the finite population total. Moreover, 

the estimator was found to be asymptotically unbiased, consistent and normally 

distributed when certain conditions were satisfied. 

2.1.3 The Gasser-Muller Estimator 

When deriving the asymptotic properties of the Nadaraya-Watson estimator, it becomes 

tedious to find the derivatives of the estimator due to the nature of the denominator of 

the estimator. Gasser and Muller (1979) proposed an estimator that involved the sorting 

of   variable. The estimator is given by 
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 ̂( )  ∑ ∫  (   )  
  

    
  

 
                                                                                (2.18) 

Where    
 

 
(       )       and        . 

The corresponding nonparametric estimator of finite population total is therefore given 

as  

 ̂  ∑       ∑  ̂(  )                                                                                           (2.19)                                

2.1.4 The Priestly-Chao Estimator 

According to Priestly and Chao (1972), the Priestly-Chao weight is described by the 

relation   (  )  .
       

 
/ .

     

 
/ such that the Priestly-Chao estimator is given by  

 ̂ (  )  
 

  
∑   (  )                                                                                             (2.20) 

However this smoothing function has a shortcoming when one needs to extrapolate 

various values of the survey variable. Furthermore, unlike the usual weighting scheme 

where the weights sum to one, in this particular case the sum of the weights is not equal 

to one but rather the sum is an approximation. 

Moreover, this estimator assumes that the data set is ordered such that         and the 

weights are only applicable to instances where the auxiliary variable is restricted to 

some interval. Odhiambo (1995) therefore gave the estimator of finite population total 

as  

 ̂  ∑       ∑  ̂ (  )                                                                                         (2.21)                                          
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2.1.5 The Spline Estimator 

In this technique, the residual sum of squares is used to compute the regression function 

and is given by  

 ̂ (  )  ∑ (    (  ))
  

                  (2.22)                                                                                                        

Where  ( ) is a curve restricted to the functional form. The distance can be reduced by 

using any  ( ) that is used to interpolate the data. 

This technique yields good results because it will produce a good fit and the curve does 

not have too much variation. Zheng and Little (2003) therefore gave the spline estimator 

for finite population total to be  

 ̂  ∑       ∑  ̂ (  )                                                                                         (2.23)                                          

2.2 Selection of the Kernel Function 

There exists many possible kernel smoothers but the selected kernel should be easy to 

implement both theoretically and practically. Silverman (1986) gave requirements that 

ought to be met by the smoother. The requirements are: 

1) The kernel smoother should be easier and simple to construct. 

2) The kernel smoother should not take very small values because they may result 

in numerical underflow in the computer. 

3) The kernel smoother should be user friendly i.e it should theoretically and 

practically fit in both simulated and raw data. 
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4) The range of the smoother should be well defined and not open as in the case of 

the Gaussian kernel. 

Table 2.1 gives the efficiency of various kernels with respect to the Epanechnkov 

kernel. 

Table 2.1: Efficiency Relative to Epanechnkov Kernel 

Kernel  ( ) Efficiency 

Epanechnkov 

{

 

 √ 
4  

  

 
5     | |  √ 

                                

 

1.0000 

Biweight 
{
  

  
(    )      | |   

                           

 
0.9939 

Triangular 2
  | |        

                         
| |    

0.9859 

Gaussian  

√  
 

    

          
0.9512 

Rectangular 
{
 

 
              | |       

                     

 
0.9295 

 

2.6 Research Gap 

Having reviewed the various methods on nonparametric estimation of finite population 

total, all methods employed kernel smoothers in the estimation of regression functions. 

Most kernel smoothers have boundary problems and require modifications at the 
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boundary points. That is, towards the boundary points the bias of the estimators 

decreases at the cost of an increasing variance. Moreover, there exists trade-off between 

the bias and variance of the estimators. Selecting a narrow window results in low bias 

and high variance while selecting a wide window yields a high bias and low variance. 

Moreover, locally weighted averages can be highly biased if the regression function has 

a significant slope. 

Further, there exists no framework for the selection of optimal bandwidth for the kernel 

smoothers. For small bandwidth, the tails of the density function are more wiggly and 

smoother when the bandwidth is wider. 

This study uses multiplicative bias corrected approach to the nonparametric estimation 

of finite population total. In the multiplicative bias corrected approach, the estimator has 

low bias with no cost to the variance. Under sufficient smoothness of the density 

function, the multiplicative bias corrected technique reduces the order of the bias with 

no effect on the variance of the estimator. 
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CHAPTER THREEE 

METHODOLOGY 

3.1 Types of Populations 

There are two types of population mainly the finite population and the infinite 

population. In the finite population, units are known, distinct and the size is known 

while in the infinite population, the units may be distinct but the size is not known with 

certainty. 

3.2 Estimation of Finite Population 

Estimation of finite population totals is taken into consideration in this study. Suppose 

that there are sampling units            with corresponding survey measurements 

           for the survey variable     If all the units are labeled and supposing that in 

each unit it is possible to collect survey measurements, then it is possible to determine 

the finite population total for any set of data collected. 

3.3 Approaches Used to Estimate Finite Population Total 

The main approaches used in the estimation of finite population total are: 

a) The classical approach (design based) 

b) Model-based or super-population approach 

c) Model assisted approach 

d) Design assisted approach 
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3.3.1 Classical Approach 

In the classical approach, the observed values of the survey variable   given by 

           are assumed to be unknown but fixed constants. In this concept, a sample 

is drawn from the finite population and the sample measurements are then used to 

estimate the population parameter of interest. Standard sampling designs are well 

discussed in Cochran (1977). The problem with this approach is that it is assumed that 

all samples in the population are selected. This is not possible mainly because of the 

problems associated with selection of samples. 

3.3.2 Model-Based or Super-Population Approach 

In the model-based approach, an assumption that the actual survey measurements 

           are realized values of the random vector            is made. In this 

approach, knowledge is summarized using a model defined by       (  )     for 

          where  (  ) is a smooth function and    is a sequence of independent 

and identically distributed random variables with zero mean and finite variance. The 

estimator of the population total is then defined as 

 ̂  ∑    ∑       ∑      
 
    where ∑       denote the sample proportion and ∑       

denote the non sample proportion. The problem of estimating the population total   

therefore reduces to the problem of estimating the non-sample values ∑      . 
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3.3.3 Model Assisted Approach 

Model assisted survey estimation of population total is a well-known approach that 

incorporates auxiliary information into the design-based estimation of finite population 

total. This approach assumes the existence of a superpopulation model between the 

auxiliary variables and the variable of interest for the population to be sampled. The 

population quantities of interest are estimated in such a way that the design-based 

properties of the estimators can be established. This contradicts the model-based 

approach for which the design-based inference is not possible. 

In this approach, the model is used to increase the efficiency of the estimators, but even 

when the model is not correct, estimators typically remain design-consistent. Since the 

model assisted estimation has a great potential to improve the precision of the required 

survey estimators when the appropriate auxiliary information is available, it often 

requires that these models are linear or should at least have a known parametric shape. 

Of these survey approaches, the model based approach has been considered to be the 

most consistent method of estimation. 

3.4 Multiplicative Bias Corrected Approach 

In this section, the exact procedure of estimating the population total for a finite 

population is now presented. In this it is assumed that there are sampling units 

           with corresponding survey measurements            so that the 

population total is denoted by   and defined as  

  ∑   
 
                                                                                                                     (3.1)                                                                       
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The estimator of equation (3.1) is proposed based on the model  

   (  )      

 ( )   (  )                                                                                                               (3.2)                                

   (     )  {
  (  )        
               

  

Where  (  ) and   (  ) are assumed to be smooth functions of   . This is mainly 

because equation (3.2) is the simplest form of equation that describes the relationship 

between the auxiliary variable and the survey variable. 

Suppose that to each of these     , some auxiliary information            is available 

and that these auxiliary variables are to be considered in the estimation process. Then 

the construction may be re-written to take the predictive form 

  ∑       ∑                                                                      (3.3)                                                                      

Where ∑       provides the proportion that is truly observed with ∑         providing the 

proportion that is not observed but estimated using the corresponding auxiliary 

information. 

To estimate equation (3.3), several methods may be employed. In this study, an 

estimator is proposed as 

 ̂  ∑       ∑  ̂                                                                                                      (3.4) 
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 In equation (3.4), ∑         may be difficult to state with exactness and thus the 

problem reduces to that of predicting ∑        . 

To this problem, the estimator ∑  (  )      is proposed where  (  ) is a smooth 

function. Therefore the estimator in equation (3.4) becomes 

 ̂    ∑       ∑  (  )                                                                                         (3.5)                                           

The task is to estimate the second part of equation (3.5). To do this, the multiplicative 

bias corrected technique is employed in which case the proposed estimator of the 

population total is now defined as  

 ̂    ∑       ∑  ̂ (  )                                                                                       (3.6)                          

Where  ̂ (  ) is as defined in equation (3.9) 

Suppose that (     ) (     )   (     ) are   independent pairs of random variables 

(   ) with real values. Assuming that the explanatory variable   has a probability 

density   and thus model the dependence of the univariate survey variable   to the 

explanatory variable   through a non-parametric model     ( )   . The function 

 ( ) is smooth and the error term has zero mean and finite variance that is independent 

of the covariate  . 

Define a pilot smoother of the regression function as 

 ̃ ( )  ∑   
 
   ( )                                                                                                  (3.7)                                         
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Then the ratio    
  

 ̃ (  )
 is a noisy estimate of the inverse relative estimation error of 

the smoother  ̃  given by 
 (  )

 ̃ (  )
. 

Smoothing    yields 

  ̂( )  ∑   (   ) 
      ∑   (   )

  

 ̃ (  )

 
                                                          (3.8)                                                                                                                                                             

Equation (3.8) can then be used as a multiplicative correction of the pilot smoother in 

equation (3.7) which can now be defined by 

  ̂ (  )   ̂( ) ̃ ( )                                                                                                  (3.9)                                                    

Assumptions 

The following assumptions are made in the estimation of  ̂(  ) 

a) The regression function is bounded and strictly positive i.e 

b)      (  )   . 

c) The regression function is twice continuously differentiable everywhere. 

d)    has finite fourth moments and has a symmetric distribution around zero. 

e) The bandwidth   is such that                      . 

The positivity assumption on the regression function, (  ), is classical when 

performing multiplicative bias correction. It is important to note that the regression 

function might cross the       . In such a situation, Glad (1998) proposes to shift all 

the response data by a distance   such that the new regression function is 
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  (  )   . 

Using equation (3.8) in equation (3.9) easily yields 

 ̂ (  )  ∑   (   ) 
   

 ̃ ( )

 ̃ (  )
                                                                                 (3.10)                                                        

Now suppose that 

  , ̃ ( )        -  ∑   (   ) 
    [  ]  ∑   (   ) (  )   

    ̅ ( )          (3.11) 

Then using 
 ̃ ( )

 ̃ (  )
 found in equation (3.10) yields 

 ̃ ( )

 ̃ (  )
 

 ̅ ( )

 ̅(  )
 

 ̃ ( )

 ̅ ( )
 (

 ̃ (  )

 ̅(  )
)
  

                                                                            (3.12)                                          

 ̃ ( )

 ̃ (  )
 

 ̅ ( )

 ̅(  )
 .

 ̅ ( )  ̃ ( )  ̅ ( )

 ̅ ( )
/  (

 ̅(  )  ̃ (  )  ̅(  )

 ̅(  )
)
  

                                 (3.13)                                                  

 ̃ ( )

 ̃ (  )
 

 ̅ ( )

 ̅(  )
 .  

 ̃ ( )  ̅ ( )

 ̅ ( )
/  (  

 ̃ (  )  ̅(  )

 ̅(  )
)
  

                                      (3.14)                                

For ease of derivation let   
 ̃ ( )  ̅ ( )

 ̅ ( )
   ( ) and 

 ̃ (  )  ̅(  )

 ̅(  )
   (  ). Equation 

(3.14) therefore becomes 

 ̃ ( )

 ̃ (  )
 

 ̅ ( )

 ̅(  )
 (    ( ))  .    (  )/

  

                                                      (3.15)                                     

Applying the binomial expansion to (    ( ))  .    (  )/
  

gives 

(    ( ))  .    (  )/
  

 ,    ( )- 0    (  )    (  )
 
1  
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which further reduces to 

(    ( ))  .    (  )/
  

     ( )    (  )    (    )                       (3.16)                            

where   (    ) is the remainder term that involves the terms   and   . 

Using equation (3.16) in equation (3.15) yields 

 ̃ ( )

 ̃ (  )
 

 ̅ ( )

 ̅(  )
 [    ( )    (  )    (    )]                                                   (3.17)                                                   

Substituting equation (3.17) into equation (3.10) and using the model     (  )     

one obtains 

 ̂ (  )  ∑   (   ) 
   {

 ̅ ( )

 ̅(  )
 [    ( )    (  )    (    )][ (  )    ]}                             

(3.18) 

 ̂ (  )  

∑   (   ) 
   {

 ̅ ( )

 ̅(  )
 (  )[    ( )    (  )    (    )]}  

∑   (   ) 
   {

 ̅ ( )

 ̅(  )
  [    ( )    (  )    (    )]}                                        (3.19)                                                                                           

 ̂ (  )  ∑   (   ) 
   

 ̅ ( )

 ̅(  )
 (  )  ∑   (   ) 

   
 ̅ ( )

 ̅(  )
{    (  )[  ( )  

  (  )]}  ∑   (   ) 
   

 ̅ ( )

 ̅(  )
  [  ( )    (  )]  

∑   (   ) 
   

 ̅ ( )

 ̅(  )
  (    )[ (  )    ]                                                                  (3.20)                                                                                                                                    
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Using the assumption     , the remainder terms converge to zero in probability. 

Therefore   (    )[ (  )    ]    .
 

  
/ and equation (3.20) reduces to  

 ̂ (  )  ∑   (   ) 
   

 ̅ ( )

 ̅(  )
 (  )  ∑   (   ) 

   
 ̅ ( )

 ̅(  )
{    (  )[  ( )  

  (  )]}  ∑   (   ) 
   

 ̅ ( )

 ̅(  )
  [  ( )    (  )]    .

 

  
/                                (3.21)                                                                    

Our estimator for finite population total in equation (3.6) therefore becomes 

 ̂    ∑       ∑ {∑   (   ) 
   

 ̅ ( )

 ̅(  )
 (  )  ∑   (   ) 

   
 ̅ ( )

 ̅(  )
{        

 (  )[  ( )    (  )]}  ∑   (   ) 
   

 ̅ ( )

 ̅(  )
  [  ( )    (  )]    .

 

  
/}                                                         

(3.22) 

3.1 Asymptotic Unbiasedness of the Proposed Estimator 

Under the model based approach, the bias of the estimator  ̂    is defined by  

 [ ̂     ]   [ ̂   ]   , -                                                                               (3.23)                                               

Next, the expected value of the proposed estimator for population total is calculated. 

Now 

 [ ̂   ]   [∑       ∑ {∑  ̂ (  )
 
   }     ]  ∑  ,  -  ∑ ∑  , ̂ (  )-

 
                                 

(3.24)                  

The calculation of  , ̂ (  )- is based on establishing a stochastic approximation of the 

estimator  ̂ (  ) in which each term can be directly analyzed. 
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 , ̂ (  )-   {∑   (   ) 
   

 ̅ ( )

 ̅(  )
 (  )  ∑   (   ) 

   
 ̅ ( )

 ̅(  )
{    (  )[  ( )  

  (  )]}  ∑   (   ) 
   

 ̅ ( )

 ̅(  )
  [  ( )    (  )]    .

 

  
/}                              (3.25)                                                                               

 , ̂ (  )-  

 {∑   (   ) 
   

 ̅ ( )

 ̅(  )
 (  )  ∑   (   ) 

     ( )  ∑   (   ) 
     ( )}    .

 

  
/                                                                                                                   

(3.26) 

 Where  

  ( )  
 ̅ ( )

 ̅(  )
{    (  )[  ( )    (  )]}  and 

  ( )  
 ̅ ( )

 ̅(  )
  [  ( )    (  )]  

Analyzing the first term of equation (3.26) 

 {∑   (   ) 
   

 ̅ ( )

 ̅(  )
 (  )}  ∑   (   ) 

   
 ̅ ( )

 ̅(  )
 [ (  )]  

which yields 

 {∑   (   ) 
   

 ̅ ( )

 ̅(  )
 (  )}  ∑   (   ) 

   
 ̅ ( )

 ̅(  )
 (  )                                      (3.27)                          

This is mainly because  (  ) is the mean function given in equation (3.2) 

Analyzing the second term of equation (3.26) 
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 8∑   (   ) 
   

 ̅ ( )

 ̅(  )
{    (  )[  ( )    (  )]}9   {∑   (   ) 

   [
 ̅ ( )

 ̅(  )
   

 ̅ ( )

 ̅(  )
 (  ) 2

 ̃ ( )  ̅ ( )

 ̅ ( )
3  

 ̅ ( )

 ̅(  )
 (  ) {

 ̃ (  )  ̅(  )

 ̅(  )
}]}                (3.28)                                                

 8∑   (   ) 
   

 ̅ ( )

 ̅(  )
{    (  )[  ( )    (  )]}9  ∑   (   ) 

   
 ̅ ( )

 ̅(  )
 [  ]  

∑   (   ) 
   

 (  )

 ̅(  )
 [  ]  ∑   (   ) 

   

 ̅ ( ) (  )

 ̅(  )
  [ ̃ (  )]  

∑   (   ) 
    [

 ̅ ( ) (  )

 ̅(  )
]                                                                                       (3.29)                                                                                                    

 8∑   (   ) 
   

 ̅ ( )

 ̅(  )
{    (  )[  ( )    (  )]}9  

    ∑   (   ) 
   

 ̅ ( )  (  ) ̅(  )

 ̅(  )
  ∑   (   )

 ̅ ( )  (  )

 ̅(  )

 
    , -                 (3.30)                                            

 8∑   (   ) 
   

 ̅ ( )

 ̅(  )
{    (  )[  ( )    (  )]}9  

    ∑   (   )
 ̅ ( )  (  )

 ̅(  )

 
    ∑   (   )

 ̅ ( )  (  )

 ̅(  )

 
                                   (3.31)                                                                                          

 8∑   (   ) 
   

 ̅ ( )

 ̅(  )
{    (  )[  ( )    (  )]}9                               (3.32)                                     

Analyzing the third term of equation (3.26) 

 {∑   (   ) 
   

 ̅ ( )

 ̅(  )
  [  ( )    (  )]}   {∑   (   ) 

   [
 ̅ ( )

 ̅(  )
  2

 ̃ ( )  ̅ ( )

 ̅ ( )
3  

 ̅ ( )

 ̅(  )
  {

 ̃ (  )  ̅(  )

 ̅(  )
}]}                                                                                                               (3.33)                                                                                                                                                                                               
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 {∑   (   ) 
   

 ̅ ( )

 ̅(  )
  [  ( )    (  )]}  ∑   (   ) 

   
 ̅ ( )

 ̅(  )
2
 ̃ ( )  ̅ ( )

 ̅ ( )
3  [  ]  

∑   (   ) 
   

 ̅ ( )

 ̅(  )
{
 ̃ (  )  ̅(  )

 ̅(  )
}  [  ]                                                                     (3.34)                                                            

   {∑   (   ) 
   

 ̅ ( )

 ̅(  )
  [  ( )    (  )]}                        (3.35)                                                             

Therefore equation (3.26) reduces to 

 , ̂ (  )-  ∑   (   ) 
   

 ̅ ( )

 ̅(  )
 (  )    .

 

  
/                                       (3.36)                                         

This means that  [ ̂   ] will be given by the expression  

 [ ̂   ]  ∑   ̅    ∑ {∑   (   ) 
   

 ̅ ( )

 ̅(  )
 (  )}        .

 

  
/                     (3.37)                                

Equation (3.36) can be simplified by considering a Taylor’s series expansion of the ratio 

 (  )

 ̅(  )
 about the point    

This is done as follows 

 (  )

 ̅(  )
 

 ( )

 ̅ ( )
 (    ) .

 ( )

 ̅ ( )
/
 

 
 

 
(    )

 
.

 ( )

 ̅ ( )
/
  

 (    ( ))             (3.38)                         

Using equation (3.38) in equation (3.37) yields 

 [ ̂   ]  ∑   ̅    ∑ 2∑   (   ) ̅ ( ) 2
 ( )

 ̅ ( )
 (    ) .

 ( )

 ̅ ( )
/
 

  
        

 

 
(    )

 
.

 ( )

 ̅ ( )
/
  

 (    ( ))33    .
 

  
/                    (3.39)                                                                                          

Considering the first two terms of the Taylor’s series expansion, equation (3.39) reduces 

to 
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 [ ̂   ]  ∑   ̅    ∑ 2∑   (   ) ̅ ( ) 2
 ( )

 ̅ ( )
 (    ) .

 ( )

 ̅ ( )
/
 

3 
   3       

  .
 

  
/                                                                                                                       (3.40)        

It is easy to show that  

∑   (   )    
    and  ∑ (    )  (   )    

   . Therefore equation (3.40) can be 

written as  

 [ ̂   ]  ∑   ̅    ∑ {∑   (   ) ( ) 
   }        .

 

  
/                                   (3.41)                                                

From equation (3.3) we have  

  ∑       ∑                                                                                                                    

 , -   {∑       ∑        }                     (3.42)                                                                                        

 , -  ∑   ̅    ∑  ( )                                                                                         (3.43)                            

Substituting equations (3.41) and (3.43) back into equation (3.23) yields 

 [ ̂     ]  ∑   ̅    ∑ {∑   (   ) ( ) 
   }        .

 

  
/  [∑   ̅    

∑  ( )     ]                                                                                                               (3.44) 

 [ ̂     ]  ∑ {∑   (   ) ( ) 
   }      ∑  ( )        .

 

  
/              (3.45)                                           

Hence the bias of  ̂    is given by 
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    0
 ̂   

 
1   0

 ̂     

 
1  

 

 
{∑ {∑   (   ) ( ) 

   }      ∑  ( )     }     .
 

  
/                                                                                                                   

(3.46) 

The bias of  ̂    will be of order   .
 

  
/ . Thus it converges to zero at a faster rate 

compared to the existing non-parametric estimators which generally converge at the rate 

  (  )  

3.2 Asymptotic Variance of the Proposed Estimator 

Using equation (3.21), the estimator of finite population total is given by  

 ̂    ∑       ∑ 8∑   (   ) 
   {

 ̅ ( )

 ̅(  )
 [ (  )    ][    ( )    (  )       

  (    )]}9                                                                                                                 (3.47)                                                                                              

where   (    ) is the remainder term that involves the terms   and   . 

Using the assumption     , the remainder terms converge to zero in probability. 

Therefore   (    )[ (  )    ]    .
 

  
/ and equation (3.47) reduces to  

 ̂    ∑       ∑ 8∑   (   ) 
   {

 ̅ ( )

 ̅(  )
 [ (  )    ][    ( )       

  (  )]}9    .
 

  
/                                (3.48)                                                                                                     

Truncating the binomial expansion at the first term yields  
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 ̂    ∑       ∑ 8∑   (   ) 
   {

 ̅ ( )

 ̅(  )
 [ (  )    ]}9    .

 

  
/         (3.49)         

The variance of the estimator is then defined by  

   [ ̂   ]     {∑       ∑ [∑   (   ) 
   {

 ̅ ( )

 ̅(  )
 [ (  )    ]    .

 

  
/}]     }   

(3.50)           [ ̂   ]     *∑      +     6∑ 8∑   (   ) 
   {

 ̅ ( )

 ̅(  )
   }9     7  

  .
 

    /     (3.51)                                                                                                                       

   [ ̂   ]     *∑      +  ∑ [∑   (   )
 ̅ ( )

 ̅(  )
   (  )

 
   ]        .

 

    /                             

(3.52)                                                                                                               

   [ ̂   ]  ∑   (  )    ∑ ∑   (   )  
   {

 ̅ ( )

 ̅(  )
}
 

  (  )        .
 

    /             

(3.53)                                     

Obtaining the Taylor’s series expansion of the ratio 
  (  )

 ̅(  )
  in the second part of equation 

(3.53) gives 

    [ ̂   ]  ∑   (  )    ∑ ∑   (   )  
     (  )        .

 

    /                (3.54)                                        

This means that the asymptotic variance of 0
 ̂   

 
1 will be given by 

   0
 ̂   

 
1  

 

  
∑   (  )    

 

  [∑ ∑   (   )  
     (  )     ]    .

 

    /     (3.55)                              
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This implies that  ̂    is more efficient than the usual non-parametric regression 

estimator proposed by Dorfman (1992).  

3.3  Asymptotic Mean Squared Error                

The mean squared error of   ̂    is given by  

MSE[ ̂   ]     0
 ̂   

 
1  [    0

 ̂   

 
1]

 

                                                            (3.56)                                                                        

    0
 ̂   

 
1   0

 ̂     

 
1    .

 

  
/                                                                       (3.57)                                                        

Using equations (3.55) and (3.57) in equation (3.56) yields 

MSE[ ̂   ]  
 

  [∑   (  )    ∑ ∑   (   )  
     (  )     ]    .

 

    /  

(  .
 

  
/)

 

                                                                                                                 (3.58)                

MSE[ ̂   ]  
 

  [∑   (  )    ∑ ∑   (   )  
     (  )     ]    .

 

    /    (3.59)          

As     and      the mean squared error in equation (3.58) tends to zero, that is, 

MSE[ ̂   ]   . 

This shows that the estimator  ̂    is statistically consistent and therefore useful. 
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CHAPTER FOUR 

EMPIRICAL STUDY 

4.1 Description of the Population 

In this chapter, the theory developed in the previous chapter is tested using simulated 

data. The estimation of the population total and the corresponding mean squared error 

will be carried out using two sets of data, namely linear and quadratic, that make use of 

simulated data. The analysis and comparison on the performance of the estimates will 

be based on the ratio, Nadaraya-Watson and the Multiplicative Bias Corrected 

estimators. 

The description of the set of data for the populations is summarized in Table 4.1. The 

auxiliary variable for each data set has been collected and incorporated in the estimators 

so as to improve on the precision of the estimation since the auxiliary variable is 

assumed to contain important information that is necessary for the estimation of the 

population total. 

Table 4.1: Characteristics of Data Set Used 

Population description X Y 

Linear     (   )     (   )           

Quadratic     (   )     (   )       (      )     
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The data set are artificial data that were obtained by simulation using user-designed 

computer program. Each data set is described below 

The first data set was obtained through simulation by use of a linear model which has 

the relation 

                       (4.1)                                                                                                                            

The random variable X is simulated using a rectangular distribution that takes the 

values that are equally likely from 0 to 1 inclusive. It is assumed that (     ),   

        are independent and identically distributed random variables. The error term 

   is a standard normal variable defined as     (   )                                                                                                   

The second data set was obtained through simulation by use of a quadratic model which 

has the relation 

      (      )  for                                                                                                

(4.2)                                                                     

The random variable X is simulated using a rectangular distribution that takes the 

values that are equally likely from 0 to 1 inclusive. It is assumed that (     ),   

        are independent and identically distributed random variables. The error term 

   is a standard normal variable defined as     (   )  

In all variables, 500 simple random samples without replacement of size n=250 were 

selected. In each selected sample, the estimate of the population total and the estimate 

of the mean squared error are computed. 
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4.2 Unconditional Properties for the Parametric and Nonparametric Estimators 

The estimates of the bias and the mean squared error of the finite population total for 

the ratio, Nadaraya-Watson and Multiplicative Corrected estimators are recorded, 

analyzed and conclusions are made. In each variable, 500 simple random samples 

without replacement of size n=250 were selected and unconditional results for the 

estimators were computed and analyzed.  

In the study, a population of size        was simulated using a computer program. 

Five hundred samples of size 250 were generated using simple random sampling. The 

Epanechnkov kernel was used in the smoothing process. A comparison between the 

multiplicative bias corrected estimator denoted by  ̂   , that proposed by Dorfman 

(1992) which is also denoted by  ̂   and the ratio estimator which is denoted by  ̂  was 

done. The biases were computed as ( ̂     ), ( ̂    ) and ( ̂   ) respectively. 

Root Mean Squared Errors (RMSE) were also computed for each estimator where 

( ̂     )  √
 

   
∑ ( ̂     )

 
       , ( ̂    )  √

 

   
∑ ( ̂    )

 
        

and ( ̂   )  √
 

   
∑ ( ̂   )

 
        respectively. 

Table 4.2 presents the unconditional biases and Root Mean Squared Errors (RMSE) for 

the multiplicative bias corrected estimator denoted by  ̂    , that proposed by Dorfman 

(1992) and the ratio estimator. 
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Table 4.2: Unconditional Biases and RMSE 

Mean 

function 

 ̂     ̂    ̂  

Bias  RMSE Bias RMSE Bias RMSE 

Linear 2037.44 5220.837 2856.32 6908.85 1125.67 3968.14 

Quadratic 850.53 1008.5954 2444.83 3008.41 4230.605 7635.81 

 

4.3 Conditional Properties for the Parametric and Nonparametric Estimators 

Further, the samples were grouped into groups of 20 so that there were 25 groups. For 

each group  ̅̅  
 

  
∑  ̅ 

  
    was computed.  ̂̅    

 

  
∑  ̂     

  
    was also computed. 

The conditional bias for each group was computed as  ̂̅     ̅ where  ̅ is the 

population mean for the survey measurements and  ̅  is the sample mean for the 

auxiliary variables. 

The graphs below illustrate the behaviour of the conditional bias for each estimator 

when various mean functions were used. The figure 2 shows the conditional bias when 

linear mean functions was used and figure 2 shows the conditional bias when a 

quadratic mean function was used. 

From figure 4.1, the ratio estimator performed well when a linear mean function was 

used. This is mainly because the ratio estimator is the Best Linear Unbiased Estimator 

(BLUE). It can be observed that biases to the left of the population mean of the 

auxiliary variable,  ̅          are large but they systematically reduce towards the 
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right. It can also be noted that at the point  ̅          the bias associated with the ratio 

estimator is negligible. This is owed to the fact that the bias of the ratio estimator is very 

minimal when we have a balanced sample. 

In figure 4.2, the quadratic mean function was used, the proposed estimator gives better 

estimates of the population total compared to those realized using the estimator 

proposed by Dorfman (1992) and the ratio estimator. It can be observed that biases to 

the left of the population mean of the auxiliary variable,  ̅          are large but they 

systematically reduce towards the right. 
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Figure 4.1: Conditional bias using a linear data set 
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Figure 4.2: Conditional bias using a quadratic data set 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

The main objective of this study was to obtain a consistent estimator of finite population 

total using the multiplicative bias correction technique. As a way of achieving this, a 

pilot smoother was utilized and the resulting nonparametric estimator was found to be a 

useful tool in the correction of boundary bias. The methodology used possesses a kind 

of robustness in the sense that the multiplicative factor  ̃ ( ) is bounded. The method 

is easy to implement and has good asymptotic properties both theoretically and 

practically. 

5.2 Recommendation 

In this study, a single auxiliary variable was considered. The use of more than one 

auxiliary variable ought to be investigated and the performance of the resulting 

estimator be compared to determine if it yields better estimation of finite population 

total.  

Independence of survey variables    and    was assumed in the study of asymptotic 

properties of the estimator derived in the previous chapter. The investigation on the 

nature of the results if dependence of the observations is still an open area for extension 

of this problem of estimating the finite population total. 
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APPENDIX 

Appendix I: Multiplicative Bias Correction Simulation 

set.seed(123) 

x=runif(1000,0,1) 

x1=sample(x,size=20,replace=FALSE,prob=NULL) 

x1bar=mean(x1) 

x1bar 

y=rnorm(1000,0,1) 

sumy=sum(y) 

sumy 

ybar=mean(y) 

ybar 

y1=sample(y,size=980,replace=FALSE,prob=NULL) 

y1sum=sum(y1) 

j=20 

u=seq(-1,1,2/979) 
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ku=0.75*(1-u^2) 

ku 

c=sum(ku) 

c 

w=ku/c 

w 

sumw=sum(w) 

sumw 

m=sum(w*y1) 

m[1]=w[1]*y1[1] 

for(i in 1:980) 

{ 

m=sum(w*y1[i]) 

} 

m 

outsample=j*m 
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T=y1sum+outsample 

T 

Taverage=(1/1000)*T 

Taverage 

unconditionalbias=Taverage-ybar 

unconditionalbias 

Appendix II: Nadaraya Watson Estimator Simulation 

u=seq(-1,1,2/(M-1)) 

ku=0.75*(1-u^2) 

ku 

c=sum(ku) 

c 

w=ku/c 

w 

sumw=sum(w) 

sumw 

m=sum(w*y1) 
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m[1]=w[1]*y1[1] 

for(i in 1:M) 

{ 

m=sum(w*y1[i]) 

} 

m 

outsample=j*m 

Tnw=y1sum+outsample 

Tnw 

Appendix III: Linear Regression for Conditional Bias 

conditional_bias1=c(19.5,20,18,17.5,16,15.09,15,11.5,11.9,12.09,10,8.01,5.88,1.69,8.5,

8.3,7.5,7,5,4.2,3.7,3,2.8,3.5,2.9) 

length(conditional_bias1) 

conditional_bias2=c(43.5,42.1,41,40,36,30,33.5,28,27,22,20.5,18,15,11,12,8,7.5,8.09,5,

4.5,4.0,3.75,3.6,3.5,3.2) 

length(conditional_bias2) 
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conditional_bias3=c(45.5,45,40,36,38,37,33.5,34.5,29,37.5,29.3,25,22.5,20,17.5,15,11,

9.5,8.76,7.8,7.5,7,6.5,5.9,4.2) 

length(conditional_bias3) 

xbar.bar=c(0.4780,0.4836,0.4867,0.4875,0.4886,0.4908,0.4916,0.4925,0.4942,0.4959,0.

4972,0.4987,0.4999,0.5012,0.5015,0.5021,0.5034,0.5046,0.5053,0.5063,0.5085,0.5105,

0.5126,0.5164,0.5255) 

length(xbar.bar) 

plot(xbar.bar,conditional_bias1,type="l",col="1",lty=1,ylim=c(0,50),xlab="X.BAR.BA

R",ylab="CONDITIONAL BIAS",main="LINEAR FUNCTION") 

lines(xbar.bar,conditional_bias2,type="l",col="2",lty=2) 

lines(xbar.bar,conditional_bias3,type="l",col="3",lty=3) 

legend(0.51,50,c("RATIO","MBC","NADARAYA"),col=c(1,2,3),lty=c(1,2,3)) 

Appendix IV: Quadratic Regression for Conditional Bias 

conditional_bias1=c(14.9,15,15.32,16.09,16.95,18.88,19.5,18.32,18,15.5,13,12.71,9.93,

8.02,9.29,7.8,4.63,4.11,3.76,3.02,2.51) 

conditional_bias2=c(53.8,48.8,34.6,37.8,37,30.2,29.7,28.2,30.1,31.1,25.5,27.8,17.8,12.

1,12.3,4.4,4.5,3.9,4.32,5.33,4) 

length(conditional_bias2) 



 
 

50 
 

conditional_bias3=c(56,55,45.8,41.3,38.7,40.3,43.4,42.2,39.3,40.7,33,32.1,33.8,26.5,26

.6,13.8,13.1,9.8,9.5,7.6,8.9) 

length(conditional_bias3) 

xbar.bar=c(0.4780,0.4836,0.4867,0.4886,0.4908,0.4925,0.4942,0.4959,0.4972,0.4987,0.

4999,0.5012,0.5021,0.5034,0.5046,0.5063,0.5085,0.5105,0.5126,0.5164,0.5255) 

plot(xbar.bar,conditional_bias1,type="l",col="1",lty=1,ylim=c(0,60),xlab="XBAR.BA

R",ylab="CONDITIONAL BIAS",main="QUADRATIC FUNCTION") 

lines(xbar.bar,conditional_bias2,type="l",col="2",lty=2) 

lines(xbar.bar,conditional_bias3,type="l",col="3",lty=3) 

legend(0.51,60,c("MBC","NADARAYA","RATIO"),col=c(1,2,3),lty=c(1,2,3)) 

 

 


