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ABSTRACT 

This thesis presents estimation of  panel data regression models with individual effects. We 

discuss estimation techniques for both fixed and random effects panel data regression models. 

We derive two-stage least squares and generalized least squares estimators, and discuss their 

limitations. Under specified conditions, we investigate the asymptotic properties of the derived 

estimators, in particular, the consistency and asymptotic normality, and the Hausman test for 

panel data regression models with large number of cross-section and fixed time-series 

observations. We show that both estimators are consistent and asymptotically normally 

distributed and have different convergence rates dependent on the assumptions of the regressors 

and the remainder disturbances. We also perform simulation studies  to see the  performance of 

our estimates for large cross sections. Our simulation results show that the estimators based on 

the bigger sample is more consistent  than the one based on the smaller sample size. We find that 

the two-stage least squares estimator performs better in the presence of endogeneity, while the 

generalized least squares estimator performs better under strict exogeneity conditions. We also 

note that generalized least squares estimator performs better than ordinary least squares estimator 

in the absence of correlation between individual effects and the regressors. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

Panel (or longitudinal) data is a kind of data in which observations are obtained on the same set 

of entities at several periods of time. It refers to the data with repeated time-series observations 

(T) for a large number (N) of cross-sectional units (e.g., states, regions, countries, firms, or 

randomly sampled individuals or households, etc ). Two well known examples in the U.S. are the 

PSID and NLS. Since the panel data relate to individuals, firms, regions, states, countries , etc 

over time, presence of heterogeneity in these units is a natural phenomenon. The techniques of 

panel data estimation can take such heterogeneity explicitly into account by allowing for 

individual specific variables. 

Due to the increased availability of longitudinal data and recent theoretical advances, use of  

panel data regression methods have become widely used in applied economics research because 

they allow researchers to control for unobserved individual time-invariant heterogeneity which is  

not easily done with pure cross-sectional data. If individual heterogeneity is left completely 

unrestricted, then estimates of model parameters suffer from the incidental parameters problem, 

first noted by Neyman and Scott (1948). This problem arises because the unobserved individual 

characteristics are replaced by inconsistent sample estimates, which, in turn, bias  and 

inconsistent estimates of model parameters. An important advantage of using such data is that 

they allow researchers to control for unobservable heterogeneity, that is, systematic differences 

across cross-sectional units. Regressions using aggregated time-series and pure cross-section 

data are likely to be contaminated by these effects, and statistical inferences obtained by ignoring 

these effects could be seriously biased and inconsistent. 

Given the immense interest in testing and estimation of cross sectional and time series data, not 

much attention has been paid to estimation of  panel data models. In this paper we consider the 

estimation of panel data models containing unobserved individual effects. The two most widely 

applied  panel data model estimation procedures are RE and FE. It is well-known that the 

consistency of the RE and FE estimators (as the cross section dimension tends to infinity with the 

time dimension fixed) requires the strict exogeneity of the regressors, but that the strict 

exogeneity assumption generates many more moment conditions than these estimators use.  
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Hence, problems that generally afflict fixed effect model (i.e. endogeneity) and random effect 

model (i.e. heteroscedasticity) need to be addressed while analyzing panel data. Because of many 

panel data models estimators becomes grossly inconsistent and inefficient. 

A number of works on the methodologies and applications of panel data modelling have 

appeared in the literature Li and Stengos (1994), Roy (2002), Baltagi et al.,( 2005, 2008), 

Bresson et al.,(2006), Olofin et al.,(2010). Situations where all the necessary assumptions 

underlying the use of classical linear regression methods are satisfied are rarely found in real life 

situations. Most of the studies that discussed panel data modelling considered the violation of 

each of the classical assumptions separately and  the detailed derivation and statistical properties 

of the estimators has minimum attention in many literature. 

One of the critical assumptions of the CLRM is that the error terms in the model are independent 

of all regressors. If this assumption is violated, then endogeneity  is suspected 𝑐𝑜𝑣 (𝜀𝑖𝑡  ,𝑥𝑖𝑡  ) ≠

0  for every 𝑖 and 𝑡. Also, the error terms are expected to have the same variance. If this is not 

satisfied, there is heteroscedasticity (i.e. 𝑎𝑟 (𝑣𝑖𝑡) = 𝑣𝑎𝑟 (𝜀𝑖𝑡 + 𝛼𝑖) =  𝜎2Ω ) See Schmidt 

(2005), Greene ( 2008), Maddala (2008), Creel (2011) and Wooldridge (2012).  

The estimators of Wooldridge (1995), Kyriazidou (1997) and Rochina-Barrachina (1999) help to 

resolve the endogeneity issues that arise because of non-zero correlation between individual 

unobserved effects and explanatory variables. However, other endogeneity problem  may arise 

due to a different factor – a nonzero correlation between explanatory variables and idiosyncratic 

errors. Such type of endogeneity can become an issue due to omission of relevant time-varying 

factors. The resulting biases cannot be removed via differencing or within transformation, and 

hence, require special consideration. The approach removes individual effects via within 

transformation. The estimator is a two stage least squares on the transformed data can achieve 

unbiased and consistent estimator. 

Random effect model treat the  individual effects as part of error term, hence variance become 

non constant. In the presence of heteroscedasticity, the usual OLS estimators, are no longer 

having minimum variance among all linear unbiased estimators. See Greene (2008), Baltagi et al. 

(2008), Olofin et al. (2010). Thus, the OLS estimator is not efficient relative to GLS under such 

situations. The studies of Mazodier and Trognon (1978), Rao et al. (1981), Magnus (1982), 
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Baltagi and Griffin (1988) and Wansbeek (1989) focused on the existence of heteroscedasticity 

in panel data modelling.  

The most popular estimation methods for panel data models are the within and the GLS 

estimators. For the panel data with large N and small T, the appropriate choice of estimators 

depends on whether or not regressors are correlated with the unobservable individual effect. An 

important advantage of using the within estimator (least squares on data transformed into 

deviations from individual means) is that it is consistent even if regressors are correlated with the 

individual effect. Some explanatory variables (e.g., years of schooling in the earnings equation) 

are likely to be correlated with the individual effects (e.g., unobservable talent or IQ). A simple 

treatment to this problem is the within estimator which is equivalent to least squares after 

transformation of the data to deviations from means. 

However, the within method has two serious defects. First, the within transformation of a model 

wipes out time invariant regressors as well as the individual effect, so that it is not possible to 

estimate the effects of time-invariant regressors on the dependent variable. The GLS estimator is 

often used in the literature as a treatment of this problem. The consistency of the GLS crucially 

depends on a strong assumption that no regressor is correlated with the effect (random effects 

assumption).  Second, consistency of the within estimator requires that all the regressors in a 

given model be strictly exogenous with respect to the random noise. The within estimator could 

be inconsistent for models in which regressors are only weakly exogenous, such as endogenous 

regressors. In response to these problems, a number of studies have developed alternative 

estimation methods called 2SLS. 

The question of whether to use random or fixed effects naturally arises with panel data. The 

choice between FE and RE estimators continues to generate a hot debate among 

econometricians. Use of the A Hausman statistic (1978) is commonly used for this purpose (e.g., 

Hausman and Taylor (1981), Cornwell and Rupert (1988) and Baltagi and Khanti-Akom (1990). 

estimator thus requires a statistical test that can empirically validate the  above strong 

assumption. The latter statistic is based upon a contrast between the FE and RE estimators, see 

Hausman (1978) or Baltagi (2001). If this standard Hausman test rejects the null hypothesis that 

the conditional mean of the disturbances given the regressors is zero, the applied researcher 
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reports the FE estimator. Otherwise, the researcher reports the RE estimator, see Owusu- 

Gyapong (1986) and Cardellichio (1990) for two such applications. 

This thesis extends the literature by studying the asymptotic properties of 2SLS, GLS  and the 

Hausman test for panel data models with  large numbers of cross-section (N) and small time-

series (T) observations.  

The aim  of this present thesis is to elucidate the part of the earlier work pertaining to these panel 

data model estimators. The thesis also contribute to the existing literature in several ways. First , 

we set out the assumptions behind the fixed and random effect approaches, highlight their 

strengths and weaknesses. Also, we give  brief  estimation method and procedures for the models 

and derive the estimators. We study asymptotic properties of  2SLS , GLS  estimators and 

Hausman test statistic and examines the finite sample properties of estimators with  simulation 

study. 

This thesis is organized as follows. Chapter 1 introduces the panel  data model of interest  and  

chapter 2 provides  existing  literature done  by others on panel data models. In chapter 3 , we 

describes  the general model of interest, some basic assumptions,  some notation and defines the 

2SLS, GLS estimators and the Hausman test. For several simple illustrative models, we derive 

the asymptotic consistency and  asymptotic distributions of the within estimators, the GLS 

estimators, and the Hausman test statistic. Chapter  4 reports some simulation evidence about the 

finite sample properties of our estimators. Finally, chapter 5 concludes by reviewing our 

contribution and making some suggestions for future work. 

1.2  Statement of the Problem 

Much  work on  estimation of  regression models  has been done  using time series and cross-

sectional data, separately. Time series and cross-sectional data are special cases of panel data 

which involve observations made on the same individual over time, and observations made on 

several individuals at the same time point, respectively. When time series and cross-sectional 

data are combined, we have panel data. That is, Panel data are repeated observations on the same 

unit  over time. A regression model of panel data is called panel data regression model. Not 

much work has been done on estimation of panel data, especially investigation of asymptotic 

properties of the estimation. This thesis seeks to estimate a panel data regression model with 

individual effects, and investigate the statistical properties of the estimators.  
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1.3  Objectives of the Study 

1.3.1 General Objective 

To estimate a panel data regression model with individual effects 

1.3.2  Specific Objectives  

i. To derive estimators of  the parameters of the  panel data regression model 

ii. To investigate some asymptotic properties of the estimators developed  in (𝑖) 

iii. To investigate the empirical properties of estimators using simulated data  

1.4  Significance of the Study 

As more and more panel data are available,  many scholars, practitioners, and students have been 

interested in panel data modeling because the longitudinal data have more variability and allows 

for exploration of  more issues than cross- sectional or time-series data alone (Kennedy, 2008).  

It  is apparent that most researchers, and  in particular  most econometricians and statictians  lack 

basic understanding to properly  interpret  economic statements. There is, therefore, need  to 

develop  estimation techniques of reporting  economic statements in an easy way to understand 

way. 

The analysis of panel data allows the model builder to learn about economic processes while 

accounting for both heterogeneity across individuals, firms, countries, and so on, and for 

dynamic effects that are not visible in cross sections. More importantly, longitudinal data allow a 

researcher to analyze a number of important economic questions that cannot be addressed using 

cross-sectional or time-series data sets and provides a means of resolving the magnitude of 

econometric problems that often arise in empirical studies. 

Therefore, panel data model is known to improve  the accuracy and efficiency of model 

parameter estimates and one can test more sophisticated behavioral models with less restrictive 

assumptions. At the end of the day, the main question for an applied researcher, as in any panel 

data setup, is whether to use a fixed effects or a random effects specification to get the answer. 

1.5  Organization of the Thesis 

The rest of the thesis is organized as follows; Chapter two presents a review of literature relating 

to our research objectives. In chapter three, we discuss the methodology in which we give a 

detailed procedure of estimation of the panel data regression models. We consider both the fixed-
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effects and the random-effects approaches. We derive some estimators of the panel data 

regression model, and investigate some asymptotic properties of estimators. In particular, we 

study consistency and asymptotic normality of the estimators. An empirical study to test the 

suitability of the derived estimators is carried out in chapter four while  the last chapter offers 

conclusions and suggestions for further study, based on this research. 

1.6   Conclusion 

Chapter one has given an background of the study, the statement of the problem, research 

objectives,  Significance of the study  and organization of the thesis. 
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CHAPTER  2 

LITERATURE REVIEW 

2.1   Introduction 

In this chapter, we give literature review in which we review some recent studies related to our 

study as guided by our objectives. This will enable us to  gain an insight of our research while 

avoiding repetition of work already done by others. 

2.2   Literature Review 

Panel data econometrics is a continuously developing field. The increasing availability of data 

observed on cross-sections of units (like households, firms, countries etc.) and over time has 

given rise to a number of estimation approaches exploiting this double dimensionality to cope 

with some of the typical problems associated with economic data, first of all that of unobserved 

heterogeneity. Time wise observation of data from different observational units has long been 

common in other fields of statistics (where they are often termed as longitudinal data). In the 

panel data field as well as in others, the econometric approach is nevertheless peculiar with 

respect to experimental contexts, as it is emphasizing model specification and testing and 

tackling a number of issues arising from the particular statistical problems associated with 

economic data Croissant and Millo (2011). 

The literature on statistical models for panel data has experienced enormous growth over the last 

twenty years with several recent textbooks focusing on that subfield of econometrics; see 

Arellano (2005), Hsiao (2003), Halaby (2004), Baltagi (2005), Cameron and Trivedi (2005), 

Wooldridge (2010) and Green(2012).The growth is mostly focused on developing asymptotically 

justifiable estimation techniques by making probabilistic assumptions for error terms that allow 

for certain forms of heterogeneity and dependence. Despite the impressive development of 

statistical techniques in analyzing panel data Wooldridge (2010), the statistical foundations of 

panel data modeling are rather weak in so far as the current textbook perspective is inadequate 

for securing the reliability and precision of inference based on panel data models. 

In this section, we will provide a brief overview of the panel data, fixed and random effects 

models for pooled cross-sectional and time-series data that are commonly used. More detailed 

accounts are given in above textbooks. Our overview  begin with a general model that can 
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represent either the random or fixed effects models depending on the restrictions placed on it. 

Then, we discuss the random effects model, the fixed effects model, and the Hausman test that 

distinguishes between them. 

2.3   Panel Data 

In recent years, panel data has become widely utilized in econometric analysis in many social 

sciences. Panel data combines cross-sectional and time-series data and, therefore, provides a 

more appealing structure of data analysis than either cross sectional or time-series data, alone. 

Although it is more costly to gather, the advantages of this data type include better and more 

precise parameter estimation due to a larger sample size as well as simplification of data 

modeling Hsiao (2005). 

Panel data analysis refers to data containing time-series for a cross-section or group of people 

who are surveyed periodically over a given period of time Yaffee (2003). The observations in 

panel data involve at least two dimensions i.e. a cross-sectional dimension indicated by subscript 

𝑖 and a time-series dimension indicated by subscript 𝑡. Panel data analysis have become very 

popular in the social sciences, having been used in economics to study behavior of firms and 

wages of people over time as well as in marketing to study market share changes across different 

market structures Hsiao (2005) and  Yaffee (2003). 

Panel data analysis has many advantages over analysis using time-series and cross-sectional data 

alone. For example, the increased sample size due to the utilization of cross-sectional and time-

series data improves the accuracy of model parameters' estimates due to a greater number of 

degrees of freedom and less multicollinearity compared to either cross-section or time-series data 

alone. Additionally, since panel data contains information on both the inter-temporal dynamics 

and the individuality of entities, it controls for the effect of missing variables on the estimation 

results. Finally, panel data allows for identification of previously not identified model 

specification Hsiao (2005). 

2.3.1 Panel  Data Arrangement 

A panel data set contains 𝑁 entities or subjects (e.g., firms and states), each of which includes 𝑇 

observations measured at 𝑖 through 𝑡 time period. Thus, the total number of observations is 𝑁𝑇. 

Ideally, panel data are measured at regular time intervals (e.g., year, quarter, and month). 

Otherwise, panel data should be analyzed with caution. A short panel data set has many entities 
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but few time periods (small T), while a long panel has many time periods (large T) but few 

entities Cameron and Trivedi (2009). 

Typical panels involve annual data covering a short span of time for each individual. This means 

that asymptotic arguments rely crucially on the number of individuals in the panel tending to 

infinity. Increasing the time span of the panel is not without cost either. In fact, this increases the 

chances of attrition with every new wave and increases the degree of computational difficulty in 

the estimation of qualitative limited dependent variable panel data models,  Baltagi (1995b). 

2 .4  Overview of  Panel Data Models 

Analysis of panel data requires to take account of the panel specific structure of several 

observations for each individual. If OLS regression is used, the standard assumptions must be 

fulfilled Greene (2012). But it is unlikely, that the error terms are uncorrelated between 

individuals and over time. The two most popular approaches to take account of the special time 

structure are fixed and random effects models. The fixed effects model assumes that the 

differences across units can be captured in differences in the  constant term  which needs to be 

estimated as parameters. The model can be reformulated by taking the deviation of the mean of 

all explaining variables instead of including individual specific dummy variables by applying the 

Frisch-Waugh Theorem Frisch and Waugh (1989). This reformulation has no effect on the 

results of the estimated parameters but since the number of variables is reduced this formulation 

has computational advantages.  

The most appealing aspect of the fixed effect model is that it is robust to the omission of any 

relevant time-invariant regressors. On the other hand, time-invariant regressors cannot be 

estimated because their influence is captured in the individual specific dummy or, in the case of 

the simplified formulation, because the variables are zero. The second most popular approach is 

the random effects model. It is assumed that the individual specific effects are uncorrelated with 

the explaining variables and this specific effects are treated as part of error term Ogunwale, et el 

(2011). 

 Data therefore do not carry useful information about the error term. A variance-covariance 

matrix can be used to describe how much certain observation depend on each other. In a 

frequentist framework, this is identical to a GLS estimation where the variance covariance matrix 
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for the FGLS can be taken either from fixed effects or OLS regression. For a detailed discussion 

of random effects model Baltagi (2001) and  Lancaster (2004). 

The major difference of random effects models from the fixed effects model is that in the former 

the omitted time-invariant variables are assumed to be uncorrelated with the included time-

varying covariates while in the latter they are allowed to correlate Mundlak (1978). The random 

effects model has the advantage of greater efficiency relative to the fixed effects model leading 

to smaller standard errors and higher statistical power to detect effects Hsiao (2003). A Hausman 

test enables researchers to distinguish between the random and fixed effects model Hausman, 

(1978). 

Despite the many desirable features of the random and fixed effects models for longitudinal data 

there are a number of limitations of the standard implementations that are not fully appreciated 

by users. First, these models have implicit restrictions that are rarely tested but that if wrong, 

could bias the estimated effects, Bollen and Brand (2008). 

Panel data models are widely used in empirical economics because they allow researchers to 

control for unobserved individual time-invariant heterogeneity. However, these models pose 

important technical challenges in panel settings. In particular, if individual heterogeneity is left 

completely unrestricted, then estimates of model parameters suffer from the incidental 

parameters problem, first noted by Neyman and Scott (1948). This problem arises because the 

unobserved individual characteristics are replaced by inconsistent sample estimates, which, in 

turn, bias estimates of model parameters, Greene (2002), Katz (2001)  and Hahn and Newey, 

(2004). 

Applied researchers face a wide choice of theoretically acceptable estimators when confronted 

with a panel data models Ahn and Schmidt (1995), and Arellano and Bover (1995). Typically, 

the theoretical literature mitigates against some standard estimators on the basis of inconsistency 

or inefficiency of the estimates. For example, in the popular one-way error component model, 

the standard OLS estimator is often not recommended in a static panel data model because it 

yields biased and inconsistent estimators. Nevertheless, the standard GLS estimator as well as 

the within estimator are frequently applied. 
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Maddala and Mount (1973) compared OLS, FE, RE and MLE methods using Monte Carlo 

experiments. They found little to choose among the various FGLS estimators in small samples 

and argued in favor of methods that were easier to compute. 

Taylor (1980) derived exact finite sample results for the one-way error component model 

ignoring the time-effects. He found the following important results. (1) FGLS is more efficient 

than the FE estimator for all but the fewest degrees of freedom. (2) The variance of FGLS is 

never more than 17% above the Cramer-Rao lower bound. (3) More efficient estimators of the 

variance components do not necessarily yield more efficient FGLS estimators. These finite 

sample results are confirmed by the Monte Carlo experiments carried out by Baltagi (1981a). 

Baillie and Baltagi (1995) derived the asymptotic mean square prediction error for the fixed 

effects and random effects  predictors as well as two other misspecified predictors and compared 

their performance using Monte Carlo experiments. 

Wallace and Hussain (1996) compared the RE and FE estimators of  𝛽 in the case of 

nonstochastic (repetitive) 𝑥𝑖𝑡's and find that both are (i) asymptotically normal (ii) consistent and 

unbiased and that (iii) 𝛽𝑅𝐸 has a smaller generalized variance (i.e., more efficient) in finite 

samples. In the case of nonstochastic (nonrepetitive) 𝑥𝑖𝑡's  they find that both 𝛽𝑅𝐸  and  𝛽𝐹𝐸 are 

consistent, asymptotically unbiased and have equivalent asymptotic variance-covariance 

matrices, as both N and T are large. Under the random effects model, GLS based on the true 

variance components is BLUE, and all the FGLS estimators considered are asymptotically 

efficient as N and T tend to infinity.  

Some previous studies have examined the large-N and large-T properties of the within and GLS 

estimators for error-component models. For example, Phillips and Moon (1999) and Kao (1999) 

establish the asymptotic normality of the within estimator for the cases in which regressors 

follow unit root processes. Extending these studies, Choi (1998) considers a general random 

effects model and derives the asymptotic distributions of both the within and GLS estimators 

which contains both unit-root and covariance-stationary regressors. However, they did not 

consider the asymptotic properties of the Hausman test. 

The estimators of Wooldridge (1995), Kyriazidou (1997) and Rochina-Barrachina (1999) help to 

resolve the endogeneity issues that arise because of non-zero correlation between individual 

unobserved effects and explanatory variables. However, other endogeneity biases may arise due 
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to a different factor – a nonzero correlation between explanatory variables and idiosyncratic 

errors. Such type of endogeneity can become an issue due to omission of relevant time-varying 

factors, simultaneous responses to idiosyncratic shocks, or measurement error. The resulting 

biases cannot be removed via differencing or fixed effects estimation, and hence, require special 

consideration. 

Hsiao (2003) and Halaby (2004) provide good summaries of the complications that emerge with 

the usual random and fixed effects estimators in models with lagged endogenous variables and 

the corrections needed might discourage researchers from exploring these possibilities. A closely 

related alternative is that there are lagged effects of a covariate on the dependent variable, yet 

these lagged variables are rarely considered. 

Kao and Chiang (1999) studied the asymptotic distributions for OLS, FMOLS, and DOLS 

estimators in cointegrated regression models in panel data. They shows that the OLS, FMOLS, 

and DOLS estimators are all asymptotically normally distributed.  

One test for the usefulness of panel data models is their ability to predict. For the RE model, the 

BLUP was derived by Wansbeek and Kapteyn (1978) and Taub (1979). The derivation was 

generalized by Baltagi and Li (1992) to the RE model with serially correlated remainder 

disturbances. 

Ahn and Moon (2001) examined the asymptotic properties of the popular within, GLS estimators 

and the Hausman test for panel data models with both large numbers of cross-section and time-

series observations. They found that find that the within estimator is as efficient as the GLS 

estimator. 

More recently, Ogunwale, et el (2011) studied on the use of simulated panel data to compare the 

performance of two methods of analyzing such data. Features of the ordinary least squares model 

that uses pooled data and fixed effects of the LSDV model were discussed. Several statistics (R2, 

Standard error, t and F distributions) were used in comparing the result of the estimates obtained 

from the two methods applied to two sample sizes. The comparison of the results showed that the 

analysis based on the bigger sample is more consistent and efficient than the one based on the 

smaller sample size and this made the least square dummy variables to be more superior than the 

pooled data model. The conclusion is that the fixed effects model of  LSDV is superior and better 

in the analysis of panel data.  
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2.5  Hausman Specification Test  

Much of the testing literature pertaining to panel data models builds on the work of Hausman 

(1978). In general, the Hausman test can be applied anytime an econometric model can be 

consistently estimated under the alternative hypothesis as well as under the null. The test is based 

on comparing the two estimates. Since, under the null hypothesis both estimation procedures are 

consistent, therefore, observing a statistical difference between the two provides evidence against 

the null.  

Fixed versus random effects has generated a continues lively debate in the biometrics literature. 

In econometrics, see Mundlak (1978) and Ahn and Moon (2001). The random and fixed effects 

models yield different estimation results, especially if T is small and N is large. A specification 

test based on the difference between these estimates is given by Hausman (1978). The null 

hypothesis is that the individual and time-effects are not correlated with the x𝑖𝑡′s. The basic idea 

behind this test is that the fixed effects estimator is consistent whether the effects are or are not 

correlated with the  x𝑖𝑡′s. 

Mundalk (1978) argued that the RE model assumes exogeneity of all the regressors and the 

random individual effects. In contrast, the FE model allows for endogeneity of all the regressors 

and the individual effects. This all or nothing choice of correlation between the individual effects 

and the regressors prompted Hausman and Taylor (1981) to propose a model where some of the 

regressors are correlated with the individual effects. The resulting estimator is called the HT 

estimator and it is based upon an instrumental variable estimator which uses both the between 

and within variation of the strictly exogenous variables as instruments.  

More specifically, the individual means of the strictly exogenous regressors are used as 

instruments for the time invariant regressors that are correlated with the individual effects, see 

Baltagi (2001). The choice of the strictly exogenous regressors is a testable hypothesis. In fact, 

this is a Hausman test based upon the contrast between the FE and the HT estimators. 

Most applications in economics since the 1980s have made the choice between the RE and FE 

estimators based upon the standard Hausman test. The latter statistic is based upon a contrast 

between the FE and RE estimators, see Hausman (1978). If this standard Hausman test rejects 

the applied researcher reports the FE estimator. Otherwise, the researcher reports the RE 
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estimator, see Hausman and Taylor (1981), Owusu-Gyapong (1986), Cornwell and Rupert 

(1988) and Cardellichio (1990) and  Baltagi and Khanti-Akom (1990) for two such applications. 

When T is finite and N is large, whether to treat the effects as fixed or random is not an easy 

question to answer. It can make surprising amount of differences in the estimates of parameters. 

In fact, when only a few observations are available for different individuals over time, it is 

exceptionally important to make the best use of the lesser amount of information over time for 

the efficient estimation of the common behavioral relationship Hsiao(2005). 

Choi (2002 ) made simple generalization of the Hausman test, which is previously considered by 

Arellano (1993). The Hausman statistic incorporates and tests a specific set of moment 

restrictions implying that individual means of the time-varying regressors are exogenous.  

Moulton (1986) developed  Hausman statistic  based on  linear panel data estimators. More 

specifically, He performed Monte Carlo experiments to compare the performance of the  

standard panel data estimators under various designs. The estimators considered are: OLS, FE, 

RE and the Hausman–Taylor estimators. Their result shows that when there is endogeneity 

among the regressors, there is substantial bias in OLS and the RE estimators and both yield 

misleading inference, then  FE estimator is preferred. Even when there is no correlation between 

the individual effects and the regressors, i.e. in a RE , inference based on OLS can be seriously 

misleading.  

Hausman and Taylor (1981) derive testing methods in the context of linear panel data models 

containing correlated fixed effects where interest lies in the parameters associated with observed 

time invariant explanatory variables. More specifically they develop an estimation procedure 

using instruments to estimate the parameters of the observed time-invariant variables. Where the 

instruments are the within transformations of the time-varying explanatory variables that are 

assumed to have no relationship with the unobserved component. Therefore, Hausman and 

Taylor do not rely on instrument from outside the model.  

Metcalf (1996) extends procedures of Hausman and Taylor to models containing endogenous 

variables in addition to the correlated fixed effects. That is, Metcalf  requires instruments outside 

of the model. The test statistic developed is then pertaining to possible correlation between the 

instruments and the unobserved component.  
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Ahn and Low (1996) further extend the testing literature regarding panel data models through 

reformulating the Hausman test in the context of GMM estimation. They note that the Hausman 

test statistic for testing correlation between the unobserved component and the regressors implies 

that the individual means or time averages of the regressors are exogenous. Their alternative 

GMM statistic incorporates a much broader set of moment conditions signifying that each of the 

time-varying explanatory variables is  exogenous. They described that  It's not clear how to apply 

the Hausman test to panel data models containing both correlated unobserved components and 

endogenous explanatory variables. 

The analysis of panel data is a field of econometrics that is experiencing increased 

methodological progress. Recent contributions include, among others; Elhorst (2010), Elhorst, 

Piras, and Arbia (2010), Lee and Yu (2010a), Lee and Yu (2010c), Lee and Yu (2010d), Lee and 

Yu (2010b), Mutl (2006), Mutl and Pfaffermayr (2011), Pesaran and Tosetti (2011). Empirical 

applications are hindered by the lack of readily available software. 

Panel data econometrics is obviously one of the main fields in the profession, but most of the 

models used are difficult to estimate with R. plm is a package for R which intends to make the 

estimation of linear panel models straightforward. plm is an R package for the estimation and 

testing of various panel data specifications.  plm provides functions to estimate a wide variety of 

models and to make (robust) inference Croissant and Millo (2011). They slightly modified 

version of  Croissant and Millo (2008) on plm package. 

A very comprehensive software framework for (among many other features) maximum 

likelihood estimation of linear regression models for longitudinal data, packages nlme (Pinheiro, 

Bates, DebRoy, and the R Core team 2007) and lme4 (Bates 2007), is available in the R (R 

Development Core Team (2008) ) environment and can be used, e.g., for estimation of random 

effects panel models, its use is not intuitive for a practicing econometrician, and maximum 

likelihood estimation is only one of the possible approaches to panel data econometrics. 

The aim of this paper is to derive  2SLS and  GLS estimators, study their asymptotic property  

and apply Hausman test to make choice between FE and RE. We consider the implementation of 

two-stage least square and generalized least square  estimators in the context of fixed as well as 

random effects linear panel data models. We perform comparisons of our estimators using  

simulation studies. 
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2.6  Conclusion 

In this chapter we have given literature review. The panel data regression model with fixed  and 

random effects and simulation studies have also been reviewed. In the next chapter we give panel 

data models, estimation procedure, panel model estimators and  consistency and asymptotic 

normality of  estimators. 
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CHAPTER 3 

MODEL ESTIMATION 

3.1  Introduction 

In this chapter, we define the two-dimensional panel data regression model, discuss model 

estimation procedure, estimation techniques and investigate some asymptotic properties of the 

estimators.  

3.2 Brief Overview of  Some Concepts  

3.2.1 Multiple Regression 

Since a multi-dimensional panel data regression model entails relationship between many 

independent variables and a response variable, there is need to briefly review multiple regression 

concepts. In general, a multiple regression model takes the form; 

 1 2, ,..., kY f                 (3.1) 

where Y is the response variable, 1 2, ,..., k     are the independent variables and   is an error 

term representing other sources of variability not accounted for in the function f . This   may 

include effects such as measurement errors on the response, background noises and even effects 

of other variables. It is treated as a statistical error that is normally distributed with zero mean 

and variance  𝜎2  i.e.    𝜀  2~ 0,N   . 

Consequently; 

      1 2 1 2 1 2 1 2, ,..., , ,..., | , ,..., , ,...,k k k kE Y E f E E f                              3.2  

The variables 1 2, ,..., k    in equation  3.1  are called natural variables because they are 

expressed in the natural units in which the measurements being studied were made. It is 

convenient to transform these natural variables into coded variables, say 1 2, ,..., kX X X , which are 

dimensionless with mean zero and same standard deviation. Accordingly, in terms of the coded 

variables, the response function  3.1 can be written as; 

     1 2, ,..., kY f x x x                          3.3  
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where   are random variables called error terms which are assumed to be identically and 

independently distributed, independent of X and normally distributed with zero mathematical 

expectation i.e.   0E   , and constant and finite variance i.e.   2Var     . The explanatory 

variables X are assumed to be non-random. 

Since the true response function f  is unknown, it is estimated. The efficiency of the estimation 

procedure depends on the ability to develop a suitable approximation for this function. This 

tenability of an efficient approximation is usually the focus in model estimation. 

3.2.2  Panel Data  

Panel data, also known as longitudinal data, refers to multi-dimensional data normally involving 

measurements over time. It contains observations on several phenomena obtained over time 

where time is sub-divided into equal time periods e.g. days, months, years, e.tc. The observations 

are obtained from the same set of entities or units which may be individuals, households, firms, 

regions or countries. 

Time series and cross-sectional data are special cases of panel data that are in one dimension 

only. A time series dataset has one panel member or individual whose characteristic(s) of interest 

are observed over several time periods. On the other hand, cross-sectional data involves one time 

point at which many panel members or individuals are observed for certain characteristic(s) of 

interest. In most cases, when  𝑇 ≫  𝑁,  the pane data set is likely to be a time series data, and 

when 𝑁 ≫  𝑇, the panel data is likely to be a cross-section data. Panel data set, therefore, 

possess a combination of the characteristics of both time series  and cross-sectional data Hasio  

(2005) . 

Another important distinction between time series and cross-sectional data sets is that, given a 

time dimension 𝑡  a panel member behaves like a time series; depicting natural ordering, and 

systematic dependence, but a cross-section data set has no natural ordering. 

Given that time series and cross-sectional data sets are special types of panel data, it may be 

necessary to address the problems that generally afflict time series data i.e. autocorrelation, and 

cross-sectional data i.e. heteroscedasticity, while analyzing panel data.  
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Panel members are normally denoted by 𝑋𝑖𝑡  
where 𝑖 = 1 , 2,… , 𝑁 represent the individual 

dimension and 𝑡 = 1 ,2, … , 𝑇  represent the time dimension.  

We have balanced and unbalanced panel data sets. A balanced panel data set involves 

observation of a characteristic of interest on each panel member for each time period in a given 

time duration while an unbalanced panel data set may miss out some observation(s) on certain 

time periods. 

Panel data possess some advantages over the time series and cross-sectional data. For instance, 

they are more informative than time series and cross-sectional data because they allow tracking 

individual histories, reflect dynamics and Granger causality across variables. They are also 

useful in situations in which one suspects that the outcome variable may depend on some 

unobservable explanatory variables that are possibly correlated with the observed explanatory 

variables. If such omitted variables are constant over time, then, panel data estimators allow for 

consistent estimation of the effect of the unobserved explanatory variables on the response. 

Hsiao (1986) also enumerates more benefits of panel data. These include control of the 

individual heterogeneity; panel data models have greater variability, less collinearity between 

variables, more degrees of freedom and more efficiency; they are more capable to identify and 

measure effects that aren’t detected in cross-section or time series data.  

3.2.3 Panel Data Models 

This sub-section presents a brief overview of panel data models. We have static linear, non-linear 

and dynamic panel data models.  

3.2.3.1 Static Linear Panel Data Models 

This type of panel data models  does not allow inclusion of the lagged , current and future  value 

of dependent variable as one of the  regressors  for  time periods of the same individual. This is a 

strong assumption which e.g. rules out lagged dependent variables from the model. The linear is 

the  part of the designation relates to the appearance of the regression coefficients. Therefore, the 

model  is linear in parameters in 𝛽 , individual effect  𝛼𝑖 and error  term 𝜀𝑖𝑡 . 

3.2.3.2  Static Non-Linear Panel data models 

The nonlinearity is defined in terms of the techniques needed to estimate the parameters, not the 

shape of the regression function . A nonlinear  panel data regression model is one for which the 

http://en.wikipedia.org/wiki/Regression_coefficient


20 

 

first-order  conditions for least squares estimation of the parameters are nonlinear functions of 

the parameters. 

3.2.3.3  Dynamic  linear panel data models  

This approach to panel data models involves the use of a dynamic effect, in this case adding a 

lagged dependent variable to the explanatory variables. these models take into account the 

dynamic processes by allowing the lagged value of the dependent variable as one of the 

explanatory variables as well as containing observed and unobserved permanent (heterogeneous) 

or transitory (serially-correlated) individual differences. The main theoretical reason for the 

dynamic panel is that it is modelling a partial adjustment based approach. If it is a partial 

adjustment process, the coefficient on the lagged dependent variable measures the speed of 

adjustment (i.e. 1 – coefficient is speed of adjustment). In addition the lagged dependent variable 

can remove any autocorrelation. 

When explanatory variables contain lagged dependent variables , because a typical panel 

contains a large number of cross-sectional units followed over a short period of time, it turns out 

that how the initial value of the dependent variable is modelled plays a crucial role with regard to 

the consistency and efficiency of an estimator Anderson and Hsiao (1981, 1982), Bhargava and 

Sargan (1983), Blundell and Bond (1998). 

Each of these models can be either fixed-effect or random-effect i.e. has both fixed and random 

effects depending some specified assumptions. A fixed effect model examines if intercepts vary 

across group or time period, whereas a random effect model explores differences in error 

variance components across individual or time period. 

Panel data models are becoming increasingly common as compared to cross-sectional and time-

series models due to the advantages of panel data explained in sub-section (3.3.2) above. In 

addition, panel data models examine group (individual-specific) effects, time effects, or both in 

order to deal with heterogeneity or individual effect that may or may not be observed. 

3.2.4  Definitions of  Important Terminologies 

Definition 3.1 ( Heterogeneity ) 

Heterogeneity in a panel data model setting implies that panel data model parameters (constant 

and slope coefficients) vary across individuals. 
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Definition 3.2 ( Homogeneity ) 

Homogeneity in a panel data model setting implies that panel data model parameters (constant 

and slope coefficients) are constant across individuals. 

Definition 3.3 ( Endogeneity )  

A variable is said to be endogenous when there is a correlation between the independent variable 

and the error term in regression model. Endogeneity can arise as a result of measurement error, 

autoregression with autocorrelated errors, simultaneity and omitted variables.  

Definition 3.4 ( Exogeneity )  

A variable is said to be exogenous when there is  no correlation between the independent 

variable and the error term in the regression model. It is also a factor in a causal model whose 

value is independent from the states of other variables in the model. 

Definition 3.5 ( Time series data ) 

A time series data is a sequence of numerical data points in successive order, measured typically 

at successive points in time spaced at uniform time intervals. It is a collection of observations of 

well-defined data items obtained through repeated measurements over time. Quantities that 

represent the values taken by a variable over a period such as a month, quarter, or year.  

Definition 3.6 ( Cross-sectional data ) 

It refers to data collected by observing many subjects (such as individuals, firms or 

countries/regions) at the same point of time, or without regard to differences in time. Analysis of 

cross-sectional data usually consists of comparing the differences among the subjects. 

Definition 3.7 ( Instrumental  variable ) 

An  instrumental variable is  a variable which uncorrelated with the disturbance  but is correlated 

with independent variable in the regression model. It  used to estimate causal relationships when 

controlled variables are not feasible in regression model. 

http://en.wikipedia.org/wiki/Variable
http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Error_term
http://en.wikipedia.org/wiki/Measurement_error
http://en.wikipedia.org/wiki/Autoregression
http://en.wikipedia.org/wiki/Autocorrelation
http://en.wikipedia.org/wiki/Omitted-variable_bias
http://en.wikipedia.org/wiki/Variable
http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Error_term
http://www.businessdictionary.com/definition/quantity.html
http://www.businessdictionary.com/definition/represent.html
http://www.businessdictionary.com/definition/values.html
http://www.businessdictionary.com/definition/variable.html
http://www.businessdictionary.com/definition/period.html
http://www.businessdictionary.com/definition/month.html
http://en.wikipedia.org/wiki/Causal_relationships
http://en.wikipedia.org/wiki/Controlled_experiment
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3.3  Notations 

The following are the notations used throughout this thesis; 

𝑦𝑖𝑡 −   the value of the dependent (continuous) variable for cross-section individual  𝑖  at time 𝑡     

           where   𝑖 = 1,… . , 𝑁 and 𝑡 = 1,… . , 𝑇 

𝑋𝑖𝑡
𝑗 − the value of the 𝑗𝑡ℎ explanatory variable for cross-section individual  𝑖  at  time 𝑡 .There      

          are 𝐾  explanatory variables indexed by    𝑗 = 1, … . , 𝐾 .  

𝜀𝑖𝑡 − are called the idiosyncratic errors or idiosyncratic disturbances because these change   

          accross 𝑡 as well as accross 𝑖 . 

3.4  The Model 

In sub-section 3.2.3, we had an overview of three types of panel data models; Static Linear, Non-

Linear, and Dynamic Panel data models. Our research, however, focuses on the Static Linear 

Panel data model. This sub-section, therefore, defines a Linear Panel Data Regression Model.  

The General Panel Data Regression Model can be written as;  

                 ' , 1,2,..., ; 1,2,...,it i it itY X i N t T              3.4  

Where i is the individual dimension and t  is the time dimension. Therefore, itY  is the response 

of individual i at time t , i  are the unobserved individual-specific, time-invariant intercepts, 

itX  is the explanatory variable i  at time t ,     is a vector of regression coefficients, and it  is 

the error term of individual i at time t . They are also known as idiosyncratic errors because they 

change across i as well as across t . 

We will assume throughout this thesis that each individual 𝑖 is observed in all time periods 𝑡. 

This is a so-called balanced panel. The total number of observations thus is NT. The treatment of 

unbalanced panels is straightforward but tedious.  For analysis (and computation), it is useful to 

organize the observations in vectors in which all the observations for n = 1 are stacked on top of 

all the observations for n = 2, etc. For panel data models the usual convention is to stack 

observations in the opposite order of subscripts, that is, first collecting the observations across 

time for each individual as  vector form. The T observations for individual 𝑖 can be summarized 

as   
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                                                     𝑦𝑖 = 𝑋𝑖𝛽 + 𝛼𝑖𝑖𝑇 + 𝜀𝑖                                                   ( 3.5 )                           

for = 1,2, … 𝑁 ,   where  𝑦𝑖 and  𝜀𝑖  are 𝑇-vectors and 𝑋𝑖 is a  𝑇 × 𝐾 matrix ,  

𝑦𝑖

(𝑇 × 1) = [ 

𝑦𝑖1

𝑦𝑖2

⋮
𝑦𝑖𝑇

 ] ,
𝑋𝑖

(𝑇 ×𝐾)
=

[
 
 
 
 

 

𝑥𝑖1
′

𝑥𝑖𝑡
′

⋮
𝑥𝑖𝑇
′

 

]
 
 
 
 

= [ 

𝑥1𝑖1 𝑥2𝑖1 … 𝑥𝑘𝑖1

𝑥1𝑖2 𝑥2𝑖2 … 𝑥𝑘𝑖2

⋮
𝑥1𝑖𝑇

⋮
𝑥2𝑖𝑇

⋮
…

⋮
𝑥𝑖𝑇

 ] ,
𝑖

(𝑇 × 1) = [

1
1
⋮
1

] ,
𝜀𝑖

(𝑇 × 1) = [ 

𝜀𝑖1

𝜀𝑖2

⋮
𝜀𝑖𝑇

 ] 

and  𝛼𝑖 = 𝛼𝑖𝑖𝑇.  Then, stacking the entire data set by individuals,  

𝑌
(𝑁𝑇 × 1) = [ 

𝑦1

𝑦2

⋮
𝑦𝑁

 ] =

[
 
 
 
 
 

 

𝑦11

⋮
𝑦𝑖𝑇

⋮
𝑦𝑁1

⋮
𝑦𝑁𝑇

 

]
 
 
 
 
 

 ,
X

(NT × k) = [ 

𝑥1

𝑥2

⋮
𝑥𝑁

 ] ,
𝜀

(𝑁𝑇 ×1) = [ 

𝜀1
𝜀2

⋮
𝜀𝑁

 ] ,
𝛼

(𝑁 × 1) = [ 

𝛼1

𝛼2

⋮
𝛼𝑁

 ]  ,  

𝛽
(𝐾 × 1)

= [ 

𝛽1

𝛽2

⋮
𝛽𝑁

 ] .      

Then we can write this as ;  

 𝑌 = [

𝑦1

𝑦2

⋮
𝑦𝑁

] = [ 

𝑖
0
⋮
0

 ] 𝛼1 + [ 

0
𝑖
⋮
0

 ] 𝛼2 + ⋯+ [ 

0
0
⋮
𝑖

 ]𝛼𝑁 + [

𝑥1

𝑥2

⋮
𝑥𝑁

] 𝛽 + [

𝜀1

𝜀2

⋮
𝜀𝑁

] 

Then the data can be represented by the single (relatively simple) equation by pilling over all 

observations on top as  

                                                    Y =  X𝛽 + 𝛼 + 𝜀                                                                 ( 3.6 )                                     

Most of the paper are concerned with an unobserved effects model defined for a large 

population. Therefore, we assume random sampling in the cross section dimension. Unless stated 

otherwise, the asymptotic results are for a fixed number of time periods, T, with the number of 

cross section observations, N, getting large. 

Mundlak (1978) and  Chamberlain (1982 ) view  individual effect  𝛼𝑖  as random draws along 

with the observed variables. Then, one of the key issues is whether 𝛼𝑖 is  correlated with 
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elements of  𝑋𝑖𝑡 . The equation (3.4) is useful to emphasizing which factors change only across  , 

which change only across 𝑡, and which change across 𝑖  and 𝑡. 

Wooldridge (2003) avoids referring to  𝛼𝑖 as a random effect or a fixed effect. Instead, we will 

refer to  𝛼𝑖 as unobserved effect, unobserved heterogeneity, and so on. Nevertheless, later we 

will label two different estimation methods random effects estimation and fixed effects 

estimation.  

Fact  that for Wooldridge (2003), these discussions about whether the 𝛼𝑖  should be treated as 

random variables or as parameters to be estimated are wrongheaded for micro econometric panel 

data applications. With a large number of random draws from the cross section, it almost always 

makes sense to treat the unobserved effects, 𝛼𝑖, as random draws from the population, along with 

𝑦𝑖𝑡  and 𝑋𝑖𝑡 . This approach is certainly appropriate from an omitted variables or neglected 

heterogeneity perspective. As suggested by Mundlak (1978), the key issue involving 𝛼𝑖 is 

whether  it is uncorrelated with the observed explanatory variables  𝑋𝑖𝑡, for 𝑡 =  1, . . , 𝑇. 

In the traditional approach to panel data models, 𝛼𝑖 is called a random effect, when it is treated 

as a random variable and a fixed effect, when it is treated as a parameter to be estimated for each 

cross section observation. 

The individual effect is a random variable in both fixed and random effects models and assume 

that   𝐸(𝑦𝑖𝑡|𝑥𝑖1 ,𝑥𝑖2,… , 𝑥𝑖𝑇  ,𝛼𝑖) = 𝐸(𝑦𝑖𝑡|𝑋𝑖𝑡  , 𝛼𝑖) = 𝛼𝑖  +  𝑋𝑖𝑡
′ 𝛽 . Individual effect αi  is unkown 

and  can not be consistently estimated in short panels, so we cannot estimate  𝐸(𝑦𝑖𝑡  |𝛼𝑖 , 𝑥𝑖𝑡  ) . 

Instead, we can eliminate αi  again by taking the expectation with respect to αi ,leading to                        

𝐸(𝑦𝑖𝑡  | 𝑥𝑖𝑡  ) =  𝐸(𝛼𝑖  | 𝑥𝑖𝑡  ) + 𝑋𝑖𝑡𝛽 .For the random effect model it is assumed that   

𝐸(𝛼𝑖  | 𝑥𝑖𝑡  ) =  0 i.e. 𝛼𝑖 is treated as error term. So, 𝐸(𝑅𝑖𝑡  |𝛼𝑖 , 𝑥𝑖𝑡  ) =  𝑋𝑖𝑡𝛽  and hence it is 

possible to idenstify  𝐸(𝑦𝑖𝑡  | 𝑥𝑖𝑡  ). In fixed effect  model, however , 𝐸(𝛼𝑖  | 𝑥𝑖𝑡  ) varies with xit  

and it is not known how it  varies ,we cannot identify  𝐸(𝑦𝑖𝑡  | 𝑥𝑖𝑡  ).  

In panel data models, the individual intercept 𝛼𝑖is meant to control for the effect of unobservable 

regressors that are specific to individual 𝑖. The various panel data models depend on the 

assumptions made about the in individual specific effects 𝛼𝑖. In the traditional approach to panel 

data models, 𝛼𝑖  is called a random effect, when it is treated as a random variable and a fixed 

effect, when it is treated as a parameter to be estimated for each cross section observations. The 
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major distinction between fixed- and random-effects models rests in the conceptualization and 

estimation of the individual  effect. 

3.4.1  Fixed-Effects  Model 

This approach assumes that differences across units of observation can be captured in the 

constant term. Each 
i   is treated as an unknown parameter to be estimated. It also assumes that 

there is unit-specific heterogeneity in the model which might be correlated with the regressors 

and needs to be removed from the regression before estimation.  In the fixed effects approach, 

we estimate parameters for fixed effects between units and thereby remove variance from the 

error term. Hence, fixed effects estimation method eliminates the time invariant unobserved 

effect. However, if the number of units is large, the estimation of the parameters may be 

inefficient. If the individual effects are randomly distributed in each cross sectional unit fixed 

effects approach give inconsistent estimate and hence, we use random effect instead.  

If we treat  𝛼𝑖  as an unobserved random variable that is correlated with the observed regressors  

, then we consider these effect as parameters  𝛼1 ,𝛼2, … …… 𝛼𝑁 to be estimated. In such cases 

many estimators such as OLS are inconsistent. Instead, alternative estimation methods that 

eliminate the  𝛼𝑖 are needed to ensure consistent estimation of parameters. 

In micro econometric applications, the term fixed effect, does not usually mean that 𝛼𝑖 is being 

treated as nonrandom; rather, it means that one is allowing for arbitrary correlation between the 

unobserved effect 𝛼𝑖 and the observed explanatory variables 𝑋𝑖𝑡 . 

3.4.2   Random Effect  Model 

In regression analysis , it is commonly assumed that all factors that affect the dependent variable, 

but that have not been included as regressors, can be appropriately summarized by a random 

error term. Thus, this leads to the assumption that the  𝛼𝑖  are random factors, independently and 

identically distributed over individuals and  treated as error term.  In this model, it´s necessary to 

assume that the explanatory variables are uncorrelated to the specific term for each cross 

sectional unit. The gain to this approach is that it substantially reduces the number of parameters 

to be estimated. 

3.5   Model Assumptions 

The following assumptions are made on model 3.4 ; 
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PL1: Linearity 

The model in (3.4)  is linear in parameters in 𝛽 , individual effect  𝛼𝑖 and error 𝜀𝑖𝑡. 
it  are 

normally distributed with mean 0 and variance 2

  i.e.  2~ 0,it N   distributed, where 

20   . 

PL2: Independence 

The {𝑥𝑖11 , …𝑥𝑖𝑇𝐾}𝑖=1
𝑁  is independently and identically distributed. The observations are 

independent across individuals but not necessarily across time. The 
it  are independent and 

identically distributed (i.i.d ) random variables. 

PL3: Strict Exogeneity 

The it  are independent of the explanatory variables itX  as well as the individual-specific time- 

invariant intercepts i  i.e. 𝐸(𝜀𝑖𝑡|𝑥𝑖11 ,… 𝑥𝑖𝑇𝐾 ,𝛼𝑖) = 0 (mean independence). The idiosyncratic 

error term 𝜀𝑖𝑡 is assumed uncorrelated with the explanatory variables of all past, current and 

future time periods of the same individual. It  also assumes that the idiosyncratic error is 

uncorrelated with the individual specific effect. 

PL4: Error Variance 

The covariance between the error terms in any two different observations equals to zero  

 i.e.   cov , | , 0it is it iX     , it is  for all i and s t  .  

a) 𝑉𝑎𝑟 (𝜀𝑖𝑡|𝑥𝑖11 , …𝑥𝑖𝑇𝐾 , 𝛼𝑖) = 𝜎𝜀
2 > 0 and < ∞   for all 𝑖, 𝑡 .Corr (𝜀𝑖𝑡 , 𝜀𝑖𝑠 |𝑥𝑖11 ,… 𝑥𝑖𝑇𝐾 , 𝛼𝑖) = 0  

for all 𝑖  and 𝑠 ≠ 𝑡 ( homoscedastic and no serial correlation ). 

b) 𝑉𝑎𝑟 (𝜀𝑖𝑡|𝑥𝑖11 , …𝑥𝑖𝑇𝐾 , 𝛼𝑖) = 𝜎𝜀,𝑖𝑡
2 > 0 and < ∞   for all 𝑖, 𝑡 . 𝐶𝑜𝑟𝑟(𝜀𝑖𝑡 , 𝜀𝑖𝑠|𝑥𝑖11 , … 𝑥𝑖𝑇𝐾 ,𝛼𝑖) =

0  for all 𝑖  and 𝑠 ≠ 𝑡  (no serial correlation ). 

c) 𝑉𝑎𝑟 (𝜀𝑖𝑡|𝑥𝑖11 , …𝑥𝑖𝑇𝐾 , 𝛼𝑖) = 𝜎𝜀,𝑖𝑡
2 > 0 and < ∞   for all 𝑖, 𝑡.  𝐶𝑜𝑟𝑟(𝜀𝑖𝑡 , 𝜀𝑖𝑠|𝑥𝑖11 , … 𝑥𝑖𝑇𝐾 ,𝛼𝑖) <

1 and  > −1  for all  𝑠 ≠ 𝑡. 
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The remaining assumptions are divided into two sets of assumptions: the random effects model 

and the fixed effects model. 

3.5.1 Fixed Effects Assumptions 

In the fixed effects model , the 𝛼𝑖 is a random variable that is allowed to be with the explanatory 

variables. 

FE1: We have a random sample from the cross sectional dimension. 

FE2: There are no time-constant variables (for at least some  ), and no perfect collinearity  in  the 

model variables, that all regressors have non-zero within-variance (i.e. variation over time for a 

given individual) and not too many extreme values. Hence,  𝑥𝑖𝑡 can not include  a constant or any 

other time-invariant variables.  

FE.3: 𝐸(𝜀𝑖𝑡|𝑋𝑖1 ,𝑋𝑖2, … , 𝑋𝑖𝑇  ,𝛼𝑖) = 0  , ∀𝑡 = 1,2, … 𝑇, which  implies  that the following   

(unfeasible) regression 𝐸(𝑦𝑖𝑡|𝑋𝑖𝑡  ,𝛼𝑖) = 𝑋𝑖𝑡
′ 𝛽 + 𝛼𝑖  (Strict exogeneity). 

FE.4: 𝑉𝑎𝑟(𝜀𝑖𝑡|𝑋𝑖  ,𝛼𝑖) = 𝐸(𝜀𝑖
′𝜀𝑖|𝑋𝑖  ,𝛼𝑖) =  𝜎𝜀

2𝐼𝑇  , ∀𝑡 = 1,2, …𝑇, where 𝐼𝑇   is  𝑇× 𝑇  identity 

matrix  (Homoskedasticity). 

FE.5: 𝐶𝑜𝑣(𝜀𝑖𝑡  𝜀𝑖𝑠|𝑋𝑖  ,𝛼𝑖) =  0  (no serial correlation). This implies for all ≠ 𝑠, the 

idiosyncratic errors  𝜀𝑖𝑡 are serially  uncorrelated  across time (conditional on all explanatory 

variables  and 𝛼𝑖 ). 

FE.6: (𝑋𝑖1 ,𝑋𝑖2, … , 𝑋𝑖𝑇 , 𝜀𝑖1 , 𝜀𝑖2, … , 𝜀𝑖𝑇  )  , 𝑖 = 1,2, … 𝑁 are i.i.d drawn from their joint  

distribution. This also  indicate ( �̈�𝑖𝑡1  ,…  , �̈�𝑖𝑡𝐾  ) are  linearly independent and  𝑉𝑎𝑟 ( �̈�𝑖𝑡𝐾  ) > 0 

and <  ∞ for all 𝑘  , where �̈�𝑖𝑡𝑘  = 𝑥𝑖𝑡𝑘 − �̅�𝑖𝑘   and  �̅�𝑖𝑘  = 𝑇−1  ∑ 𝑥𝑖𝑡𝑘
𝑇
𝑡=1 . 

FE.7: Rank (∑ 𝐸(�̈�𝑖𝑡
′ �̈�𝑖𝑡)

𝑇
𝑡=1 ) = 𝑟𝑎𝑛𝑘 [𝐸(�̈�𝑖

′�̈�𝑖) = 𝐾]  

With all these assumptions, fixed effect  is BLUE, which means it has smaller variance than 

random effect. However, if we believe that assumption FE 6 is violated (there is Serial 

Correlation in the error 𝜀𝑖𝑡), fixed effect  is not BLUE anymore. If there is strong correlation in 

errors over time (the error term follows random walk process) first Difference  will be a better 

estimator. If Serial correlation is relatively mild, it is not straightforward which one of these 

estimators to use. As 𝑇 gets large (relative to N), Serial correlation might be more of a problem, 

and using fixed effect with long panel data might not be the best strategy. 
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3.5.2  Random Effect Assumptions 

In the random effects  model , the individual-specific effect is a random variable that is unrelated 

with the explanatory variables.  

RE.1: Unrelated effects 

a) 𝐸(𝛼𝑖|𝑥𝑖1 ,… 𝑥𝑖𝑇) = 𝐸(𝛼𝑖) = 0  and  𝑉𝑎𝑟 (𝛼𝑖|𝑥𝑖1 ,… 𝑥𝑖𝑇) = 𝜎𝛼
2 < ∞ 

b)   𝐸(𝛼𝑖|𝑥𝑖1 ,… 𝑥𝑖𝑇) = 0  and  𝑉𝑎𝑟 (𝛼𝑖|𝑥𝑖1 ,…𝑥𝑖𝑇) = 𝜎𝛼,𝑖
2 (𝑥𝑖1 ,… 𝑥𝑖𝑇) < ∞ 

It assumes that 𝛼𝑖 is uncorrelated with the explanatory variables of all past, current and  future 

time periods of the same individual. Version RE1.a assumes constant variance and  

(orthogonality of 𝛼𝑖 and 𝑥𝑖𝑡), where  𝑋𝑖 ≡  (𝑋1𝑡 , 𝑋𝑖2,… . , 𝑋𝑖𝑇). RE1.a  always implied by  the 

assumption that the 𝑋𝑖𝑡 are fixed and 𝐸(𝛼𝑖) = 0, or by the assumption that 𝛼𝑖 is  independent of 

𝑋𝑖. The important part is (𝛼𝑖|𝑋𝑖) = 𝐸(𝛼𝑖) = 0 ; the assumption 𝐸(𝛼𝑖) = 0  is without loss of 

generality, provided an intercept is included in 𝑋𝑖𝑡 .    

RE.2: a)  𝐸(𝜀𝑖𝑡|𝑋𝑖 , 𝛼𝑖) = 0,    𝑡 = 1,2, … , 𝑇  (Strict exogeneity). 

           b) 𝐸(𝜀𝑖  𝜀𝑖
′|𝑋𝑖 , 𝛼𝑖) = 𝜎𝜀

2𝐼𝑇 

 Under RE.1a , 𝐸(𝜀𝑖𝑡
2 |𝑋𝑖 ,𝛼𝑖) = 𝜎𝜀

2 , 𝑡 = 1, 2, …𝑇   and 𝐸(𝜀𝑖𝑡𝜀𝑖𝑠|𝑋𝑖 ,𝛼𝑖) = 0 ,𝑠 ≠ 𝑡, s, t =1,2,...,T 

(both by iterated expectation argument).  

RE3: Identifiability 

The (1, 𝑥𝑖1 ,… 𝑥𝑖𝑇  ) are not  linearly dependent and   𝑉𝑎𝑟 ( �̈�𝑖𝑡  ) > 0 and <  ∞ for all 𝑘 . It 

assumes that the regressors including a constant are not perfectly collinear, that all regressors 

(but the constant) have non-zero variance and not too many extreme values. 

 Assuming PL.2 , PL.4 and RE.1 in the special versions PL.4.a and RE.1.a leads to 

     𝑉𝑎𝑟 (𝑉𝑖𝑡|𝑥𝑖1 ,… 𝑥𝑖𝑇) = 𝜎𝑣
2 = 𝜎𝛼

2 + 𝜎𝜀
2  for all 𝑖, 𝑡  

    𝐶𝑜𝑣 (𝑉𝑖𝑡 , 𝑉𝑖𝑠|𝑥𝑖1 ,… 𝑥𝑖𝑇) = 𝜎𝛼
2  for all 𝑖  and 𝑠 ≠ 𝑡 

    𝐶𝑜𝑣 (𝑉𝑖𝑡 , 𝑉𝑗𝑡|𝑥𝑖1 ,…𝑥𝑖𝑇  ,𝑥𝑗1 ,… 𝑥𝑗𝑇) = 0  for all 𝑠, 𝑡  and 𝑖 ≠ 𝑗 

This special case under the a) versions of PL.4 and RE.1 is therefore called the equicorrelated 

random effects model. 

RE.4: Same as FE.1. 
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RE.5: Same as FE.6 

RE.6:Rank 𝐸(𝑋𝑖
′Ω−1𝑋𝑖) = 𝐾 

3.6   Estimation Techniques 

This section provides estimation procedure of our model. That is, we derive estimators of the 

parameters   and
i . Since a panel data regression  model comprise of both fixed and random 

effects, we discuss the estimation of each of these panel data models as follows; 

3.6.1  Fixed Effect Estimation 

In this model, the individual effects 𝛼𝑖  ;  i = 1,2, . . . , N,   are estimated as a time-invariant set of 

constants. We treat them as unobserved random variables that are correlated with the observed 

regressors. If i  are observed for all individuals, then, the entire model can be treated as an 

ordinary linear regression model and hence we can estimate it  by ordinary least squares method. 

This is relatively simple if the predictor variables are exogenous and the error terms are 

homoscedastic and serially uncorrelated. 

If i  are unobserved, but are correlated with the regressors, then,  OLS estimator for  𝛽  will be 

biased and inconsistent. The particular advantage of the fixed effects model is the removal of the 

individual - specific heterogeneity from the model and  wipe out predictor variables that vary 

slowly within units. Those effects that do not vary at all over time can't be estimated in fixed 

effect model. 

Consider  the panel data model (3.4) , we have 𝑁 equations written as;  

                                   𝑦𝑖  =  𝛼𝑖𝑖𝑇 + 𝑋𝑖
′𝛽 + 𝜀𝑖                                                                          (3.7) 

where  𝑖𝑇  is a  𝑇 × 1 vector of ones. The above  equation represents a single random draw from 

a cross section. Fixed effect  analysis  allows 𝐸(𝛼𝑖|𝑋𝑖𝑡) to be any function of  𝑋𝑖 and therefore, it 

is more robust than the random-effects analysis. In addition, if 𝛼𝑖 can be arbitrarily correlated 

with each element of 𝑋𝑖𝑡, there is no way to distinguish the effects of time-constant observables 

from the time-constant unobservable  𝛼𝑖. For instance, when analyzing individuals, factors such 

as gender or race cannot be included in 𝑋𝑖𝑡; when analyzing firms, industry cannot be included in 

𝑋𝑖𝑡 unless industry designation changes over time for at least some firms; for cities, variables 

describing fixed city attributes, such as whether or not the city is near a river, cannot be included 
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in 𝑋𝑖𝑡. The fact that 𝑋𝑖𝑡 cannot include time-constant explanatory variables is a drawback in 

certain applications, but when the interest is only on time-varying explanatory  variables, it is 

convenient not to have to worry about modeling time-constant factors that are not of direct 

interest. 

In panel data analysis the term time-varying explanatory variables means that each element of 

𝑋𝑖𝑡 varies over time for some cross section units. Often there are elements of  𝑋𝑖𝑡 that are 

constant across time for a subset of the cross section. 

The coefficients on the time-invariant variables cannot be estimated. This lack of identification is 

the price of the robustness of the specification to unmeasured correlation between the individual 

effect and the exogenous variables. Thus, this time-invariant unobserved individual or group 

effect needs to be  eliminated or removed before estimation. The particular advantage of the 

fixed effects model is the removal of the individual -specific heterogeneity from the model  

which can be shown by deviations-from-means approach. The idea for estimating 𝛽 is to 

transform the equations to eliminate the unobserved effect 𝛼𝑖. When at least two time periods are 

available, there are several transformations that accomplish this purpose. In this section we 

present only the within transformation.  

3.6.1.1  Within Transformation 

We eliminate the individual effects 𝛼𝑖 by transforming  the model. Transformation of the model  

requires the following steps; 

Step 1: Average  equation (3.4)  over 𝑡 = 1,2, …… 𝑇  to get the cross section equation: 

                                               �̅�𝑖 = 𝑋𝑖𝛽 + 𝛼𝑖 + 𝜀�̅�  ,    𝑖 = 1, … . . 𝑁                                           (3.8) 

 where �̅�𝑖 = 𝑇−1  ∑ 𝑦𝑖𝑡
𝑇
𝑡=1  ;    𝑋𝑖 = 𝑇−1  ∑ 𝑋𝑖𝑡

𝑇
𝑡=1  ;   𝜀�̅� = 𝑇−1  ∑ 𝜀𝑖𝑡

𝑇
𝑡=1   𝑎𝑛𝑑  𝛼𝑖 = 𝛼𝑖  .These are 

called time means for each unit 𝑖. The OLS estimator for  𝛽 obtained from (3.8) is called 

between estimator. 

Step 2: To eliminate 𝛼𝑖  subtract  equation  (3.8) from (3.4) for each 𝑡 gives  the  fixed effects 

transformed equation , 

𝑦𝑖𝑡 − �̅�𝑖 = (𝑋𝑖𝑡 − 𝑋𝑖  )
′𝛽 + 𝜀𝑖𝑡 − 𝜀�̅�   

or  equivalently 

                       �̈�𝑖𝑡  = �̈�𝑖𝑡
′ 𝛽 + �̈�𝑖𝑡  ,   𝑖 = 1, … …𝑁 ,𝑡 = 1,… … . 𝑇                                               (3.9)           
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where �̈�𝑖𝑡 = 𝑦𝑖𝑡 − �̅�𝑖  ; �̈�𝑖𝑡 = 𝑋𝑖𝑡 − 𝑋𝑖  ;  �̈�𝑖𝑡 = 𝜀𝑖𝑡 − 𝜀�̅�    𝑎𝑛𝑑  𝛼𝑖 − 𝛼𝑖 = 0 and hence the effect is 

eliminated. Also, we define 𝛼 = 𝐸(𝛼𝑖), so 𝐸(𝛼𝑖 − 𝛼) = 0, Since 𝛼𝑖 is  fixed or constant  for 

every cross sectional unit. Like first differencing ,  time demeaning of the  original equation has 

removed the individual effect  𝛼𝑖 . With  𝛼𝑖 out of the model , it is natural to estimate (3.9) by  

OLS if  𝑋𝑖𝑡 is strictly exogenous . 

Equation (3.9) is a regression model in deviations from individual means and does not include 

the individual effects 𝛼𝑖 . The transformation that produces observations in deviation from 

individual means, as in (3.9), is called the within transformation. The OLS estimator for  𝛽 

obtained from this transformed model is often called the within estimator. Note that time-

invariant regressors (e.g. the constant) where  𝑋𝑖𝑡 = 𝑋𝑖 cancel as �̈�𝑖𝑡 = 𝑋𝑖𝑡 − 𝑋𝑖 = 0 and their 

effect cannot be estimated by the within estimator.  

Essentially, the fixed effects model concentrates on differences within individuals. That is, it is 

explaining to what extent   𝑦𝑖𝑡  differs from  �̅�𝑖   and does not explain why•�̅�𝑖 is different from  

�̅�𝑗 . The parametric assumptions about   𝛽  on the other hand, impose that a change in 𝑋𝑖𝑡  has the 

same (ceteris paribus) effect, whether it is a change from one period to the other or a change 

from one individual to the other. When interpreting the results, however, from a fixed effects 

regression, it may be important to realize that the parameters are identified only through the 

within dimension of the data. 

By exploiting the within dimension of the data (differences within individuals), determined as 

the OLS estimator in a regression in deviations from individual means. It is consistent for 𝛽 for 

𝑇 ⟶  ∞  or  𝑁 ⟶  ∞  and  𝑇𝑁 ⟶  ∞   provided that  𝐸(�̈�𝑖𝑡  𝜀𝑖𝑡) = 0 . Again this requires the 𝑋-

variables to be strictly  exogenous, but it does not impose any restrictions upon the relationship 

between 𝛼𝑖  and  𝑋𝑖𝑡 . When individual specific effects are correlated with relevant covariates , it 

is appealing to prefer  the fixed effect over  the random effect  estimator. 

If  at least one of regressors are endogenous implies   𝐸(𝑋𝑖𝑡𝜀𝑖𝑡) ≠ 0, OLS produce inconsistent 

estimate. However, there are also perils relying on the fixed effect only. First , as pointed out , 

time-invariant variables cannot be used. Furthermore, measurement error in 𝑋 and endogenous 

changes in 𝑋 might lead to biased and inconsistent  results also within estimator. When  at least 

one of regressors are endogenous implies  𝐸(𝑋𝑖𝑡𝜀𝑖𝑡) ≠ 0 , fixed effect estimator is no longer 
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consistent. For this thesis  when this is a case  we apply 2SLS to estimate parameters 

consistently. 

3.6.1.2  Two Stage Least Square Estimation  

In  regression model, we assume that variable 𝑦 is determined by 𝑋  but does not jointly 

determine 𝑦. However, many economic models involve endogeneity that in which  response 

variable is determined by joint of 𝑋. When 𝑋 is endogenous or jointly determined with 

dependent variable , then the estimation of the model  will result  inconsistent estimators and 

enlarge variance of estimators. This endogeneity problem is the consequence of measurement 

errors , omitted variable or etc. 

The treatment for this problem is  to introduce  instrumental variables  𝑍𝑖𝑡 which cut relationship 

between 𝑋𝑖𝑡 and  𝜀𝑖𝑡  which depends on the following assumptions.   

Assumptions 

(1) 𝑍𝑖𝑡 is uncorrelated with the error  𝜀𝑖𝑡           

(2)  𝑍𝑖𝑡 is  correlated with the regressor  𝑋𝑖𝑡        

Consider in (3.4) and (3.7), We allow for arbitrary correlation between the 𝛼𝑖 and 𝑋𝑖𝑡. In 

addition, we allow some elements of  𝑋𝑖𝑡 to be correlated with the 𝜀𝑖𝑡. To allow correlation 

between 𝑋𝑖𝑡 and 𝜀𝑖𝑡 , we assume there exists a 1 × 𝐿  vector of instruments (𝐿 ≥ 𝐾), 𝑍𝑖𝑡  which 

avoid correlation. 

Now  assume model with one endogenous explanatory variable 𝑋𝐾 , 𝑌𝑖𝑡 = 𝑋𝑖𝑡𝛽 + 𝜀𝑖𝑡 . Assume   

𝐸(𝜀𝑖𝑡) = 0,  𝐶𝑜𝑣 (𝑥𝑘 , 𝜀𝑖𝑡) = 0 , 𝑘 = 1, 2 … , 𝑘 − 1  and  𝐶𝑜𝑣 (𝑥𝑘  , 𝜀𝑖𝑡) ≠ 0,for K. where 

 𝑥1 ,𝑥2 ,… , 𝑥𝐾−1  are exogenous and 𝑋𝐾 is endogenous since  𝐶𝑜𝑣 (𝑥𝑘  , 𝜀𝑖𝑡) ≠ 0.  To fix the 

problem , consider 𝑧1   as replacer of an endogenous explanatory 𝑋𝐾  satisfies that    

𝐶𝑜𝑣 (𝑧1 , 𝜀𝑖𝑡) = 0          and      𝜃1 = 
𝜕 𝐿 (𝑋𝐾 |1, 𝑥1 ,𝑥2 ,…,𝑥𝐾−1  ,𝑧1  )

𝜕 𝑧1 
  ≠ 0.  

Thus,  𝑍 = (1,  𝑥1 , 𝑥2 , … , 𝑥𝐾−1  , 𝑧1 ) . Then, endogenous variable 𝑋𝐾 can be written as 

𝑥𝐾 = 𝛿0 + 𝛿1𝑥1 + … +  𝛿𝐾−1𝑥𝐾−1 + 𝜃1𝑧1 + 𝑟𝐾  , 𝜃1 ≠ 0                                                   (3.10) 

where ,  by definition   𝐸(𝑟𝐾 ) = 0  and   𝐶𝑜𝑣 (𝑟𝐾  ;   𝑥1 , 𝑥2 , … , 𝑥𝐾−1  , 𝑧1 ) = 0 

By substituting  estimated 𝑥𝐾   in the regression model we can estimate the model by usual OLS. 

Then, the model with IV for an explanatory 𝑋𝐾  becomes 
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𝑦 = 𝛼0 + 𝛼1𝑥1 + … +  𝛼𝐾−1𝑥𝐾−1 + 𝛾1 𝑧1 + 𝑣                                                                     (3.11) 

where  𝑣 = 𝜀 + 𝛽𝐾 𝑟𝐾   ,   𝛼𝐾 = 𝛽𝐾 + 𝛽𝐾 𝛿𝐾   and 𝛾1 = 𝛽𝐾 𝜃1 

For each 𝑖 and  , define  �̈�𝑖𝑡 = 𝑍𝑖𝑡 − �̅�𝑖  , �̅�𝑖 = 𝑇−1 ∑ 𝑍𝑖𝑡
𝑇
𝑡=1  and  similarly for  �̈�𝑖𝑡  ,�̈�𝑖𝑡  , �̈�𝑖𝑡  . 

Define also  �̈� =  (�̈�𝑖1 , �̈�𝑖2 ,… , �̈�𝑖𝑇)   ,    �̈� =  (�̈�𝑖1 , �̈�𝑖2 ,… , �̈�𝑖𝑇)   , �̈� =  (�̈�𝑖1 , �̈�𝑖2 ,… , �̈�𝑖𝑇)   , and  

�̈� =  (�̈�𝑖1 , �̈�𝑖2  ,… , �̈�𝑖𝑇) .Then, the  transformed model becomes  �̈� = �̈�𝛽 + �̈�.  

Suppose that  𝑍 has the same number of variables as, i.e. 𝐿 = 𝐾 . We assume that the rank of 

𝑍′𝑋 is K, so now 𝑍′𝑋 is square matrix.  To obtain instrumental variable estimator  multiply the 

transformed model by �̈� ′ 

�̈� ′�̈� = �̈�′�̈�𝛽 + �̈� ′�̈� 

Taking expectation  

𝐸 (�̈�′�̈�) = 𝐸 (�̈� ′�̈�)𝛽 + 𝐸 (�̈� ′�̈�) 

                                Then , 𝛽 =  𝐸 (�̈� ′�̈�)
−1

 𝐸 (�̈� ′�̈�)  in  population 

The expectations 𝐸 (�̈� ′�̈�) and 𝐸 (�̈�′�̈�) can be consistently estimated using a random sample on 

(𝑥𝑖𝑡 ,𝑦𝑖𝑡  ,𝑍𝑖𝑡), and so we can  identify the vector 𝛽. Given random sample  {(𝑥𝑖 ,𝑦𝑖  ,𝑍𝑖1) ∶ 𝑖 =

1,2, … , 𝑁}  from the population, then the  instrumental variable  estimator  of  𝛽 is given by; 

                                    𝛽𝐼𝑉 = (�̈�′�̈�)
−1

�̈� ′�̈� 

                                           = (
1

N
 ∑ �̈�𝑖�̈�𝑖

′N
i=1 ) 

1

N
∑ Z̈i

′�̈�𝑖
N
i=1  

                                           = (
1

N
 ∑ ∑ �̈�𝑖𝑡�̈�𝑖𝑡

′T
t=1

N
i=1 ) 

1

N
∑ ∑ Z̈it

′ �̈�𝑖𝑡
T
t=1

N
i=1  

However, the best way to get consistent estimate is to use all available instruments. If we have a 

single endogenous explanatory variable, but have more than one potential instrument and  each 

of which would have a significant coefficient (3.9). Let  𝑧1 , 𝑧1 , … , 𝑧𝑀  be instrumental variables 

such that  𝐶𝑜𝑣 (𝑍ℎ  , 𝜀𝑖𝑡) = 0 ,ℎ = 1, 2, … ,𝑀 , so that each  𝑍ℎ is exogenous in (3.4), and assume 

(𝜀𝑖𝑡) = 0 , 𝐶𝑜𝑣 (𝑥𝑘  , 𝜀𝑖𝑡) = 0 ,𝑘 = 1,… , 𝑘 − 1 ,𝐶𝑜𝑣 (𝑥𝑘  , 𝜀𝑖𝑡) ≠ 0 ,𝑓𝑜𝑟  𝐾 and  

𝐶𝑜𝑣 (𝑍ℎ  , 𝜀𝑖𝑡) = 0 , ℎ = 1,2, … ,𝑀. 

Now, we assume that 𝑍ℎ has more  number of variables  than  𝑥𝐾  , i.e. 𝐿 > 𝐾 .  Define the vector 

of exogenous variables again by  𝑍 = (1,𝑥1 , 𝑥2 …, 𝑥𝐾−1  , 𝑧1 , 𝑧1 , … , 𝑧𝑀 ) ,   
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a 1 × 𝐿 vector (𝐿 = 𝐾 + 𝑀). The method of IV or 2SLS considers  𝑧1, 𝑧2,… , 𝑧𝑀 as of replacer of 

an endogenous explanatory 𝑋𝐾  satisfies that     𝐶𝑜𝑣 (𝜀𝑖𝑡  ;  𝑧1, 𝑧2,… , 𝑧𝑀) = 0          and   

𝜃1 =  
𝜕 𝐿 (𝑋𝐾|1,  𝑥1 , 𝑥2 , … , 𝑥𝐾−1  , 𝑧1, 𝑧2, … , 𝑧𝑀  )

𝜕 𝑧1 

  ≠ 0 

                                   ⋮                                               ⋮                                            ⋮     

𝜃𝑀 =  
𝜕 𝐿 (𝑋𝐾|1,  𝑥1 , 𝑥2 , … , 𝑥𝐾−1  , 𝑧1, 𝑧2, … , 𝑧𝑀  )

𝜕 𝑧𝑀 

  ≠ 0 

The linear projection of 𝑥𝐾  on 𝑍  can be written as  

𝑥𝐾 = 𝛿0 + 𝛿1𝑥1 + … +  𝛿𝐾−1𝑥𝐾−1 + 𝜃1𝑧1 + … + 𝜃𝑀 𝑧𝑀 + 𝑟𝐾                                           (3.12) 

where ,  by definition   𝐸(𝑟𝐾 ) = 0  and   𝐶𝑜𝑣 (𝑟𝐾  ;   𝑥1 , 𝑥2 , … , 𝑥𝐾−1  , 𝑧1 , 𝑧1 , … ,𝑧𝑀 ) = 0  

Then , it can be simply fitted by  OLS 

                       �̂�𝐾 = 𝛿0 + 𝛿1𝑥1 + … +  𝛿𝐾−1𝑥𝐾−1 + 𝜃1𝑧1 + … + 𝜃𝑀𝑧𝑀                               

So, we denote 𝑋 = ( 𝑥1 , 𝑥2 , … , 𝑥𝐾−1 , �̂�𝐾  ). The two-stage estimation under  instrumental 

variables to an endogenous variable 𝑥𝐾  referencing as  

                                               𝑌 = 𝑋𝛽 + 𝜀                                                                               (3.13) 

𝑥𝐾 = 𝛿0 + 𝛿1𝑥1 + … +  𝛿𝐾−1𝑥𝐾−1 + 𝜃1𝑧1 + … + 𝜃𝑀𝑧𝑀 + 𝑟𝐾  

Multiplying  equation (3.11) by  𝑋′ 

𝑋 ′𝑌 = (𝑋′𝑋)𝛽 + 𝑋′𝜀 

Again multiplying by  (𝑋 ′𝑋)
−1

 

(𝑋 ′𝑋)
−1

(𝑋′𝑌) = (𝑋′𝑋)
−1

(𝑋 ′𝑋)𝛽 + (𝑋 ′𝑋)
−1

𝑋 ′𝜀 

Taking expectation 

𝐸 [(𝑋 ′𝑋)
−1

(𝑋 ′𝑌)] = 𝐸 [(𝑋′𝑋)
−1

(𝑋 ′𝑋)]𝛽 + 𝐸 [(𝑋 ′𝑋)
−1

𝑋′𝜀] 

Estimation of 𝛽 as in population 

𝛽 = 𝐸 [(𝑋 ′𝑋)
−1

(𝑋 ′𝑌)] 

Estimation of 𝛽 as in sample 

𝛽 = (𝑋 ′𝑋)
−1

(𝑋′𝑌) 

There are  two -stage regression for estimation of  𝛽 
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First-stage regression - Obtain fitted values of  �̂�𝐾 from the regression 𝑥𝐾   

𝑥𝐾 = 𝛿0 + 𝛿1𝑥1 + … +  𝛿𝐾−1𝑥𝐾−1 + 𝜃1𝑧1 + … + 𝜃𝑀 𝑧𝑀 + 𝑟𝐾 . Then, we denote 

�̂�𝐾 = (𝑥𝐾 |1, 𝑥1 , 𝑥2 …, 𝑥𝐾−1  , 𝑧1 , 𝑧1 , … , 𝑧𝑀 ) 

Second stage regression- Run the OLS regression  𝑦  on  (1,𝑥1 , 𝑥2 … , 𝑥𝐾−1  , �̂�𝐾) 

                   𝑦 = 𝛽0 + 𝛽1𝑋1 + … + 𝛽𝑘−1𝑋𝑘−1 + 𝛽𝐾�̂�𝐾  + 𝜀                                               (3.14) 

It is 𝑥𝐾 with 𝐶𝑜𝑣 (𝜀𝑖𝑡  ,𝑥𝐾  ) ≠ 0  that leads  the estimators of  𝛽 to be inconsistent. But , we can 

use 𝑍ℎ , ℎ = 1, 2,… ,𝑀  as a candidates for  𝑥𝐾  (only one endogenous explanatory variable). 

Let  𝑋𝐾 = 𝑍𝜋𝐾 + 𝑟𝐾  ,   and 𝑋 = 𝑍Π + 𝑟𝐾   ,    where   Π = (𝜋1 , 𝜋2 , … , 𝜋𝐾 )  

Multiplying by  𝑍′ and taking expectation 

𝐸 (𝑍′𝑋) = 𝐸 (𝑍′𝑍)Π + 𝐸 (𝑍′𝑟𝐾 ) 

Then, Π = (𝐸 (𝑍′𝑍))
−1

 𝐸 (𝑍′𝑋) 

Next , 𝑋∗ = 𝐸 (𝑥|𝑧) = 𝑍Π  ,   

Multiplying (3.11) by 𝑋∗  and taking expectation 

𝐸 (𝑋∗𝑦) =  𝐸 (𝑋∗𝑋)𝛽 + 𝐸 ( 𝑋∗𝜀) 

solving for  𝛽  gives  

                                   𝛽 = [𝐸 (𝑋∗𝑋)]−1  𝐸 (𝑋∗𝑦)                                                                  (3.15) 

       But,  𝐸 (𝑋∗𝑋) = 𝐸 ((𝑍Π)′ 𝑋) ,   since 𝑋∗ = 𝑍Π 

                              =  𝐸 (𝑋′𝑍) (𝐸 (𝑍′𝑍))
−1

 𝐸 (𝑍′ 𝑋) 

              𝐸 (𝑋∗𝑦) = 𝐸 ((𝑍Π)′ 𝑦)                      

                            = 𝐸 (𝑋′𝑍) (𝐸 (𝑍′𝑍))
−1

 𝐸 (𝑍′ 𝑦)  

Therefore ,  substituting in (3.15) yields 

𝛽2𝑆𝐿𝑆 = [𝐸 (𝑋′𝑍) (𝐸 (𝑍′𝑍))
−1

 𝐸 (𝑍′ 𝑋)]
−1

  𝐸 (𝑋′𝑍) (𝐸 (𝑍′𝑍))
−1

 𝐸 (𝑍′ 𝑦)  

This is  estimation of  𝛽 in population   

Estimation of  𝛽 as in sample  is    

             𝛽2𝑆𝐿𝑆 = [ 𝑋′𝑍 (𝑍′𝑍)−1 𝑍′ 𝑋]−1   𝑋′𝑍 (𝑍′𝑍)−1 𝑍′ 𝑦 
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= [(
1

𝑁
∑∑𝑋𝑖𝑡

′ 𝑍𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)(
1

𝑁
∑ ∑ 𝑍𝑖𝑡

′ 𝑍𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)

−1

  (
1

𝑁
∑ ∑ 𝑍𝑖𝑡

′ 𝑋𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)]

−1

 

 (
1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ 𝑍𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)(
1

𝑁
∑ ∑𝑍𝑖𝑡

′ 𝑍𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)

−1

  (
1

𝑁
∑∑𝑍𝑖𝑡

′ 𝑦𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

) 

Expressing estimator 𝛽2𝑆𝐿𝑆   in terms of  transformed  model :       

             𝛽2𝑆𝐿𝑆  =  [ �̈�′�̈� (�̈�′�̈�)
−1

 �̈�′ �̈�]
−1

  �̈� ′�̈� (�̈�′�̈�)
−1

 �̈�′ �̈� 

= [(
1

𝑁
∑∑�̈�𝑖𝑡

′ �̈�𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)(
1

𝑁
∑ ∑ �̈�𝑖𝑡

′ �̈�𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)

−1

  (
1

𝑁
∑ ∑ �̈�𝑖𝑡

′ �̈�𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)]

−1

 

 (
1

𝑁
∑ ∑ �̈�𝑖𝑡

′ �̈�𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)(
1

𝑁
∑ ∑�̈�𝑖𝑡

′ �̈�𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)

−1

  (
1

𝑁
∑∑�̈�𝑖𝑡

′ �̈�𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

) 

This  is called fixed 2SLS  estimator. 

3.6.1.3  Asymptotic Variance of  Fixed Effect -2SLS Estimator 

Recall the definition of  the 2SLS -estimator  of  transformed model 

𝛽2𝑆𝐿𝑆  =  [ �̈�′�̈� (�̈� ′�̈�)
−1

 �̈� ′ �̈�]
−1

  �̈� ′�̈� (�̈� ′�̈�)
−1

 �̈�′ �̈� 

                                                =  [ �̈� ′�̈� (�̈�′�̈�)
−1

 �̈�′ �̈�]
−1

  �̈�′�̈� (�̈� ′�̈�)
−1

 �̈� ′ �̈� 

                              𝛽2𝑆𝐿𝑆 − 𝛽 =  [ �̈�′�̈� (�̈� ′�̈�)
−1

 �̈�′ �̈�]
−1

  �̈� ′�̈� (�̈�′�̈�)
−1

 �̈�′ �̈� 

Therefore , the variance of 2SLS -estimator is defined by 

Avar (�̂�2𝑆𝐿𝑆)  =  𝐸 { (𝛽2𝑆𝐿𝑆 − 𝛽)(𝛽2𝑆𝐿𝑆 − 𝛽)
′
 } 

           = 𝐸 { [ �̈�′�̈� (�̈� ′�̈�)
−1

 �̈�′ �̈�]
−1

�̈� ′�̈� (�̈�′�̈�)
−1

 �̈�′ �̈� �̈� ′�̈� (�̈�′�̈�)
−1

 �̈�′ �̈� [ �̈�′�̈� (�̈� ′�̈�)
−1

 �̈�′ �̈�]
−1

 } 

           = [ �̈�′�̈� (�̈� ′�̈�)
−1

 �̈�′ �̈�]
−1

  �̈� ′�̈� (�̈�′�̈�)
−1

 �̈�′ 𝐸(�̈� �̈� ′ ) �̈� (�̈�′�̈�)
−1

�̈� ′ �̈�  [�̈� ′�̈� (�̈�′�̈�)
−1

 �̈�′ �̈�]
−1

                    

Under Homoskedasticity (constant variance of error term), 𝐸(�̈� �̈�′ ) = 𝜎2 ,then  
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        Avar (�̂�2𝑆𝐿𝑆) = 𝜎2 [ �̈�′�̈� (�̈� ′�̈�)
−1

 �̈� ′ �̈�]
−1

  �̈� ′�̈� (�̈� ′�̈�)
−1

 �̈� ′ �̈� (�̈� ′�̈�)
−1

�̈� ′ �̈�  

                                       [�̈� ′�̈� (�̈�′�̈�)
−1

 �̈�′ �̈�]
−1

 

                              = 𝜎2[ �̈�′𝑃𝑧  �̈�]
−1

  �̈�′𝑃𝑧𝑃𝑧  �̈� [ �̈�′𝑃𝑧  �̈�]
−1

   

                                      where  𝑃𝑧 = �̈� (�̈�′�̈�)
−1

 �̈�′  is projection matrix  

                                   = 𝜎2[ �̈�′𝑃𝑧  �̈�]
−1

  ,𝑠𝑖𝑛𝑐𝑒   𝑃𝑧 = 𝑃𝑧
′ 𝑎𝑛𝑑 𝑃𝑧

2 = 𝑃𝑧    

                                  = 𝜎2 [ �̈�′�̈� (�̈� ′�̈�)
−1

 �̈� ′�̈�]
−1

  

When  𝐸(𝜀 𝜀 ′) = 𝜎2, then covariance matrix has the same form as OLS, but in terms of predicted 

values: 

Avar ( �̂�2𝑆𝐿𝑆) = 𝜎  2 [�̈̂�′�̈� ̂ ]
−1

 

Recall  𝑋 ̂ = 𝑍(𝑍′𝑍)−1𝑍′𝑋    implies  �̈� ̂ = �̈� (�̈� ′�̈�)
−1

 �̈� ′�̈� (OLS formula applied to the first 

stage ) , thus   

�̈̂� ′�̈� ̂ = �̈� ′�̈� (�̈�′�̈�)
−1

 �̈�′�̈� (�̈� ′�̈�)
−1

 �̈� ′�̈� 

Hence , 

 Avar ( �̂�2𝑆𝐿𝑆) = 𝜎2 [ �̈�′�̈� (�̈� ′�̈�)
−1

 �̈� ′�̈�]
−1

 

= 𝜎2 [(
1

𝑁
∑ ∑�̈�𝑖𝑡

′ �̈�𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)(
1

𝑁
∑∑ �̈�𝑖𝑡

′ �̈�𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)

−1

  (
1

𝑁
∑ ∑ �̈�𝑖𝑡

′ �̈�𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)]

−1

 

where 𝜎2  can be consistently estimated by  

 𝜎  2 = (𝑁𝑇 − 𝐾)−1 �̈̂�′ �̈̂�     

                      = (𝑁𝑇 − 𝐾)−1(�̈� − Ẍ𝛽2𝑆𝐿𝑆)
′
(�̈� − Ẍ𝛽2𝑆𝐿𝑆) 
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Proof 

We have    𝜎  2 = (𝑁𝑇 − 𝐾)−1(�̈� − Ẍ𝛽2𝑆𝐿𝑆)
′
(�̈� − Ẍ𝛽2𝑆𝐿𝑆) 

                        = (𝑁𝑇 − 𝐾)−1(�̈� + �̈� [𝛽 − 𝛽2𝑆𝐿𝑆 ])
′
(�̈� + �̈� [𝛽 − 𝛽2𝑆𝐿𝑆 ]) 

                       = (𝑁𝑇 − 𝐾)−1 𝜀′𝜀 + 2[𝛽 − 𝛽2𝑆𝐿𝑆 ]
′
(𝑁𝑇− 𝐾)−1 �̈� ′�̈� 

                          +[𝛽 − 𝛽2𝑆𝐿𝑆 ]
′
(𝑁𝑇− 𝐾)−1 �̈�′�̈�[𝛽 − 𝛽2𝑆𝐿𝑆] 

Therefore, 

𝑃𝑙𝑖𝑚 𝜎  2 = 𝑃𝑙𝑖𝑚 (𝑁𝑇− 𝐾)−1 𝜀′𝜀 + (2)(0)𝐸((𝑁𝑇 − 𝐾)−1 �̈�𝑖�̈�𝑖) + 0 .𝐸(�̈�𝑖
′�̈�𝑖).0  

               = 𝐸(�̈�𝑖
2) = 𝐸(�̈�𝑖

2 |�̈�𝑖) = 𝜎2                 

The �̈̂�  = �̈� − �̈�𝛽2𝑆𝐿𝑆  which is the  𝑁𝑇 × 1  column vector of estimated residuals. Notice that 

these residuals are not the residuals from the second stage  OLS  regression of dependent �̈� on 

the predicted variables �̈�. 

Therefore , the estimated  asymptotic variance of  2SLS  estimator is 

Av̂ar  (�̂�2𝑆𝐿𝑆) = 𝜎  2 [ �̈�′�̈� (�̈�′�̈�)
−1

 �̈�′�̈�]
−1

 

= [(
1

𝑁
∑∑�̈�𝑖𝑡

′ �̈�𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)(
1

𝑁
∑ ∑ �̈�𝑖𝑡

′ �̈�𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)

−1

  (
1

𝑁
∑ ∑ �̈�𝑖𝑡

′ �̈�𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)]

−1

 

3.6.2  Random Effect Estimation 

The random effects model specifies  𝛼𝑖  is a group-specific random element and treats as part of 

the error term , similar to 𝜀𝑖 except that for each group, there is but a single draw that enters the 

regression identically in each period. Again, the crucial distinction between fixed and random 

effects is whether the unobserved individual effect embodies elements that are correlated with 

the regressors in the model, not whether these effects are stochastic .Thus, the method assumes 

E( i |𝑋𝑖𝑡) =  E( i )  =  0 . As long as 𝐸(𝑋𝑖𝑡𝑣𝑖𝑡) = 0, that is 𝑋𝑖𝑡  are uncorrelated with 𝛼𝑖 and 𝜀𝑖𝑡 

,  the estimates are consistent. 
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If the individual effects are strictly uncorrelated with the regressors, then it might be appropriate 

to model the individual specific constant terms as randomly distributed across cross-sectional 

units. This view would be appropriate if we believed that sampled cross-sectional units were 

drawn from a large population. Thus we write the random effects model as 

            𝑦𝑖𝑡  =  𝑋𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡        𝑖 = 1,2, … … 𝑁 ;  𝑡 = 1,2, … …. 𝑇                                              (3.16) 

where  𝑣𝑖𝑡 = 𝛼𝑖 + 𝜀𝑖𝑡   is treated as an error term consisting of two components: an individual 

specific component (𝛼𝑖), which does not vary over time, and a remainder component (𝜀𝑖𝑡), which 

is assumed to be uncorrelated over time. That is, all correlation of the error terms over time is 

attributed to the individual effects 𝛼𝑖. It is assumed that 𝛼𝑖 and 𝜀𝑖𝑡 are mutually independent and 

independent of 𝑋𝑗𝑠 (for all j and s). 

In modern econometric parlance, random effect is synonymous with zero correlation between the 

observed explanatory variables and the unobserved effect: 𝑐𝑜𝑣(𝑋𝑖𝑡  ,𝛼𝑖) = 0 , 𝑡 = 1, … , 𝑇. 

Actually, a stronger conditional mean independence assumption, 𝐸(𝛼𝑖|𝑋𝑖1 ,… , 𝑋𝑖𝑇) = 0 will be 

needed to fully justify statistical inference. In applied papers, when 𝛼𝑖 is referred to as, say, an 

individual random effect,  then 𝛼𝑖 is probably being assumed to be uncorrelated with 𝑋𝑖𝑡 . 

The random specification of unobserved effects corresponds to a particular case of variance-

component or error-component model, in which the residual is assumed to consist of two 

components : 𝑣𝑖𝑡 = 𝛼𝑖 + 𝜀𝑖𝑡. 

As suggested by Wooldridge (2001), the fixed effect  specification can be viewed as a case in 

which 𝛼𝑖 is a random parameter with 𝑐𝑜𝑣(𝛼𝑖 , 𝑋𝑖𝑡
′ ) ≠ 0, whereas the random effect model  

correspond to the situation in which 𝑐𝑜𝑣(𝛼𝑖 , 𝑋𝑖𝑡
′ ) = 0. The variance of  𝑦𝑖𝑡  conditional on  𝑋𝑖𝑡  is 

the sum of  two components: 

  𝑣𝑎𝑟 (𝑦𝑖𝑡) =  𝜎𝛼
2 + 𝜎𝜀

2 

Under assumptions of random effect model , the variance-covariance matrix of  𝜀𝑖 is equal to: 

                                𝑣𝑎𝑟 (𝑣𝑖𝑡) = 𝐸(𝑣𝑖𝑡  𝑣𝑖𝑡
′ )                  

                                                 = 𝐸[(𝛼𝑖 + 𝜀𝑖𝑡)(𝛼𝑖 + 𝜀𝑖𝑡)
′] 

                                                  = 𝜎𝜀
2𝐼𝑇  + 𝜎𝛼

2 𝑖𝑇  𝑖𝑇
′  
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                                                   =

[
 
 
 

𝜎𝛼
2 + 𝜎𝜀

2            𝜎𝛼
2    … .      𝜎𝛼

2

       𝜎𝛼
2        𝜎𝛼

2 + 𝜎𝜀
2   …    𝜎𝛼

2 
       ⋮                     ⋮       ⋱        ⋮  

          𝜎𝛼
2                 𝜎𝛼

2  ⋯  𝜎𝛼
2 + 𝜎𝜀

2]
 
 
 

 

                                                   = Ω                                                                                       (3.17)     

where  𝑖𝑇  is a 𝑇 × 1 column vector of ones. when  Ω  has the above form, we say it has random 

effects structure.  

Let  Ω = (𝑣𝑖  𝑣𝑖
′  |𝑋) be the 𝑇 × 𝑇  matrix given in (3.17) , the disturbance covariance matrix for 

the full 𝑁𝑇  observations  then is  

V = 𝐼𝑇  ⨂  Ω = 𝐸[𝑣𝑖  𝑣𝑖
′] =

[
 
 
 
 
 

Ω          0         … .        0
 

0          Ω         … .        0
     ⋮            ⋮           ⋱          ⋮     

0          0         … .        Ω
            ]

 
 
 
 
 

 

where  ⨂  is Kronecker product. 

A random effect model is estimated by GLS when the variance structure is known. Compared to 

fixed effect models, random effect models are relatively difficult to estimate. 

3.6.2.1 Generalized Least Square Estimation 

It is well known that the omission of an explanatory variable(s) or use of an incorrect functional 

form in a regression that otherwise satisfies the full ideal conditions, can lead to the erroneous 

conclusion that autocorrelation or heteroscedasticity is present among the disturbances. Thus, 

variance of error term is not constant. Heteroscedasticity is the case where 𝐸(𝑣𝑖𝑡  𝑣𝑖𝑡
′ ) = Ω =

𝜎2 Σ   is a diagonal matrix, so that the errors are uncorrelated, but have different variances. 

The common practice, however, is to use GLS and it  achieves efficiency by transforming a 

heteroscedasticity variance covariance matrix into a homoscedastic one. In the systems of 

equation case this is done by premultiplying the system of equations by Ω−1.The basic idea 

behind GLS is to transform the observation matrix [𝑦 𝑋] so that the variance in the transformed 

model is 𝐼𝑛  (or 𝜎2𝐼𝑛 ). 

If  E( i |𝑋𝑖𝑡)  =  E( i )  =  0 , random effect model  can be estimated via GLS which transforms 

the data such that the error terms in the transformed model are uncorrelated across all 𝑁  
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individuals and all time periods 𝑇. This GLS achieves efficiency relative OLS. When 𝛼𝑖 is a 

random variables then OLS estimator is generally inefficient relative to GLS estimator. Because 

every 𝑦𝑖𝑡 for  𝑡 = 1,2, … , 𝑇 contains the same 𝛼𝑖, there will be covariance among the observation 

for each individual that GLS will exploit. The GLS estimator corresponding to this component 

structure has special structure. This need all of its reweighting within the time series 𝑦𝑖 of an 

individual. 

Therefore , to derive GLS we need to focus only on T-dimensional relationship, 

                                              𝑦𝑖 = 𝑋𝑖𝛽 + 𝑖𝑇𝛼𝑖 + 𝜀𝑖                                                                 (3.18) 

setting  𝑣𝑖 = 𝑖𝑇𝛼𝑖 + 𝜀𝑖  , model becomes  𝑦𝑖 = 𝑋𝑖𝛽 + 𝑣𝑖 . 

Furthermore , the conditional variance of 𝑦𝑖 given 𝑋𝑖 depends on an orthogonal projector , 𝛼𝑖. 

Define 𝑖𝑇
′ 𝑖𝑇 = 𝑇 , we can write   variance of  random effect  structure , Ω  as  

                           Ω = 𝑉𝑎𝑟 (𝛼𝑖 + 𝜀𝑖) 

                               = 𝑉𝑎𝑟 (𝑖𝑇𝛼𝑖 + 𝜀𝑖) 

                              = 𝜎𝛼
2 𝑖𝑇  𝑖𝑇

′  +  𝜎𝜀
2𝐼𝑇    

                              = 𝑇𝜎𝛼
2 𝑖𝑇  (𝑖𝑇

′ 𝑖𝑇)−1𝑖𝑇
′  +  𝜎𝜀

2𝐼𝑇 

                Let  𝑃𝑇 = 𝑖𝑇 (𝑖𝑇
′ 𝑖𝑇)−1𝑖𝑇

′ = 𝐼𝑇 − 𝑄𝑇   then , 

                                 Ω = 𝑇𝜎𝛼
2𝑃𝑖𝑇

  +  𝜎𝜀
2𝐼𝑇 

                                     = 𝑇𝜎𝛼
2(𝐼𝑇 − 𝑄𝑇)  +  𝜎𝜀

2𝐼𝑇 , 

                                    = 𝑇𝜎𝛼
2(𝐼𝑇 − 𝑄𝑇)  +  𝜎𝜀

2𝐼𝑇  + 𝜎𝜀
2𝑃𝑇 − 𝜎𝜀

2𝑃𝑇 

                                     = 𝑇𝜎𝛼
2𝑃𝑇 + 𝜎𝜀

2𝑃𝑇   +  𝜎𝜀
2𝐼𝑇  − 𝜎𝜀

2𝑃𝑇 

                                     = ( 𝑇𝜎𝛼
2 + 𝜎𝜀

2 ) 𝑃𝑇   + 𝜎𝜀
2 (𝐼𝑇  − 𝑃𝑇) 

                                    = ( 𝑇𝜎𝛼
2 + 𝜎𝜀

2 ) 𝑃𝑇   + 𝜎𝜀
2 𝑄𝑇 

Dividing all  by  𝑇𝜎𝛼
2 + 𝜎𝜀

2  gives, 
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Ω = ( 𝑇𝜎𝛼
2 + 𝜎𝜀

2 ) ( 𝑃𝑇 + 𝜃 𝑄𝑇) 

                                              where  𝜃 =
𝜎𝜀

2

𝑇𝜎𝛼
2+𝜎𝜀

2 

For application of GLS estimator , one needs to know the inverse of  Ω−1 which van be written 

as 

Ω−1 = 𝜎𝜀
−2 [𝐼𝑇 −

𝜎𝜀
2

𝑇𝜎𝛼
2 + 𝜎𝜀

2
𝑖𝑇𝑖𝑇

′  ] 

= 𝜎𝜀
−2 [𝐼𝑇 −

 𝑇𝜎𝜀
2

𝑇𝜎𝛼
2 + 𝜎𝜀

2
  
1

𝑇
𝑖𝑇𝑖𝑇

′  ] 

which can also be written as  

Ω−1 = 𝜎𝜀
−2 [ (𝐼𝑇 −

1

𝑇
𝑖𝑇𝑖𝑇

′ )+ 𝜃 
1

𝑇
𝑖𝑇𝑖𝑇

′  ] 

                                                    = 𝜎𝜀
−2 [ 𝑃𝑇 + 𝜃 

1

𝑇
𝑖𝑇𝑖𝑇

′  ] 

Note that  𝑃𝑇 = 𝐼𝑇 − 𝑄𝑇 = 𝐼𝑇 −
1

𝑇
𝑖𝑇𝑖𝑇

′   used to transform the data in deviation from individual 

means and  
1

𝑇
𝑖𝑇𝑖𝑇

′   takes individual means. 

Suppose  that instead of  𝑉 (𝑣𝑖) = 𝜎2𝐼𝑁𝑇  , we may  have 𝑉𝑎𝑟 (𝑣𝑖) = Ω = 𝜎2Σ , where the matrix 

Σ contains  terms for heterogeneity which is known, symmetric and  positive definite but 𝜎2 is 

unknown. 

Assume Ω has the eigenvalues  𝜆1,𝜆2 ,… , 𝜆𝑇  , by Cholesky’s decomposition , we can write as   

Ω = 𝑆Λ𝑆 ′ 

where Λ is a diagonal  matrix with the diagonal elements (𝜆1,𝜆2 ,… , 𝜆𝑇) and 𝑆 is an orthogonal 

matrix. Columns of  S are the characteristic vectors of  Ω  and the characteristic roots of  Ω are 

arrayed in the diagonal matrix Λ .Thus,  

Ω−1 = 𝑆−1Λ−1𝑆 ′ −1 = 𝑆−1Λ−1/2 Λ−1/2𝑆 ′ −1 = 𝑃𝑃 ′ 
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where 𝑃 = 𝑆−1Λ−1/2 and Λ−1/2 is a diagonal matrix with the diagonal elements  

(√𝜆1,√𝜆2), … , √𝜆𝑇. Then its straight forward to prove that  𝑃𝑃 ′Ω = 𝐼𝑇 , so  𝑃 ′(𝑃Ω 𝑃′) = 𝑃 ′.  

Our interest is to make error terms to be i.i.d  which leads to have constant variance.  𝑃𝑦 , 𝑃𝑋  

and 𝑃𝑣  has typical element (𝑦𝑖𝑡 − 𝜆�̅�𝑖), (𝑋𝑖𝑡 − 𝜆𝑋𝑖) an (𝜀𝑖𝑡 − 𝜆𝜀�̅�) respectively,  where  𝜆 =

1 − √
𝜎𝜀

2

𝑇𝜎𝛼
2+𝜎𝜀

2  = 1 − √𝜃. The term 𝜆 gives a measure of the relative sizes of the within and 

between unit variances.  

If  λ=1 when  𝜃 = 0   (T is large; important variation in 𝛼𝑖), we have FE = RE. If  λ=0 when 

𝜃 = 1 (𝜎𝛼
2 = 0)  (small T, very little if any heterogeneity, 𝑉𝑎𝑟 (𝛼𝑖) we have pooled OLS. This 

implies there is no covariance among observations. Then,  𝛽𝐺𝐿𝑆  
𝑃
→  𝛽𝑃𝑜𝑜𝑙𝑒𝑑 . Parameter 𝜃 can 

take any value between one and zero, i.e.  0 ≤ 𝜃 ≤ 1.Thus, we can transform  (3.18) as  

                           (𝑦𝑖𝑡 − 𝜆�̅�𝑖) = (𝑋𝑖𝑡 − 𝜆𝑋𝑖)𝛽 + (𝑣𝑖𝑡 − 𝜆�̅�𝑖)                                                (3.19)       

This equation involves quasi-demeaned data.  To simplify the model, 

we let 𝑦𝑖
∗ = 𝑃 ′𝑦𝑖 = (𝑦𝑖𝑡 − 𝜆�̅�𝑖)  , 𝑋𝑖

∗ = 𝑃 ′𝑋𝑖 = (𝑋𝑖𝑡 − 𝜆𝑋𝑖) ,  𝑣𝑖
∗ = 𝑃 ′𝑣𝑖 = (𝑣𝑖𝑡 − 𝜆�̅�𝑖) 

Then , the transformed model can be written as 

                                            𝑦𝑖
∗ = 𝑋𝑖

∗𝛽 + 𝑣𝑖
∗    (3.20) 

𝑣𝑖
∗  =  𝑣𝑖𝑡

∗  =  (𝑣𝑖𝑡 − 𝜆�̅�𝑖)  =  (1 − 𝜆)𝛼𝑖  + (𝜀𝑖𝑡 − 𝜆𝜀�̅�) 

𝐸 (𝑣𝑖𝑡
∗ ) = 0  , 𝑉𝑎𝑟 (𝑣𝑖𝑡

∗ ) = 𝜎𝜀
2 = 𝐼𝑇   , 𝐸 (𝑋𝑖𝑡

∗ 𝑣𝑖𝑡
∗ ) = 0   

𝐶𝑜𝑣 (𝑣𝑖𝑡
∗ ,𝑣𝑖𝑠

∗ ) =  𝐶𝑜𝑣 (𝑣𝑖𝑡
∗ ,𝑣𝑗𝑡

∗ ) = 0   

The transformed model is homoscedastic, i.e. conditional variance, 𝑉𝑎𝑟 (𝑣𝑖
∗) = 𝑉𝑎𝑟 (𝑃′𝑣𝑖) = 𝐼𝑇 . 

Now, we can write  the  transformed model as 

                                                        𝑦𝑖
∗ = 𝑋𝑖

∗𝛽 + 𝑣𝑖
∗ 

𝐸 (𝑣𝑖
∗) = 0  , 𝑉𝑎𝑟 (𝑣𝑖

∗) = 𝐼𝑇   , 𝐸 (𝑋𝑖
∗𝑣𝑖

∗) = 0   

This transformed  model satisfies the classical assumption. Because  Ω  is assumed to be known,  

𝑦𝑖
∗ and  𝑋𝑖

∗ are observed data. To obtain GLS estimator we apply usual OLS  to transformed 

model . Therefore, the  GLS estimator  is given by 
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                                   𝛽𝐺𝐿𝑆 = (𝑋∗′𝑋∗)−1𝑋∗′𝑦∗ 

                                            = ( 𝑋′𝑃𝑃′𝑋 )−1𝑋′𝑃𝑃′𝑦  

                                            = ( 𝑋′Ω𝑋 )−1𝑋′Ω 𝑦  

                                            = (∑ 𝑋𝑖
′𝑁

𝑖=1 Ω−1𝑋𝑖)
−1

 ∑ 𝑋𝑖
′𝑁

𝑖=1 Ω−1𝑦𝑖                                                         

                                            = (∑ ∑ 𝑋𝑖𝑡
′ Ω−1𝑋𝑖𝑡

𝑇
𝑡=1

𝑁
𝑖=1 )

−1
 ∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑦𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1  

is the efficient estimator of  β. This estimator is the GLS or Aitken (1935) estimator of β. 

The  variance of GLS estimator which is conditional on X  can be calculated using  

𝛽𝐺𝐿𝑆  =  (𝑋∗′𝑋∗)−1𝑋∗′𝑦∗ 

                                                                    = (𝑋∗′𝑋∗)−1𝑋∗′( 𝑋𝑖
∗𝛽 + 𝑣𝑖

∗ ) 

                                                                     =  𝛽 + (𝑋∗′𝑋∗)−1𝑋∗′𝑣𝑖
∗ 

                                                      𝛽𝐺𝐿𝑆 − 𝛽 = (𝑋∗′𝑋∗)−1𝑋∗′𝑣𝑖
∗  

Therefore ,  

                                 𝑉𝑎𝑟 (𝛽𝐺𝐿𝑆)  =  𝐸 { (𝛽𝐺𝐿𝑆 − 𝛽)(𝛽𝐺𝐿𝑆 − 𝛽)
′
 } 

                                                      =  𝐸 { (𝑋∗′𝑋∗)−1𝑋∗′𝑣∗ 𝑣∗′𝑋∗(𝑋∗′𝑋∗)−1 } 

                                                      = (𝑋∗′𝑋∗)−1𝑋∗′𝐸 (𝑣∗ 𝑣∗′)𝑋∗(𝑋∗′𝑋∗)−1 

                                                       = (𝑋∗′𝑋∗)−1𝑋∗′𝑋∗(𝑋∗′𝑋∗)−1 

                                                       = (𝑋∗′𝑋∗)−1 

                                                       = (𝑋′𝑃𝑃′𝑋)−1 

                                                        = (𝑋′Ω−1𝑋)
−1

 

                                                        =(∑ 𝑋𝑖
′𝑁

𝑖=1 Ω−1𝑋𝑖)
−1

 

                                                      = (∑ ∑ 𝑋𝑖𝑡
′ Ω−1𝑋𝑖𝑡

𝑇
𝑡=1

𝑁
𝑖=1 )

−1
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All the above result is regarding on the desirable properties of OLS estimator hold when dealing 

with the transformed model. The GLS estimator is more efficient than OLS estimator. This is a 

consequence of the Gauss-Markov theorem, since the GLS estimator is based on a model that 

satisfies the classical assumptions but the OLS estimator is not. 

3.7   Asymptotic Properties of the Estimators 

We investigate consistency and asymptotic normality  of panel data model estimators.  

3.7.1 Consistency 

Consistency  means that when sample size is sufficiently large the  estimator will be likely  to be 

very close  to the actual parameter value. When an estimator converges in probability to the true 

value as the sample size increases, we say that the estimator is asymptotically consistent. That is,                    

𝑃 {lim
𝑛→∞

 (β̂ )}  =  𝛽 

This  means that as the sample size   increases, the distribution of  β̂ degenerates: in the limit, the 

only possible realization of  β̂ is  𝛽. 

3.7.1.1   Consistency of  the  Two Stage  Least Square  

We now study consistency of 2SLS in single-equation model with several endogenous variables 

among explanatory variables. From the model as in (3.4) some elements of X  may be  correlated 

with error term. To study consistency and normality of the fixed-effect two-stage least square 

estimator on balanced panel data model, we make the following assumptions. 

Assumptions 

2SLS.1.  𝐸(𝜀𝑖𝑡|𝑍𝑖𝑡  ,𝛼𝑖) = 0 , 𝑡 = 1, 2, … , 𝑇 

2SLS.2. For some  1 × 𝐿  vector 𝑍𝑖𝑡 , 𝐸 (𝑍𝑖𝑡𝜀𝑖𝑡) = 0 the zero conditional mean assumption  

                (E (𝜀𝑖𝑡|𝑍𝑖𝑡)=0 ) 

2SLS.3.  Rank condition: (𝑎) rank (𝑍𝑖𝑡
′ 𝑍𝑖𝑡) = 𝐿  implies  rank (�̈�𝑖𝑡

′ �̈�𝑖𝑡) = 𝐿   

                                         (𝑏) rank(𝑍𝑖𝑡
′ 𝑋𝑖𝑡) = 𝐾    implies  rank(�̈�𝑖𝑡

′ �̈�𝑖𝑡) = 𝐾  with  𝐿 ≥ 𝐾 

2SLS.4.  𝐸(𝜀𝑖𝑡
2 𝑍𝑖𝑡

′ 𝑍𝑖𝑡) = 𝜎2𝐸(𝑍𝑖𝑡
′ 𝑍𝑖𝑡) , where 𝜎2 = 𝐸(𝜀𝑖𝑡

2 )  (homoskedasticity) 
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Theorem 3.1  (Consistency of 2SLS ) 

Under assumptions 2SLS.3 and 2SLS.4, the 2SLS  estimator obtained from a random sample is 

consistent for  𝛽  as  𝑛 ⟶ ∞. 

Proof of  Theorem 3.1 

Lemma 3.1 (Law of Large Number) 

Let 𝑋1, 𝑋2, … , 𝑋𝑛  be a sequence of  independent and identically distributed random variables 

with common distribution function , each having finite expected value 𝜇 = 𝐸(𝑋𝑗) and 

 𝜎2 = 𝑣𝑎𝑟 (𝑋𝑗).  Let  we define  𝑆𝑛 = 𝑋1 + 𝑋2 + … +  𝑋𝑛 . Then for any real 

number 𝜖 > 0 , we have  

𝑃 (|
𝑆𝑛

𝑛
− 𝜇| ≥ 𝜖) → 0 

as 𝑛 → ∞.  Or  equivalently 

𝑃 (|
𝑆𝑛

𝑛
− 𝜇| < 𝜖) → 1 

as  𝑛 → ∞. 

Lemma 3.2 (Lindeberg-Levy theorem )  

Let  { 𝑤𝑖 ∶ 𝑖 = 1,2, … } be a sequence of independent , identically distributed 𝐺 × 1 random 

vectors such that  𝐸 (𝑤𝑖𝑔
2 ) < ∞ ,𝑔 = 1, 2, … 𝐺, and 𝐸 ( 𝑤𝑖) = 0. Then  { 𝑤𝑖 ∶ 𝑖 = 1, 2, … } 

satisfies the CLT; that is  
1

√𝑁
∑  𝑤𝑖

𝑁
𝑖=1   

P
→   Normal (0,B) where B =  Var ( 𝑤𝑖) = E( 𝑤𝑖 𝑤𝑖

′) is 

necessarily positive semidefinite. For our purposes , B is almost always positive definite. 

Lemma 3.3  (Slutsky's theorem)  

Let  g : ℝ𝐾 ⟶ ℝJ   be a function continuous at some point 𝑐 𝜖 ℝ𝐾 . Let  { 𝑥𝑁 ∶ 𝑁 = 1, 2, … } be 

sequence of   𝐾 × 1 random vectors such that   𝑥𝑁    
P
→  c. Then  g ( 𝑥𝑁)    

P
→  g (c)  as  N ⟶ ∞. 

In other words,  Plim g( 𝑥𝑁) =  g (Plim  𝑥𝑁 )   if  g(. ) is continuous at  Plim  𝑥𝑁. 
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Lemma 3.4 ( Continuous  mapping theorem) 

Let  {𝑋𝑁} be a  sequence of  𝐾 × 1 random vectors such that   𝑋𝑁   
d
→   x. If  g : ℝ𝐾 ⟶ ℝJ is a 

continuous function , then   g( 𝑥𝑁)
d
→  g (𝑥 ).  This lemma  tells us that once we know the 

limiting distribution of  𝑥𝑁, we can find the limiting distribution of many interesting functions of 

 𝑥𝑁. 

Proof of  Theorem 3.1 

We know that  

𝛽 = [𝐸 (𝑋∗𝑋)]−1  𝐸 (𝑋∗𝑦) and  𝑋∗ = 𝐸 (𝑥|𝑧) = 𝑍Π   

The  fixed effect 2SLS  estimator  can be written as  

              𝛽2𝑆𝐿𝑆  =  [ X ′Z (Z′Z)−1 Z′  X]−1  X′Z (Z′Z)−1 Z′  y 

= [(
1

N
∑ ∑ Xit

′ Zit

T

t=1

N

i=1

)(
1

N
∑ ∑ Zit

′ Zit

T

t=1

N

i=1

)

−1

  (
1

N
∑ ∑ Zit

′ Xit

T

t=1

N

i=1

)]

−1

 

(
1

N
∑ ∑ Xit

′ Zit

T

t=1

N

i=1

)(
1

N
∑ ∑ Zit

′ Zit

T

t=1

N

i=1

)

−1

  (
1

N
∑ ∑ Zit

′ yit

T

t=1

N

i=1

) 

But we have  yit = Xit𝛽 + εit 

Using straightforward algebra , it can be shown that;  

𝛽2𝑆𝐿𝑆  = 𝛽 +   [(
1

N
∑ ∑ Xit

′ Zit

T

t=1

N

i=1

)(
1

N
∑ ∑Zit

′ Zit

T

t=1

N

i=1

)

−1

  (
1

N
∑ ∑ Zit

′ Xit

T

t=1

N

i=1

)]

−1

 

(
1

N
∑ ∑ Xit

′ Zit

T

t=1

N

i=1

)(
1

N
∑ ∑Zit

′ Zit

T

t=1

N

i=1

)

−1

  (
1

N
∑ ∑ Zit

′ εit

T

t=1

N

i=1

) 

Applying  Law of large number , 

𝑃 lim𝛽2𝑆𝐿𝑆  = 𝛽 +  𝑃𝑙𝑖𝑚  [(
1

N
∑ ∑ Xit

′ Zit

T

t=1

N

i=1

)(
1

N
∑ ∑ Zit

′ Zit

T

t=1

N

i=1

)

−1

  (
1

N
∑ ∑ Zit

′ Xit

T

t=1

N

i=1

)]

−1
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(
1

N
∑ ∑ Xit

′ Zit

T

t=1

N

i=1

)(
1

N
∑ ∑Zit

′ Zit

T

t=1

N

i=1

)

−1

  (
1

N
∑ ∑ Zit

′ εit

T

t=1

N

i=1

) 

If we assume that;  

𝑃 lim  
1

N
Z ′Z = ∑ = E(Z ′Z) ,zz    a finite, positive definite matrix (well behaved data), 

𝑃 lim  
1

N
Z ′X = ∑ =  E(Z ′X)zx  ,  a finite, 𝐿 ×  𝐾 matrix with rank 𝐾(relevance), 

𝑃 lim  
1

N
Z ′ε = 0 = E(Zitεit),  (exogeneity). 

By the Law of large number, it implies that; 

lim𝑛→∞  𝑃(|𝛽2𝑆𝐿𝑆 − 𝛽| ≥ 𝜖) = 0 , for all 𝜖 

or , equivalently 

𝑃 lim 𝛽2𝑆𝐿𝑆 = 𝛽 

Using Slutsky's theorem on probability limit ,we get    

If 𝑃 { lim  (𝛽2𝑆𝐿𝑆) } = 𝛽   and  𝑔(. ) is  continuous function , it also holds that 

If 𝑃 lim𝑔(𝛽2𝑆𝐿𝑆) =  𝑔(P lim 𝛽2𝑆𝐿𝑆) =  𝑔(𝛽)   

Therefore , given above assumption 2SLS.3,  LLN and Slutsky's  theorem, 

𝑃 lim(𝛽2𝑆𝐿𝑆 − 𝛽) = [∑  ,zx (∑  zz )−1   ∑  ,zx ]−1 ∑  (∑  zz )−1 E(Zitεit)  zx   

By assumption 2SLS.2  ( E(Zitεit) = 0 ); 

𝑃 { lim  (𝛽2𝑆𝐿𝑆) } = 𝛽 

This implies that  �̂�2𝑆𝐿𝑆  estimator is consistent in large samples.  

3.7.1.2   Consistency of the Generalized Least Square 

In order to get the more consistent estimate of  𝛽 , we make the following assumptions. 

GLS.1  𝐸(𝑋𝑖 ⨂𝑣𝑖) = 𝐸(𝑋𝑖𝑡 ⨂𝑣𝑖𝑡) = 0 , Kronecker product; 
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This requires that each elements of 𝑣𝑖𝑡 be uncorrelated with all 𝑋𝑖𝑡  in all equations. Thus, it rules 

out using lagged 𝑦𝑖𝑡 as  𝑋𝑖𝑡 variable in panel data settings. Note that since we almost always have 

one of the 𝑋𝑖𝑡   variable  be a constant , this implies  𝐸 (𝑣𝑖𝑡) = 0 .  

GLS.2   Ω = 𝐸(𝑣𝑖  𝑣𝑖
′) = 𝐸(𝑣𝑖𝑡  𝑣𝑖𝑡

′ )  is positive definite  and 𝐸 (𝑋𝑖
′Ω−1𝑋𝑖) = 𝐸 (𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡) is 

non singular matrix (has rank  𝐾 ). 

GLS.3  𝐸 (𝑋𝑖
′  Ω−1𝑣𝑖  𝑣𝑖

′  Ω−1𝑋𝑖) = 𝐸 (𝑋𝑖
′Ω−1𝑋𝑖)  which also implies  

𝐸 (𝑋𝑖𝑡
′  Ω−1𝑣𝑖𝑡  𝑣𝑖𝑡

′  Ω−1𝑋𝑡𝑖) = 𝐸 (𝑋𝑖𝑡
′ Ω−1𝑋𝑖𝑡)  where  Ω = 𝐸(𝑣𝑖𝑡  𝑣𝑖𝑡

′ )  

This assumption is the consequence of iterated expectations: 

𝐸 (𝑋𝑖𝑡
′  Ω−1𝑣𝑖𝑡  𝑣𝑖𝑡

′  Ω−1𝑋𝑡𝑖) = 𝐸 [𝐸 (𝑋𝑖𝑡
′  Ω−1𝑣𝑖𝑡  𝑣𝑖𝑡

′  Ω−1𝑋𝑖𝑡|𝑋𝑖𝑡)] 

                                           = 𝐸 [𝑋𝑖𝑡
′  Ω−1 𝐸 (𝑣𝑖𝑡  𝑣𝑖𝑡

′ |𝑋𝑖𝑡)Ω
−1𝑋𝑖𝑡] 

                                           =  𝐸 [𝑋𝑖𝑡
′  Ω−1 Ω Ω−1𝑋𝑖𝑡] 

                                          = 𝐸 [𝑋𝑖𝑡
′  Ω−1𝑋𝑖𝑡] 

If  Ω  is diagonal, then panel data model this implies homoskedasticity within each equation 

(each time  periods in the panel data case). The asymptotic results of panel data will mostly focus 

on the case of fixed  T, 𝑁 ⟶ ∞.   

Theorem 3.2  (Consistency of  GLS)  

 This means that the probability limit (𝑃𝑙𝑖𝑚) of  𝛽𝐺𝐿𝑆  equals 𝛽  i.e.  

                           lim𝑁⟶∞ Pr[|𝛽𝐺𝐿𝑆 − 𝛽| < 𝜀 ] = 1  for  any 𝜀 < 0.  

Therefore, under  assumptions GLS.1 and GLS.2, the GLS estimator  𝛽𝐺𝐿𝑆 obtained from a 

random sample following the population model (3.4)  is consistent for 𝛽  if 𝐸 (𝑋𝑖𝑡
′ 𝛼𝑖) = 0.  

To prove theorem (3.2), we also use Lemma 3.1, 3.2,3.3 and 3.4  

Proof 

Recall the definition of  random effect estimator  

                                                  𝛽𝐺𝐿𝑆 = ( 𝑋′Ω−1𝑋 )
−1

𝑋′Ω−1𝑦  
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                                                           = (∑ 𝑋𝑖
′𝑁

𝑖=1 Ω−1𝑋𝑖)
−1

∑ 𝑋𝑖
′𝑁

𝑖=1 Ω−1𝑦𝑖 

                                                           = (∑ ∑ 𝑋𝑖𝑡
′ Ω−1𝑋𝑖𝑡

𝑇
𝑡=1

𝑁
𝑖=1 )

−1
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑦𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1                                                                                                                             

But we have  𝑦𝑖𝑡 = 𝑋𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡. Thus; 

𝛽𝐺𝐿𝑆 = 𝛽 + (
1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)

−1

1

𝑁
∑ ∑𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

 

Applying  law of large number  we obtain; 

𝑃 lim
𝑁𝑇⟶∞

𝛽𝐺𝐿𝑆  = 𝑃 lim
𝑁𝑇⟶∞

𝛽  +  𝑃 lim
𝑁𝑇⟶∞

(
1

𝑁
 ∑ ∑𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)

−1

𝑃 lim
𝑁𝑇⟶∞

1

𝑁
∑ ∑𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

 

= 𝛽 +  𝑃 lim
𝑁𝑇⟶∞

(
1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)

−1

𝑃 lim
𝑁𝑇⟶∞

1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

 

By applying the Law of Law of  Number; 

                         𝑃 lim𝑁⟶∞

1

𝑁
 ∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 = 𝐸 (𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡) =  𝑄𝑋Ω𝑋  , a finite  positive  

definite matrix and requires well behaved data.  

And  

                     𝑃 lim𝑁⟶∞

1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 = 𝐸 (𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡) 

a finite  positive  definite matrix.  

It follows  from the Slutsky theorem and assumption  GLS.2;  

(
1

𝑁
∑∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)

−1

    
𝑃
→   [𝐸 (𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡)]
−1

   

Therefore,  

𝑃 lim
𝑁𝑇⟶∞

𝛽𝐺𝐿𝑆 = 𝛽 + [𝐸 (𝑋𝑖𝑡
′ Ω−1𝑋𝑖𝑡)]

−1
 𝐸 (𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡)  
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The GLS estimator is consistent for  𝛽  iff  𝐸 (𝑋𝑖𝑡
′ Ω−1𝑣𝑖𝑡) = 0   and  (𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡) = 𝑄𝑋Ω𝑋  , a 

positive definite and finite  matrix. 

Now we  must show that   plim (
1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 ) = 0 . By the  LLN, it is sufficient that  

𝐸 (𝑋𝑖𝑡
′ Ω−1𝑣𝑖𝑡) = 0. This is where assumption GLS.1 comes in. We can argue that this point 

informally because   Ω−1𝑋𝑖𝑡  is a linear combination of  𝑋𝑖𝑡  , and  since each element of  𝑋𝑖𝑡  is 

uncorrelated with each elament of  𝑣𝑖𝑡 , any linear combination of  𝑋𝑖𝑡 is uncorrelated with 𝑣𝑖𝑡. 

This can be shown directly using algebra of Kronecker product and vectorization (Theil , 1983). 

Therefore, under assumption GLS.1,  

vec 𝐸 (𝑋𝑖𝑡
′ Ω−1𝑣𝑖𝑡) =  𝐸 [(𝑣𝑖

′ ⊗ 𝑋𝑖𝑡
′ )] vec (Ω−1) 

                                                                      = 𝐸 [(𝑣𝑖𝑡 ⊗ 𝑋𝑖𝑡)
′] vec (Ω−1) 

                                                                      = 0 ,  since 𝐸 [(𝑣𝑖𝑡 ⊗ 𝑋𝑖𝑡)
′] = 𝐸(𝑣𝑖𝑡𝑋𝑖𝑡) = 0 

The proof of consistency  of  𝛽𝐺𝐿𝑆  fails if we only make  assumption 𝐸(𝑣𝑖𝑡𝑋𝑖𝑡) = 0 does not  

imply  𝐸 (𝑋𝑖𝑡
′ Ω−1𝑣𝑖𝑡) = 0, except when   Ω  and 𝑋𝑖𝑡 have special structures. If 𝐸(𝑣𝑖𝑡𝑋𝑖𝑡) = 0 

holds , but 𝐸 (𝑋𝑖𝑡
′ Ω−1𝑣𝑖𝑡) = 0 fails , the transformation in equation (3.18) generally induces 

correlation between  𝑋𝑖𝑡
∗  and v𝑖𝑡

∗  .This can be very important point in panel data applications. 

Hence, by assumption GLS.1 , LLN and  Slutsky theorem, 

                      𝑃 lim𝑁𝑇⟶∞ 𝛽𝐺𝐿𝑆 = 𝛽,  this shows that  𝛽𝐺𝐿𝑆  is consistent estimator of 𝛽 . 

3.7.2   Asymptotic Normality of   the Estimators 

3.7.2.1  Asymptotic Normality of  Two Stage Least Square 

The asymptotic  normality of  √𝑁 (�̂�2𝑆𝐿𝑆 −  𝛽 ) follows from the asymptotic normality of    

1

√𝑁
∑ 𝑍𝑖

′𝜀𝑖
𝑁
𝑖=1   which follows from the central limit theorem under assumption 2SLS.1. 

Theorem 3.3 (Asymptotic Normality of  2SLS) 

Under assumptions 2SLS.1-2SLS.3  √𝑁 (�̂�2𝑆𝐿𝑆 −  𝛽 ) is normally distributed with mean zero 

and variance matrix  𝜎2{𝐸(𝑋′𝑍)[𝐸(𝑍′𝑍)]−1𝐸(𝑍′𝑋)}−1. 
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To prove theorem 3.3 , we  make use of the following  corollaries in addition to Lemma 3.1, 

3.2,3.3 and 3.4 

Corollary  3.1 

Let { 𝑍𝑁 ∶ 𝑁 = 1, 2, … } be  sequence of random  𝐾 × 𝐾 matrices and let  A be  a nonradom , 

invertable  𝐾 × 𝐾 matrix . If   𝑍𝑁  
P
→    A  then, 

(1)  𝑍𝑁
−1 exists  with probability approaching one (w.p.a.1) 

(2) 𝑍𝑁
−1   

P
→  A−1    or  𝑃𝑙𝑖𝑚 𝑍𝑁

−1  =  A−1      

Proof 

Because the determinant is a continuous  function on the space of all square matrices , 

 det( 𝑍𝑁)
P
→  det(A). Because  A  is nonsingular , det(A) ≠ 0. Therefore, it follows that 

P[det( 𝑍𝑁) ≠ 0]  ⟶   1  as  N ⟶ ∞. This completes the proof of part 1. 

Part 2 requires a convention about how to define  𝑍𝑁
−1  and   𝑍𝑁  when   𝑍𝑁 is nonsingular. Let Ω𝑁  

be the set of  𝜔 (outcomes) such that  𝑍𝑁(𝜔)   is nonsingular for  𝜔 𝜖 Ω𝑁; we just showed that 

P( Ω𝑁)  ⟶   1  as  N ⟶ ∞. Define a new sequence of matrices by   �̃�𝑁(𝜔) =  𝑍𝑁(𝜔)    when  

𝜔 𝜖 Ω𝑁  ,    �̃�𝑁(𝜔) =  𝐼𝐾   when   𝜔 ∉  Ω𝑁. Then, P( �̃�𝑁 =  𝑍𝑁) = P( Ω𝑁) ⟶   1  as  N ⟶ ∞. 

Then, Because   𝑍𝑁  
P
→  A ,  �̃�𝑁  

P
→  A. The inverse operator is continuous on the space of 

invertible matrices , so  �̃�𝑁
−1   

P
→ A−1. This is what we mean by   𝑍𝑁

−1   
P
→ A−1  ; the fact that  𝑍𝑁 

can be singular with vanishing probability does not affect asymptotic analysis. 

Corollary 3.2 

If  {𝑍𝑁} is a sequence of 𝐾 × 1 random vectors such that  𝑍𝑁  
d
→   Normal (0,V)  then, for any 

𝐾 × 𝑀  nonrandom matrix  𝐴,    𝐴 𝑍𝑁   
d
→   Normal (0,𝐴 V 𝐴′ ) .  

Proof   of Theorem 3.3 

To drive the asymptotic  normality of  2SLS estimator  we write:  

𝛽2𝑆𝐿𝑆  = 𝛽 +   [(
1

N
∑ ∑ Xit

′ Zit

T

t=1

N

i=1

)(
1

N
∑ ∑Zit

′ Zit

T

t=1

N

i=1

)

−1

  (
1

N
∑ ∑ Zit

′ Xit

T

t=1

N

i=1

)]

−1
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(
1

N
∑ ∑ Xit

′ Zit

T

t=1

N

i=1

)(
1

N
∑ ∑Zit

′ Zit

T

t=1

N

i=1

)

−1

  (
1

N
∑ ∑ Zit

′ εit

T

t=1

N

i=1

) 

The asymptotic distribution of  the 2SLS estimators is derived by  moving  𝛽 from LHS to RHS 

and multiplying by  √𝑁 

√𝑁 (𝛽2𝑆𝐿𝑆 −  𝛽 ) =  [(
1

N
∑ ∑ Xit

′ Zit

T

t=1

N

i=1

)(
1

N
∑∑ Zit

′ Zit

T

t=1

N

i=1

)

−1

  (
1

N
∑∑ Zit

′ Xit

T

t=1

N

i=1

)]

−1

 

(
1

N
∑ ∑ Xit

′ Zit

T

t=1

N

i=1

)(
1

N
∑ ∑ Zit

′ Zit

T

t=1

N

i=1

)

−1

 √𝑁 (
1

N
∑ ∑ Zit

′ εit

T

t=1

N

i=1

) 

Now , by the law of large number we have;  

1

N
∑ ∑Xit

′ Zit

T

t=1

N

i=1

   
p
→    E (Xit

′ Zit) 

1

N
∑ ∑Zit

′ Zit

T

t=1

N

i=1

   
p
→    E (Zit

′ Zit) 

Thus, 

𝑃𝑙𝑖𝑚 [(
1

N
∑ ∑ Xit

′ Zit
T
t=1

N
i=1 )(

1

N
∑ ∑ Zit

′ Zit
T
t=1

N
i=1 )

−1

  (
1

N
∑ ∑ Zit

′ Xit
T
t=1

N
i=1 )]

−1

(
1

N
∑ ∑ Xit

′ Zit
T
t=1

N
i=1 ) 

         (
1

N
∑ ∑ Zit

′ Zit
T
t=1

N
i=1 )

−1

=   M 

where    M ≡ [E (Xit
′ Zit)   E(Zit

′ Zit)
−1

E (Zit
′ Xit)]

−1

 E (Xit
′ Zit)   E(Zit

′ Zit)
−1

  ( by corollary 3.1) 

Then ,      

[(
1

N
∑ ∑ Xit

′ Zit
T
t=1

N
i=1 )(

1

N
∑ ∑ Zit

′ Zit
T
t=1

N
i=1 )

−1

  (
1

N
∑ ∑ Zit

′ Xit
T
t=1

N
i=1 )]

−1

(
1

N
∑ ∑ Xit

′ Zit
T
t=1

N
i=1 ) 

         (
1

N
∑ ∑ Zit

′ Zit
T
t=1

N
i=1 )

−1

−  M = Op (1) 

Further , under assumption 2SLS.1 

                                                        (
1

N
∑ ∑ Zit

′ εit
T
t=1

N
i=1 ) = E (Zit

′ εit) = 0 
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 And  by the central limit theorem ( Lemma 3.2) 

      
1

√N
∑ ∑ Zit

′ εit
T
t=1

N
i=1     

d
→    Normal (0,var [Zitεit] )   ∼   Normal (0,W ) 

where W  is the  K× 𝐾 matrix and  𝑊 = E [εit
2 Zit

′ Zit]  

This implies       
1

√𝑁
∑ ∑ Zit

′ εit
T
t=1

N
i=1 = Op(1)   and so we can write  

√𝑁 (�̂�2𝑆𝐿𝑆 −  𝛽 ) = 𝑀  (
1

√𝑁
∑∑ Zit

′ εit

T

t=1

N

i=1

)+ Op(1)   

since  Op(1) +  Op(1) =  Op(1) 

 Therefore, by LLN , Slutsky and continuity theorems , the limiting distribution of  𝛽2𝑆𝐿𝑆  is  

√𝑁 (�̂�2𝑆𝐿𝑆 −  𝛽 ) = [E (Xit
′ Zit)   E(Zit

′ Zit)
−1

E (Zit
′ Xit)]

−1

 E (Xit
′ Zit)   E(Zit

′ Zit)
−1

    

                                × N (0,E [εit
2Zit

′ Zit] ) 

                          
d
→    N (0,A) 

where 𝐴 is defined as 

𝐴 = [E (Xit
′ Zit)   E(Zit

′ Zit)
−1

E (Zit
′ Xit)]

−1

 E (Xit
′ Zit)   E(Zit

′ Zit)
−1

 E [εit
2 Zit

′ Zit]   

        E(Zit
′ Zit)

−1
E (Zit

′ Xit)[E (Xit
′ Zit)   E(Zit

′ Zit)
−1

E (Zit
′ Xit)]

−1

      (by corollary 3.2 ) 

In the special case of homoscedastic error , 𝐸 (εit
2 |Zit) = 𝜎ε

2  we have 

E [εit
2 Zit

′ Zit] = E [E(εit
2 Zit

′ Zit|Z)] = E [E(εit
2 |Z)Zit

′ Zit] = 𝜎ε
2 E [Zit

′ Zit]  

Then, the variance  part corrupts to 

[E (Xit
′ Zit)   E(Zit

′ Zit)
−1

E (Zit
′ Xit)]

−1

 E (Xit
′ Zit)   E(Zit

′ Zit)
−1

 𝜎ε
2 E [Zit

′ Zit]   

        E(Zit
′ Zit)

−1
E (Zit

′ Xit)[E (Xit
′ Zit)   E(Zit

′ Zit)
−1

E (Zit
′ Xit)]

−1

 

               = 𝜎ε
2  [E (Xit

′ Zit)   E(Zit
′ Zit)

−1
E (Zit

′ Xit)]
−1

   =   B 
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Therefore, the  asymptotic  distribution of  𝛽2𝑆𝐿𝑆  is  

√𝑁 (�̂�2𝑆𝐿𝑆 −  𝛽 )  
d
→    N (0,A)     in the case of  heteroscedastic error  

√𝑁 (�̂�2𝑆𝐿𝑆 −  𝛽 )  
d
→    N (0,B)     in the case of homoscedastic error  

 Or  equivalently ,  

𝛽2𝑆𝐿𝑆  
d
→    N (0,

1

N
A)     in the case of  heteroscedastic error  

𝛽2𝑆𝐿𝑆  
d
→    N (0,

1

N
B)     in the case of  homoscedastic error  

The consistent estimator for the asymptotic covariance matrix can be obtained as follows 

By applying  LLN we have 

1

N
∑ ∑Xit

′ Zit

T

t=1

N

i=1

   
p
→    E (Xit

′ Zit) 

1

N
∑ ∑Zit

′ Zit

T

t=1

N

i=1

   
p
→    E (Zit

′ Zit) 

1

N
∑ ∑ ε̂it

2 Zit
′ Zit

T

t=1

N

i=1

     
p
→     E (εit

2 Zit
′ Zit)   

 where    ε̂𝑖𝑡 = yit − Xit𝛽2𝑆𝐿𝑆  

Therefore , the consistent estimator for the asymptotic variance is  

�̂� = [ (
1

N
∑ ∑ Xit

′ Zit
T
t=1

N
i=1 )   (

1

N
∑ ∑ Zit

′ Zit
T
t=1

N
i=1 )

−1

(
1

N
∑ ∑ Zit

′ Xit
T
t=1

N
i=1 )]

−1

(
1

N
∑ ∑ Xit

′ Zit
T
t=1

N
i=1 )     

        (
1

N
∑ ∑ Zit

′ Zit
T
t=1

N
i=1 )

−1 1

N
∑ ∑ ε̂it

2  Zit
′ Zit

T
t=1

N
i=1   (

1

N
∑ ∑ Zit

′ Zit
T
t=1

N
i=1 )

−1

(
1

N
∑ ∑ Zit

′ Xit
T
t=1

N
i=1 )           

        [ (
1

N
∑ ∑ Xit

′ Zit
T
t=1

N
i=1 )   (

1

N
∑ ∑ Zit

′ Zit
T
t=1

N
i=1 )

−1

(
1

N
∑ ∑ Zit

′ Xit
T
t=1

N
i=1 )]

−1

 

In the special case of homoscedastic error , the asymptotic variance corrupts 

  �̂� =  𝜎ε
2  [ (

1

N
∑ ∑ Xit

′ Zit
T
t=1

N
i=1 )   (

1

N
∑ ∑ Zit

′ Zit
T
t=1

N
i=1 )

−1

(
1

N
∑ ∑ Zit

′ Xit
T
t=1

N
i=1 )]

−1
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 𝜎ε
2 =

1

N
∑ ∑ ε̂it

2T
t=1

N
i=1 = (yit − Xit𝛽2𝑆𝐿𝑆)

−1
  

Here , by  LLN , Slutsky and continuity theorems ,  consistent estimator of variance can be 

obtained by  

 �̂�    
p
→   [E (Xit

′ Zit)   E(Zit
′ Zit)

−1
E (Zit

′ Xit)]
−1

 E (Xit
′ Zit)   E(Zit

′ Zit)
−1

 E [εit
2 Zit

′ Zit]   

              E(Zit
′ Zit)

−1
E (Zit

′ Xit)[E (Xit
′ Zit)   E(Zit

′ Zit)
−1

E (Zit
′ Xit)]

−1

 

And  

             �̂�       
p
→       𝜎ε

2  [E (Xit
′ Zit)   E(Zit

′ Zit)
−1

E (Zit
′ Xit)]

−1

   

Therefore,  By the definition  of   W  it follows from lemma 3.7  and corollary 3.2  that  

√𝑁 (�̂�2𝑆𝐿𝑆 −  𝛽 )  
a
→    Normal (0, �̂�)   in the case of  heteroscedastic error  

√𝑁 (�̂�2𝑆𝐿𝑆 −  𝛽 )  
a
→    Normal (0, �̂�)   in the case of homoscedastic error  

This completes the proves. 

3.7.2.2  Asymptotic Normality of  Generalized Least Square 

To derive the asymptotic distribution of  the generalized least squares estimator, We will make 

use of  central limit theorems and  assume that the observations are independent.  𝛽𝐺𝐿𝑆 is 

asymptotically normally distributed if the sequence of properly normalized 𝛽𝐺𝐿𝑆 converges in 

distribution to a multivariate normal random vector. It is also  normally distributed under the 

assumption of  normal errors. If the error distribution is unknown , we of course don't know the 

distribution of  the estimator. Assuming the distribution of  error is unknown , but the other 

classical assumptions hold.     

Theorem 3.4 (Asymptotic Normality of  GLS)   

Under assumptions GLS.1-GLS.3  √𝑁 (�̂�𝐺𝐿𝑆 −  𝛽 ) is normally distributed with mean zero and 

variance matrix   𝜎2 [𝐸(𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′  )]
−1

. 

 To prove this theorem,  we make use  the following lemma in addition to lemma 3.1,3.2,3.3 and 

3.4. 
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Lemma 3.5  (Asymptotic equivalence lemma) 

Let {𝑋𝑁}  and {𝑍𝑁} be  sequences of  𝐾 × 1 random  vectors.If  𝑍𝑁  
d
→  z  and  𝑋𝑁 − 𝑍𝑁  

P
→    0 , 

then  𝑋𝑁   
d
→   z .  

Proof  of theorem 3.4  

 To derive asymptotic normality of random effect estimator  we write                                                                                                            

                                                   𝛽𝐺𝐿𝑆  =  𝛽 + ( 𝑋′Ω−1𝑋 )
−1

𝑋′Ω−1v  

Transforming the above equation into 

                                      (𝛽𝐺𝐿𝑆 −  𝛽 ) = (
1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 )

−1 1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1   

Then, 𝛽𝐺𝐿𝑆  has limit distribution with all mass at  𝛽 (since 𝛽𝐺𝐿𝑆

𝑃
→ 𝛽). To get a nondegenerate 

distribution inflate  𝛽𝐺𝐿𝑆  by  √𝑁 . The GLS estimator is asymptotically normally distributed if  

the limiting  distribution of   

 √𝑁 (�̂�𝐺𝐿𝑆 −  𝛽 ) = ( 
𝑋′Ω−1𝑋 

𝑁
)

−1

 √𝑁  
𝑋′Ω−1 v

𝑁
  

                              = (
1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 )

−1

  
1

√𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1  . 

Therefore, recalling that  𝐸(𝑣𝑖𝑡𝑋𝑖𝑡) = 0  we have: 

 var(𝑥𝑖𝑣𝑖) = 𝐸(𝑣𝑖
2𝑋𝑖𝑋𝑖

′  ),  

and applying the Central Limit Theorem yields 

                                   
1

√𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1    

𝑑
→    𝑁 (0,𝐸(𝑣𝑖𝑡

2 𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′  ) ). 

and    

                          (
1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 )

−1

     
𝑑
→     𝑃𝑙𝑖𝑚 (

1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 )

−1

   

Further ,  since   
1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 = 𝑂𝑃 (1)        and 

             (
1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 )

−1

− 𝐴−1 = 𝑂𝑃  (1)    with  𝐴 ≡ 𝐸(𝑋𝑖𝑡
′  Ω−1𝑋𝑖𝑡  )   by lemma 3.5 
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Thus,  √𝑁 (�̂�𝐺𝐿𝑆 −  𝛽 ) = 𝐴−1  (
1

√𝑁
 ∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 )+  𝑂𝑃 (1)     

Then,  we can write the above expression as 

√𝑁(𝛽𝐺𝐿𝑆 −  𝛽 ) = (
1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 )

−1

  
1

√𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑣𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1  

𝑑
→   𝑃𝑙𝑖𝑚 (

1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡

𝑇

𝑡=1

𝑁

𝑖=1

)

−1

 × 𝑁 (0,𝐵 ) , 𝐵 =  𝐸(𝑣𝑖𝑡
2 𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′  )   

𝑑
→  𝑁 [0, 𝑃𝑙𝑖𝑚 (

1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 )

−1

 𝐵 ×  𝑃𝑙𝑖𝑚 (
1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 )

−1

 ]         

It  then follows from the Cramer  theorem that 

  √𝑁 (�̂�𝐺𝐿𝑆 −  𝛽 )     
𝑑
→   𝑁  ( 0, [𝐸(𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′  )]

−1
 𝐸(𝑣𝑖𝑡

2 𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′  ) [𝐸(𝑋𝑖𝑡Ω
−1𝑋𝑖𝑡

′  )]
−1

 ). 

this also  follows from the asymptotic equivalence lemma that; 

√𝑁 (𝛽𝐺𝐿𝑆 −  𝛽 )     
𝑎
→   Normal  ( 0,𝐴−1 𝐵 𝐴−1 ) 

where 𝐴 = 𝐸(𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′  ) and 𝐵 = 𝐸(𝑣𝑖𝑡
2 𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′  ) ≡ 𝐸 (𝑋𝑖𝑡

′  Ω−1𝑣𝑖𝑡  𝑣𝑖𝑡
′  Ω−1𝑋𝑡𝑖) 

In practice, Asym. Cov. (𝛽𝐺𝐿𝑆) =
𝐴−1 𝐵 𝐴−1

𝑁
 ,                                  

               =
1

𝑁
(∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 )

−1
(∑ (𝑋𝑖𝑡

′  Ω−1𝑣𝑖𝑡  𝑣𝑖𝑡
′  Ω−1𝑋𝑖𝑡)

𝑁
𝑖=1 ) (∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 )

−1
 

                 = (
1

𝑁
∑ ∑ 𝑋𝑖𝑡

′ Ω−1𝑋𝑖𝑡
𝑇
𝑡=1

𝑁
𝑖=1 )

−1

 

                  = ( 
𝑋′Ω−1𝑋 

𝑁
)

−1

= (𝑋′Ω−1𝑋)
−1

   

and always we use data to estimate  𝐴 and 𝐵. 

In the case of the classical regression model this expression simplifies , as it follows from  

assumption 2  and the law of iterated expectations that ; 

𝐸(𝑣𝑖𝑡
2 𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′  ) = 𝐸 (𝑣𝑖𝑡

2 𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′ |𝑋𝑖𝑡) =  𝐸 [𝐸(𝑣𝑖𝑡
2 |𝑋𝑖𝑡)𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′ ] =  𝜎2 𝐸(𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′  ) . 

So that  

√𝑁 (𝛽𝐺𝐿𝑆 −  𝛽 )     
𝑑
→   𝑁  ( 0,  𝜎2 [𝐸(𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′  )]

−1
 ) 
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 It easily follows that 

                    𝛽𝐺𝐿𝑆  
𝑑
→   𝑁 (𝛽 ,  𝜎2 [𝐸(𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′  )]

−1
  )  

The robust  variance estimation of random effects  model is given as follows; 

I. Variance estimation under conditional homoskedasticity   

We have under the assumption of random sampling and lack of contemporaneous correlation : 

√𝑁 (�̂�𝐺𝐿𝑆 −  𝛽 )     
𝑑
→   𝑁  ( 0, [𝐸(𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′  )]

−1
 𝐸(𝑣𝑖𝑡

2 𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′  ) [𝐸(𝑋𝑖𝑡Ω
−1𝑋𝑖𝑡

′  )]
−1

 ). 

If  in addition we assume conditional homoskedasticity , i.e. 𝑣𝑎𝑟 (𝑣𝑖|𝑋𝑖) does not depend on  𝑋𝑖 , 

we have   

√𝑁 (𝛽𝐺𝐿𝑆 −  𝛽 )     
𝑑
→   𝑁  ( 0,  𝜎2 [𝐸(𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′  )]

−1
 ) 

The asymptotic variance of  𝛽𝐺𝐿𝑆 is thus : 

𝑉

𝑁
 =  

 𝜎2 [𝐸(𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′  )]
−1

𝑁
 

where   𝜎2 is consistently estimated by   𝜎2 ; 

                                 𝜎2 =
𝑣𝑖𝑡
′ 𝑣𝑖𝑡

𝑁𝑇−𝐾
 =

(𝑦𝑖𝑡 −𝑋𝑖𝑡�̂�𝐺𝐿𝑆 )
′
 (𝑦𝑖𝑡 −𝑋𝑖𝑡 �̂�𝐺𝐿𝑆)

𝑁−𝐾
   , 𝜎2 is consistent estimator of   𝜎2. 

Proof  follows the  same procedures as proved under  two stage least square estimation. 

II. Variance estimation under conditional heteroscedasticity (white formula) 

We can calculate the asymptotic variance of  𝛽𝐺𝐿𝑆  is  

𝑉

𝑁
 =  

[𝐸(𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′  )]
−1

 𝐸(𝑣𝑖𝑡
2 𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′  ) [𝐸(𝑋𝑖𝑡Ω

−1𝑋𝑖𝑡
′  )]

−1

𝑁
 

In this case ,a natural estimator of  𝐸(𝑣𝑖𝑡
2 𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′  ) is ; 

1

𝑁
 ∑�̂� 𝑖𝑡

2  𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′

𝑁

𝑖=1

=
1

𝑁
∑(𝑦𝑖𝑡 − 𝑋𝑖𝑡𝛽𝐺𝐿𝑆 )

2
 

𝑁

𝑖=1

𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′  

Under the assumption of random sampling and lack of contemporaneous correlation, this 

estimator is consistent. 
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Indeed , the LLN  implies that ; 

lim
𝑁⟶∞

1

𝑁
 ∑ 𝑣𝑖𝑡

2  𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′

𝑁

𝑖=1

= 𝐸(𝑣𝑖𝑡
2 𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′  ) 

Moreover  

1

𝑁
 ∑ �̂�𝑖𝑡

2  𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′

𝑁

𝑖=1

=
1

𝑁
 ∑ 𝑣𝑖𝑡

2  𝑋𝑖𝑡  Ω
−1𝑋𝑖𝑡

′

𝑁

𝑖=1

  + 𝑅 

 where  lim𝑁⟶∞ 𝑅 = 0. This comes from consistency of GLS which does not depend on the 

assumption of homoskedasticity. 

A natural estimator of the asymptotic variance of  𝛽𝐺𝐿𝑆 is thus ; 

�̂�𝑟𝑜𝑏𝑢𝑠𝑡

𝑁
= 

(
1

𝑁
 ∑ 𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′𝑁

𝑖=1 )
−1

 [
1

𝑁
 ∑ (𝑦𝑖𝑡 − 𝑋𝑖𝑡𝛽𝐺𝐿𝑆 )

2
 𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′𝑁

𝑖=1 ] (
1

𝑁
 ∑ 𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′𝑁

𝑖=1 )
−1

𝑁
 

     = (𝑋′Ω−1𝑋)
−1

 [
1

𝑁
 ∑ (𝑦𝑖𝑡 − 𝑋𝑖𝑡�̂�𝐺𝐿𝑆 )

2
 𝑋𝑖𝑡  Ω

−1𝑋𝑖𝑡
′𝑁

𝑖=1 ] (𝑋′Ω−1𝑋)
−1

   

This is the robust or white formula. Researchers that are concerned with the possibility of 

conditional heteroscedasticity usually report this expression. Here also , it is easy to check that  �̂� 

is consistent estimator of  V.  

3.8   The Hausman's Specification Test 

Hausman (1978) proposes a general test of specification, that can be applied in the specific 

context of linear panel models to the issue of specification of individual effects (fixed or 

random). 

The general idea of the an Hausman's test is the following. Let us consider a particular model  

𝑓(𝑥; 𝛽) + 𝜀 and particular hypothesis 𝐻0 on this model (parameter, error term etc.). Let us 

consider two estimators of the  𝐾 -vector  𝛽,   denoted  𝛽1  and 𝛽2 , both consistent under  𝐻0 and 

asymptotically normally distributed. 

1. Under  𝐻0 , the estimator  𝛽1   attains the asymptotic Cramer-Rao bound. 

2. Under  𝐻0 , the estimator  𝛽2   is biased. 

By examining the distance between 𝛽2    and  𝛽1 , it is possible to conclude about 𝐻0 : 
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a. If the distance is small, 𝐻0 cannot be rejected. 

b. If the distance is large, 𝐻0 can be rejected. 

This distance is naturally defined as follows; 

                                  𝐻 = (𝛽2 − 𝛽1 )
′
 [𝑉𝑎𝑟 (�̂�2 − 𝛽1)]

−1
 (𝛽2 − 𝛽1) 

However, the issue is to compute the variance-covariance matrix    𝑉𝑎𝑟 (�̂�2 − 𝛽1)  of the 

difference between both estimators. Generally we know  𝑉𝑎𝑟 (�̂�2)  and  𝑉𝑎𝑟 (𝛽1) , but not 

𝑎𝑟 (𝛽2 − 𝛽1) . 

Lemma 3.6 (Hausman, 1978) 

Based on a sample of  𝑁 observations, consider two estimates  𝛽1   and  𝛽2 that are both 

consistent and asymptotically normally distributed, with  𝛽1  attaining the asymptotic Cramer-

Rao bound so that   √𝑁 (�̂�2 − β)  is asymptotically normally distributed with variance-

covariance matrix  𝑉1 . Suppose  √𝑁 (�̂�2 − β)  is asymptotically normally distributed, with mean 

zero and variance-covariance matrix  𝑉2 . Let  �̂�  =    𝛽2 − 𝛽2. Then the limiting distribution 

[under the null] of  √𝑁 (�̂�2 − β) and  √𝑁 �̂�  has zero covariance, 𝐸 (�̂�1 �̂�
′) = 0𝑘. 

Theorem 3.5 

From this lemma, it follows that; 

𝑉𝑎𝑟 (�̂�2 − 𝛽1) = 𝑉𝑎𝑟 (𝛽2) − 𝑉𝑎𝑟 (�̂�2) 

Thus, Hausman suggests using the statistic; 

𝐻 = (𝛽2 − 𝛽1 )
′
 [ 𝑉𝑎𝑟 (𝛽2) − 𝑉𝑎𝑟 (𝛽1) ]

−1
 (𝛽2 − 𝛽1) 

or  equivalently 

𝐻 =  �̂� ′[ 𝑉𝑎𝑟 (�̂�) ]−1 �̂� 

Under the null hypothesis, this statistic is distributed asymptotically as central chi-square, with  

K  degrees of freedom. 

𝐻   
𝐻0

𝑁 →  ∞
>  𝜒2  (𝐾) 
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Under the alternative, it has a noncentral chi-square distribution with noncentrality parameter 

�̃� ′[ 𝑉𝑎𝑟 (�̂�) ]−1 �̃� ,where �̃�  is defined as follows: 

�̃� = 𝑃 lim
𝐻1/ 𝑁 →∞

(𝛽2 − 𝛽1) 

Now, apply the Hausman's test to discriminate between fixed effects methods and random effects 

methods. We assume that  𝛼𝑖 are random variable and the key assumption tested is here defined 

as: 

𝐻0 ∶   𝐸 (𝛼𝑖|𝑋𝑖𝑡) = 0 

𝐻1  ∶   𝐸 (𝛼𝑖|𝑋𝑖𝑡)  ≠ 0 

This test can be interpreted as a specification test between fixed effect methods  and random 

effect methods. 

If the null is rejected, the correlation between individual effects and the explicative variables 

induces a bias in the GLS estimates. So, a standard approach fixed effect  has to be privilegiated.  

If the null is not rejected, we can use a GLS estimator (random effect method) and specify the 

individual effects as random variables (random effects model). 

According to the Hausman's lemma, we have; 

𝑐𝑜𝑣 (𝛽𝑅𝐸  , (𝛽𝐹𝐸 − 𝛽𝑅𝐸)) = 0       ⟺    𝑐𝑜𝑣 ( �̂�𝐹𝐸 ,𝛽𝑅𝐸) =  𝑣𝑎𝑟 (�̂�𝑅𝐸)  

Since  

𝑣𝑎𝑟 (𝛽𝐹𝐸 − 𝛽𝑅𝐸) = 𝑣𝑎𝑟 (𝛽𝐹𝐸) + 𝑣𝑎𝑟 (𝛽𝑅𝐸) −  2cov ( �̂�𝐹𝐸 ,𝛽𝑅𝐸) 

We have 

𝑉𝑎𝑟 (�̂�𝐹𝐸 − 𝛽𝑅𝐸) = 𝑉𝑎𝑟 (𝛽𝐹𝐸) − 𝑉𝑎𝑟 (𝛽𝑅𝐸) 

The general  Hausman's specification test statistic of individual effect can be defined as follows; 

𝐻 = (𝛽𝐹𝐸 − 𝛽𝑅𝐸 )
′
 [ 𝑉𝑎𝑟 (�̂�𝐹𝐸) − 𝑉𝑎𝑟 (𝛽𝑅𝐸) ]

−1
 (�̂�𝐹𝐸 − 𝛽𝑅𝐸) 

Or equivalently 

𝐻 = (𝛽2𝑆𝐿𝑆 − 𝛽𝐺𝐿𝑆 )
′
 [ 𝑉𝑎𝑟 (𝛽2𝑆𝐿𝑆) − 𝑉𝑎𝑟 (�̂�𝐺𝐿𝑆) ]

−1
 (�̂�𝐹𝐸 − 𝛽𝐺𝐿𝑆) 
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Under  𝐻0 , we have: 

𝐻   
𝐻0

𝑁 →  ∞
>  𝜒2  (𝐾) 

In the literature, a Hausman test (1978) has been widely used for this purpose. The statistic used 

for this test is a distance measure between the 2SLS  and GLS estimators of   β  as stated above. 

For the cases in which 𝑇 is fixed and 𝑁 → ∞, the RE assumption warrants that the Hausman 

statistic   𝐻𝑁𝑇   is asymptotically  𝜒2 - distributed with degrees of freedom equal to k. This result 

is a direct outcome of the fact that for fixed  𝑇  and strict exogenous variables, the GLS estimator 

𝛽𝐺𝐿𝑆 is asymptotically more efficient than the two - stage least square  estimator 𝛽2𝑆𝐿𝑆, and that 

the difference between the two estimators is asymptotically normal; specifically, as  𝑁 → ∞, 

√𝑁𝑇 (�̂�𝐹𝐸 − 𝛽𝑅𝐸)  ⟹   𝑁(0,P lim
𝑁⟶ ∞

 √𝑁𝑇 [𝑉𝑎𝑟 (�̂�𝐹𝐸) − 𝑉𝑎𝑟 (�̂�𝐹𝐸)]) 

where •" ⟹ " means "converges in distribution." 

An important condition that guarantees (6) is that 𝜃𝑇 > 0 , 𝜃𝑇 = √
𝜎𝑣

2

𝑇𝜎𝑢
2+ 𝜎𝑣

2  . If   𝜃𝑇 = 0, then the 

FE and GLS estimators become identical and the Hausman statistic is not defined. Observe now 

that 𝜃𝑇  → 0 as T → ∞. This observation naturally raises several issues related with the 

asymptotic properties of the Hausman test as T → ∞. Assume that xit contains a single time-

varying regressors which is independently and identically distributed over different 𝑖 and 𝑡. For 

this simple model, we can easily show  that     

P lim
𝑁⟶ ∞

 √𝑁𝑇 𝑉𝑎𝑟 (𝛽𝐹𝐸)  =  P lim
𝑁⟶ ∞

 √𝑁𝑇 𝑉𝑎𝑟 (�̂�𝑅𝐸) 

,using the fact that  𝜃𝑇  → 0  as T → ∞. This asymptotic equality immediately implies that the 

2SLS and GLS estimators of β are asymptotically equivalent; that is ,  

P lim
𝑁⟶ ∞

 √𝑁𝑇 (�̂�𝐹𝐸 − 𝛽𝑅𝐸) =  0𝐾×1 

Our equivalence result implies that between variations in data become less informative for the 

GLS estimation of   𝛽  as T → ∞. Then, the GLS estimator of 𝛽 may remain consistent even if 

the RE assumption is violated. If  this is the case, the power of the Hausman test might be 

inversely related to the size of  T.  
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What makes it complex to investigate the asymptotic properties of the within ,2SLS, GLS 

estimators and the Hausman statistic is that their convergence rates crucially depend on data 

generating processes. 

3.9   Conclusion 

In this chapter, we gave estimation of panel data regression model with fixe and random effects 

and estimation procedures of each models .We also derived and investigated some  asymptotic 

properties of panel data  model estimators.  In particular, we have  investigated consistency and 

asymptotic normality of  two-stage least square and generalized least square under specified 

conditions.  In the next  chapter, we give simulation study  to see the performance of the model 

estimators. 
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CHAPTER  4 

SIMULATION STUDY 

4.1 Introduction 

This chapter presents simulation of the Panel Data Regression Model. We simulate panel data 

under some specified conditions likely to be encountered in real life situation. We then use the 

data to illustrate estimation of the model and the asymptotic properties i.e. consistency and 

normality of the estimators as described in the previous chapter.  

4.2  Simulation Set up 

We assume a study on crime where the response variable 𝑦𝑖𝑡 is the crime rate. Crime rate is a 

function of many variables. In this study, we consider one time-variant endogenous regressor; 

probability of arrest, and three time-variant exogenous variables; probability of conviction given 

arrest, probability of prison sentencing given conviction and average duration of a prison 

sentence. Further, we generate an instrument, Z , for  endogenous  regressor which is standard 

normal distributed.  

As described in the previous chapter, the Panel Data Regression Model is; 

                                               𝑦𝑖𝑡 = 𝑋𝑖𝑡
′ 𝛽 + 𝛼𝑖 + 𝜀𝑖𝑡   

where 𝑖 = 1, … . . 𝑁 represent individual offenders and 𝑡 = 1,2, … . , 𝑇 represent time periods. 

The error-term 𝜀𝑖𝑡   ~ 𝑖𝑖𝑑 (0,𝜎𝜀
2)   and the individual effects 𝛼𝑖   ~ 𝑖𝑖𝑑 (0,𝜎𝛼

2). The independent 

variable 𝑋𝑖𝑡 contains both exogenous and endogenous variables.  

We investigate the finite sample asymptotic properties of the 2SLS and GLS, then compare it 

with pooled OLS and within estimators. Our comparison based on consistency  and standard 

errors of the estimator pooled OLS, Within, 2SLS and GLS. The disturbances  are considered as 

independent normally distributed random variables independent of the  𝑥𝑖𝑡 values, for Pooled 

OLS, Within and GLS estimators and correlated for 2SLS estimator. The values of N were 

chosen to be 30,50, 100 , 200 and T=10  to represent large samples for the number of individuals 

and fixed time dimension, respectively. We are interested in the performance of the 2SLS and 

GLS estimators in estimating 𝛼 and 𝛽.  

The Simulation of the panel data is based on two different specifications; fixed effects  and 

random effects. In the fixed effect specification, it is we first perform within-transformation to 
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eliminate individual effects then proceed to estimate the model. In the random effects 

specification individual specific effects are not estimated and then treat them as the error term.  

The data-generating model is defined in the above model. The standard panel framework is 

determined by the following data-generating process with unobserved unit-specific effects. This 

DGP has the following properties: the overall constant term is set to zero and therefore vanishes 

from the (3.4) and the coefficient of the scalar regressor 𝑋𝑖𝑡 is normalized to five. The cross-

sectional means of the regressor and error terms follow a standard normal distribution (with 

expectation zero), implying that its variance is normalized to one.  

For benchmark design, we consider three exogenous regressor and one endogenous with 

coefficient  𝛽1 = 0.5, 𝛽2 = 1, 𝛽3 = 1.5, 𝛽4 = 2    enters the equation. Those parameters are set 

at several different values to allow study of the estimators under conditions where the panel data 

model was properly specified.   For each combination of parameters we vary the size of our 

panel N, the cross-sectional dimension, takes on values of 30 , 50 ,100, 200 and T, the time 

dimension, is assigned value of  10.  

The four explanatory variables are denoted  𝑥1,𝑥2, 𝑥3  and 𝑥4 . These variables are described in 

table 1. The variables are all normally distributed with different means and standard deviations. 

All Variables are vary freely in time. All variables and parameters of the model necessary to 

calculate the dependent variable y were simulated as well: the coefficients of the variables, 

𝛽1, 𝛽2, 𝛽3, and 𝛽4 were sampled from a normal distribution. The mean of the constants, is 

assumed to be 10 and the variance of its normal distribution 2. Having determined these 

variables, the dependent variable, y, is calculated. The settings of the model variables of the 

simulation study are given in the following table. 

                                                 Table 1: Description of Variables 

Variable Parameter 

𝑥1 𝑁~(N ∗ T,0.4,0.3) 

𝑥2 𝑁~(N ∗ T ,0.67,0.05) 

z 𝑁~(N ∗ T ,0.35,0.2) 

𝑥3 z + u 

𝑥4 𝑁~(N ∗ T ,12,3) 
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To simulate a data-generating process in which observations are clustered by units, we first 

generate a series of  N within-unit means 𝑋𝑖 and corresponding unit effects  𝛼𝑖 . The following 

table shows the descriptions of  assumed true values of parameters used for our simulation 

studies. 

Table 2 : Parameters Manipulated in Simulation and Their Assumed Values  

Parameter                     Description                                                    Assumed values 

N                                Number of cross sectional units                          30 , 50 , 100, 200 

T         Time periods                                                            10 

𝛽 = (𝛽1,𝛽2 , 𝛽3 ,𝛽4)      Parameter                                                        ( 0.5,1 , 1.5, 2)          

𝜎𝛼                              Standard deviation of unit effects                                        2 

𝜎𝜀                               Standard deviation of error terms                                        1        

 

We then draw  N observations of  𝑋𝑖   within each unit  𝑖 = 1,2, . . . . 𝑁 . The total sample size is 

𝑁 × 𝑇. Finally, we apply (3.4) to produce 𝑦𝑖 as a linear function of 𝑋𝑖, with slope 𝛽 and unit-

level constant terms 𝛼𝑖. Our simulations considered only balanced panel data. In order to 

highlight the differences between the usual FE and RE approaches, we generate our data as  

typical empirical crime problem.  

Since repeated measures are used, we can estimate causal relationship rather than mere 

correlation. To see for potential individual-specific fixed effects, we create a box plot of the 

response grouped by units .We now plot the considerable heterogeneity of fixed effects  across 

individuals and years of our simulated data as it appear in panel data. 
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Fig 4.1: FE Heterogeneity of  Simulated Row Data Across Individuals for  N=100, T=10.  

Figure 4.1 shows evidence of heterogeneity  in the response  among cross sectional units and 

unobservable variables does not change over time. The model with individual-specific intercepts 

and common slope appears to fit the simulated data  well. 

individual_1 individual_31 individual_56 individual_8

5
10

15
20

25
30

35

Heterogeineity across individuals

id

y



69 

 

 

Fig.4.2: FE Heterogeneity  Across Years from  Simulated Data for  N=100 ,T=10  

Figure 4.2 suggests there is no heterogeneity in the  response between years. However, there are 

no systematic individual-specific effects over time. 

 

Fig 4.3: FE Heterogeneity of  Simulated Data Across mean of Individuals for  N=100 ,T=10  

The box plot displayed in figure 4.3 represents summary statistics for the analysis of 

heterogeneity across  individuals. Thus, we  have Some evidence as there is systematic 

differences  in the  mean response  among cross sectional units and unobservable variables does 
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not change over time. As seen in the exploratory plots, there are no systematic individual-

specific effects over time. 

 

Fig 4.4 : FE  Heterogeneity of  Simulated Data Across of Years  for  N=100 ,T=10. 

Figure 4.7 represents summary statistics for the analysis heterogeneity across  mean of  years. 

Thus, there does not appear to be any systematic differences in the mean response between years 

and unobservable variables does not change over time. As we can see  in the exploratory plots, 

there are no systematic individual-specific effects over time. 

In our simulation design , we have included one endogenous variable in the panel data regression 

model. Therefore, we plot  endogenous varible x3 againist its instrument z  for N=100,T=10  to 

see whether there is a relationship between them. 
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Fig 4.5 : Simulated Data that Shows Relationship Between Endogenous Variable x3 and  its 

Instruments z for  N=100,T=10. 

From figure 4.5 we have evidence of  there is a relationship between endogenous variable x3 and 

its instruments z. Note that this regression leads to  that increases in the instrument  z  , then  the 

endogenous variable x3 also  increase. We calculate this correlation in the simulation which is 

0.868. 
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Fig 4.6: Relationship Between Response Variable and Endogenous Variable x3 for 

N=100,T=10. 

The graphical exploration of the simulated data in figure 4.6 suggests that there is considerable 

heterogeneity in the individual units, which we have been  modeled  in chapter 3. That is, we 

discussed  a model in which intercepts vary across entities. This model is cannot be estimated via 

OLS. Thus, from figure 4.6, we have some evidence that regular OLS regression does not 

consider heterogeneity across groups or time.  

4.3  Simulation  Results 

The specific purpose of these simulations is to analyze the finite sample asymptotic  properties of 

the previous panel data model estimators  for different values of  cross sectional units. For each 

simulated dataset, we estimate the fixed effects and  the random effects model  estimators and 

record the estimates of  betas produced by each methods. 

In particular, we focus on  investigating   the asymptotic properties of  within ,  2SLS,  and GLS 

estimators depend crucially on fixed T and Large N for static panel data model. We examine 

how the fixed-effect and random effect consistency associated with each of these estimators 

varies across cross sectional dimension for fixed time dimension. This section reports the results 
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of simulation designed to investigate the finite sample relative consistency of OLS, Within, 

2SLS  and  GLS.  In assessing the performance for the these estimators, an examination of the 

means and standard deviations of the estimates of parameters was made. The simulation results 

of each estimator were reported  in tables 3 consisting  different values of cross sectional units  

30, 50, 100,200 and fixed  time dimension T=10.  

Table 3: Simulated  Results for  Panel Data model estimators 

                                                               N=30 , T=10 

Estimates 
Pooled OLS Fixed effects 2SLS Random effects 

  𝛽 Se   𝛽 Se   𝛽 Se   𝛽 Se 

𝛽1 0.4118 0.19887 0.47863 0.10912 0.4865 0.10412 0.684976 0.13029 

𝛽2 0.5007 0.59488 0.42513 0.59975 0.49723 0.57975 0.582934 0.652202 

𝛽3 1.3624 0.1601 1.3024 0.15311 1.26831 0.13493 1.026521 0.148384 

𝛽4 1.496 0.02998 1.48601 0.01057 1.45601 0.01046 1.496028 0.011769 

R square 0.96916  0.87294    0.96585  

𝜎𝜀
2       0.3912  

𝜎𝛼
2       0.0544  

𝜃       0.353  

 N=50,T=10 

Estimates Pooled OLS Fixed effects 2SLS Random effects 

   𝛽 Se   𝛽 Se   𝛽 Se   𝛽 Se 

𝛽1 0.44968 0.09059 0.47761 0.07298 0.47761 0.09298 0.45794 0.08991 

𝛽2 0.654722 0.54692 0.6768 0.5316 0.7768 0.5216 0.44322 0.5128 

𝛽3 1.29895 0.12807 1.40549 0.112 1.2134 0.11375 1.22881 0.12727 

𝛽4 1.495309 0.00903 1.49823 0.0092 1.4952 0.00912 1.4968 0.00896 

R square 0.97371  0.87796    0.97396  

𝜎𝜀
2       0.3489  

𝜎𝛼
2       0.0229  

𝜃       0.2235  

 N=100 , T=10 

Estimates Pooled OLS Fixed effects 2SLS Random effects 

   𝛽 Se   𝛽 Se   𝛽 Se   𝛽 Se 
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𝛽1 0.69986 0.0902 0.5881 0.0903 0.5241 0.0903 0.6142 0.08856 

𝛽2 0.95136 0.5251 1.1297 0.4036 1.0197 0.5129 0.9993 0.45188 

𝛽3 0.89355 0.13264 0.9663 0.1256 1.2147 0.1145 0.92643 0.1511 

𝛽4 1.43594 0.0087 1.5008 0.009 1.5008 0.008356 1.49767 0.0286 

R square 0.96023  0.8663    0.96077  

𝜎𝜀
2       0.7037  

𝜎𝛼
2       0.0323  

𝜃       0.172  

 N=200 , T=10 

Estimates Pooled OLS Fixed effects 2SLS Random effects 

   𝛽 Se   𝛽 Se   𝛽 Se   𝛽 Se 

𝛽1 0.52655 0.08486 0.52807 0.0687 0.5381 0.0763 0.5266 0.0648 

𝛽2 0.76084 0.49742 0.8775 0.3959 0.8975 0.3959 0.7687 0.4373 

𝛽3 1.3127 0.0897 1.30401 0.09368 1.372 0.08357 1.31206 0.0812 

𝛽4 1.4959 0.0083 1.4963 0.00664 1.4983 0.00664 1.4959 0.02629 

R square 0.9600  0.86752    0.96373  

𝜎𝜀
2       0.6617  

𝜎𝛼
2       0.01866  

𝜃       0.117  

 

The results in table 3 presents that method of estimation, mean ,standard error of estimate of 𝛽 

and adjusted R square. While choice of either technique could be justified on the basis of our 

results, given the size of the standard deviation of the panel data model estimates. In our 

simulation, we look at mean and standard error of   pooled OLS, Fixed effects, 2SLS and GLS 

base on result given in table 3. As N increases , the mean of Pooled OLS, Fixed effects  , 2SLS 

and Random effects  estimators increases with fixed T. Standard errors are generally decreasing 

as N increases with fixed T for all techniques except for 2SLS.  

Results in the table 3 indicate that in the presence of endogeneity, 2SLS estimator has lower 

standard error than fixed effect estimation except for N=50 and T=10. This is an indication of the 

theoretical result that the variance of the 2SLS estimator is lower than the variance of the fixed 

effects or within  estimator. This also implies 2SLS is consistent when there is endogenous 
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variable and while other methods are efficient. The results show that the 2SLS performs well for 

estimating parameters of the model.  The random effects or GLS estimator performs well relative 

to pooled OLS throughout cross sectional units as it has small standard error. In general, based 

on our simulation results, pooled OLS has high standard error and 2SLS has smaller standard 

error compared to all other estimators. 

For instance, as N= 100,T=10 2SLS estimator of 𝛽(= 5)  converges to 4.2593 and GLS 

estimator converges to 4.0376.Thus , 2SLS is more consistent estimator than within and GLS in 

the presence of endogeneity problem.  

And the averages mean for  pooled OLS and within estimator are 3.98071 and 4.1849 

respectively, while  their  true coefficients values for mean  5  for N=100,T=10. As we can see 

within fixed estimator is outperformed relative to pooled OLS. For all, Increasing the number of 

individuals  data will make the estimators better with fixed time periods . 

If theta  in  table 3  is close to unity, the random effects and fixed effects estimates tend to be 

close to each other , this is especially the case if  T gets large, or the variance of the estimated 

unit effects gets large as compared to the error variance. However, from our simulation results 

theta is  close to  zero rather than one. This indicate that  the estimate obtained from fixed effects 

and random effects are  quite different  as cross sectional units increases. 

As the random effects estimator relies on the strict exogeneity assumption it will produce biased 

estimation results whenever the unit specific effects are correlated with any of the RHS 

variables. However, in this case the unit effects do not covary with the explanatory variables, the 

random effects estimator generates more efficient results and therefore more reliable point 

estimates. This finding is important - although the standard error reported by a fixed-effects is 

smaller than the random- effects and  the fixed-effects estimate is actually likely to be closer to 

the parameter of interest beta.  

Figure 4.7 shows asymptotic normality of panel data regression model estimators using standard 

deviation of estimators for  values of  N=30, 50,100,200 and T=10 are given below. 
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Fig  4.7 a : Distribution of  Estimators Using Standard Deviation from Simulated data for 

N=30 ,T=10. 
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Fig 4.7 b : Distribution of  Estimators using Standard Deviation from Simulated Data for 

N=50 ,T=10. 

 

Fig 4.7 c : Distribution of  Estimators Using Standard Deviation from Simulated Data for 

N=100 ,T=10. 
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Fig. 4.7 d : Distribution of  Estimators Using Standard Deviation from Simulated Data for 

N=200,T=10.  

Figures 4.7 a , b, c, and d  display estimated probability density functions for the  panel data 

model estimators for varied values of individuals. For N=30, T=10 , as it can be seen, and as 

expected, 2SLS estimator is  outperformed than Within, GLS and Pooled OLS estimators in 

terms of  mean of estimates. For N=50,T=10,Within estimator  is better than the other estimators. 

In the figure 4.7 c and d  2SLS estimator more close to true value as N increases. In general as 

number of cross sections unit increase and time dimension is fixed, the panel data estimators 

closer and closer to true value. 

Figures 4.8 show the distributions of  Pooled OLS, Within, 2SLS and random effects coefficients 

estimated from a data generating process  with four RHS variables  and it's standard deviation. 
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Fig 4.8 a : Distribution of  Estimators using Mean and Standard Deviation from Simulated 

Data for N=30,T=10.

 

Fig 4.8 b : Distribution of  Estimators using Mean and Standard Deviation  from Simulated 

Data for N=50,T=10 
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Fig 4.8 c : Distribution of  Estimators using Mean and Standard Deviation from Simulated 

Data for N=100,T=10 

 

Fig 4.8 d : Distribution of  Estimators using Mean and Standard Deviation from simulated 

data for N=200,T=10  

As we can see from  figure 4.8   variation across cross sectional units  gets smaller as the number 

of individuals  gets larger and fixed time periods. As we expected , the 2SLS estimator produces 

consistent estimates for true beta of 5 but the distribution is somewhat wider than other 

estimators. However ,the within and GLS estimators are not consistent when there is endogenous 

variable and individual effects are correlated with regressors. The pooled  OLS estimator  far 

away from the true relationship and its distribution is wider than all other estimators. Overall, our 

simulation results clearly show that  as  N increase and T is fixed , then, the standard error  of  

Pooled OLS , within , 2SLS and GLS  estimators  gets decreases. 
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CHAPTER  5 

CONCLUSION AND RECCOMMENDATION 

5.1 Conclusions 

Panel data, by blending the inter-individual differences and intra-individual dynamics have 

advantages over cross-sectional or time series data. It has greater capacity for capturing the 

complexity of human behavior and more accurate inference of model parameters can be obtained 

through panel data. This work aimed at  estimation of  panel data regression models with fixed 

effects and random effects when the equation of interest contains unobserved heterogeneity as 

well as  endogenous explanatory variables, where endogeneity is conditional on the unobserved 

effect. The assumptions behind the fixed and random effect approaches and their strengths,  

weaknesses and complications  which arises in implementing estimation are also presented. We 

have departed from the existing literature by deriving and investigating asymptotic properties of 

panel data model estimators including 2SLS  and GLS estimators for large cross-sections and 

fixed time periods. In particular, we provided consistency and asymptotic  normality of model 

estimators under specified conditions. 

We showed that both estimators are consistent and have asymptotically normal distributions  and 

have different convergence rates dependent on the assumptions of the regressors and the 

remainder disturbances. 

We performed simulations studies to analyze the finite sample asymptotic  properties of the 

model estimators  for 𝑁 = 30 , 𝑁 = 50,𝑁 = 100, 𝑁 = 200 and 𝑇 = 10. The simulation runs to 

compute the mean and standard errors of the estimator within, 2SLS , OLS and GLS. The 

summary of results presented in table 3 suggest that all estimators perform well across a range of 

different panel dimensions. In the presence of endogeneity, 2SLS performs better relative to 

within estimator with large cross-sections. The standard error of GLS are smaller than OLS, 

which is consistent with the theoretical result under exogeneity between individual effects and 

regressors. The pooled  OLS estimator  far away from the true relationship and its distribution is 

wider than all other estimators in large sample size. Overall, our simulation results show that  the 

estimated standard error of estimators  gets decreases in large cross-sections with fixed time 

periods. One of the most important uses of model estimations is to increase understanding of 

estimators and reduce computational complication while estimating panel data models. 
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5.2  Recommendations 

There are  a number of possible extensions for estimation of panel data  model; 

1. Previous studies have often assumed that data are cross-sectionally independently and 

identically  distributed. Our findings suggest that future studies should pay more attention to 

cross-sectional heterogeneity. 

2. There are also a number of possible extensions to fixed and random-effects models that can 

be entertained through the use of a covariance structure approach. While we did not illustrate 

these extensions , they have potentially important theoretical applications. Therefore , a much 

wider range of interesting questions can be addressed. 

3. For an intermediate model between fixed effects and random effects, these studies propose 

several instrumental variables estimators by which both the coefficients on time-varying and 

time invariant regressors can be consistently estimated. It would be interesting to investigate 

the large N and large T properties of these instrumental variables estimators and the 

Hausman tests based on these estimators asymptotically. 

4. Two widely-used methods are the use of either fixed or random effects models. However 

How best to choose between fixed and random effects remains unclear in the applied 

literature. Therefore, researchers and  analysts should also pay attention to how one can 

choose random and fixed model to come up with innovative method like likelihood ratio test 

, RMSE of estimates , etc and compare with Hausman test. 

5. It is hereby recommended that for any econometric problems involving both cross-sectional 

and time series data, it is appropriate and adequate to use panel data model in analyzing such 

data. Therefore, there are many important issues such as modeling of joint dependence, 

simultaneous equations models, the random intercept model ,varying parameter models (e.g., 

Hsiao 1992, 2003; Hsiao and Pesaran 2006), unbalanced panel, measurement errors (e.g., 

Griliches and Hausman 1986;Wansbeek and Koning 1989), nonparametric or semiparametric 

approach, bootstrap approach, repeated cross-section data, unrelated regression model, 

dynamic model, two-way random components, etc, that are not discussed here but are of no 

less importance. An important avenue of research is to find estimators which are efficient, or 

nearly so, and yet have better finite sample properties than the existing estimators. 
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6. Finally, asymptotic as (N, T → ∞) are much more sensitive to data generating processes than 

asymptotic as either N → ∞ or T → ∞ are. Future studies can avoid making any particular 

restriction on the relative sizes of N and T  and then theoretical results apply to a broader 

range of panel data. 
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Appendix 

#Revised R code for simulation of panel data regression model and estimators 

For further enquiry  contact  magetade2003@gmail.com 

library(mvtnorm) 

N <- 200 

T<- 10 

NT<- N*T 

nSims <- 1000 

b1=0.5   

b2=0.75   

b3=1   

b4=1.5 

sigmaAlpha <- 0.7 

sigma <- 0.2 

rXm <- c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 ) 

alphai=rnorm(N,10,2)  #alphai simulation 

id <- rep(1:N,T) 

f <- rep(rnorm(N),T) # is individual specific 

sig <- diag(rep(1,T)) 

z <- rnorm (N*T , 0.35,0.18) 

u <-rnorm(N*T,0.29,0.1) 

x1 <- rnorm(N*T, 0.37,0.3)  

x2 <- rnorm(N*T,0.65,0.05)  

x3 <-  z + u 

x4 <- rnorm(N*T,12,3) 

X = cbind(x1,x2,x3,x4) 

y <- b1*x1 + b2*x2 + b3* x3 + b4* x4+ alphai + u 

pdata <- data.frame(id = rep(paste("individual",1:N, sep="_"),each =T),time  = rep(1:T,N),alphai 

= rnorm(N), y, x1,x2,x3,x4,z,u ) 

library("plm") 

panel <- plm.data(pdata, index = c("id","time")) 
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#panel <- pdata.frame(pdata,c("id","time")) 

 eq <- y ~ x1 + x2 + x3 + x4 

# Pooled OLS estimator 

pooling <- plm(eq , model = "pooling", data=panel) 

summary(pooling ) 

# Between estimator 

between <- plm(eq , model = "between", data=panel) 

summary(between) 

# Fixed effects or within estimator 

fixedeffects <- plm(eq , model = "within", data=panel,effects="individual") 

summary(fixedeffects) 

# Random effects estimator 

random <- plm(eq, model = "random", data=panel,effects = "individual") 

summary(random) 

# Pooled OLS estimator 

pooling <- plm(y ~ x3, model = "pooling", data=panel) 

summary(pooling ) 

# Between estimator 

between <- plm(y ~ x3 , model = "between", data=panel) 

summary(between) 

# Fixed effects or within estimator 

fixedeffectx3 <- plm(y ~ x3, model = "within", data=panel,  effect="individual") 

summary(fixedeffectx3) 

library("sem") 

# Two-stage least square estimator 

twostageleastsquare <- tsls(y ~ x3, instruments = ~ z,data=panel) 

summary(twostageleastsquare) 

fit2sls <- plm(y ~ x3,data=panel,method="2SLS",instrument=~z) 

summary(fit2sls) 

twostageleastsquare3 <- tsls(y ~ x1 + x2 + x4, instruments = ~ z,,data=panel) 

summary(twostageleastsquare3) 
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library("AER") 

 iv <- ivreg(y ~ x3 | z, data=panel) 

summary(iv)  

# Random effects estimator 

random <- plm(eq, model = "random", data=panel,effects = "individual") 

summary(random) 

# Hausman test for fixed versus random effects model 

phtest(random, fixed) 

phtest(fe, re) 

phtest(re,iv) 

phtest(re,twostageleastsquare) 

plot(density(fixef(fixedeffects))) 

plot(x3,z) 

plot(y ~ id, main="Heterogeineity across individuals", data=panel) 

plot(y ~ time, main="Heterogeineity across years", data=pdata) 

plot(y ~ x3,main="Heterogeineity across individuals", data=pdata) 

library(gplots) 

plotmeans(y ~ id, main="Heterogeineity across individuals", data=pdata) 

plotmeans(y ~ time, main="Heterogeineity across years", data=pdata) 

plot(pdata$x3, pdata$y, pch=19, xlab="x3", ylab="y") 

abline(lm(pdata$y~pdata$x3),lwd=3, col="red") 

 

good! 

#Simulation for comparision of estimators using their standard deviation 

plot(function(x) {dnorm(x)}, -5, 5, ylab="Density") 

plot(function(x) {dnorm(x, sd=2.3)}, -5, 5, col="red", add=TRUE) 

plot(function(x) {dnorm(x, sd=1.5)}, -5, 5, col="blue", add=TRUE) 

plot(function(x) {dnorm(x, sd=1.41)}, -5, 5, col="green", add=TRUE) 

plot(function(x) {dnorm(x, sd=1.9)}, -5, 5, col="orange", add=TRUE) 

legend(x = "topleft", legend = c("True value", "pooled OLS", "Within","2SLS","GLS"),  lty = 

c(1, 1, 1), col = c("black", "red", "blue","green","orange")) 
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title(" N=30 , T=10") 

plot(function(x) {dnorm(x)}, -5, 5, ylab="Density") 

plot(function(x) {dnorm(x, sd=2.1)}, -5, 5, col="red", add=TRUE) 

plot(function(x) {dnorm(x, sd=1.35)}, -5, 5, col="blue", add=TRUE) 

plot(function(x) {dnorm(x, sd=1.39)}, -5, 5, col="green", add=TRUE) 

plot(function(x) {dnorm(x, sd=1.85)}, -5, 5, col="orange", add=TRUE) 

legend(x = "topleft", legend = c("True value", "pooled OLS", "Within","2SLS","GLS"),  lty = 

c(1, 1, 1), col = c("black", "red", "blue","green","orange")) 

title(" N=50 , T=10") 

plot(function(x) {dnorm(x)}, -5, 5, ylab="Density") 

plot(function(x) {dnorm(x, sd=1.98)}, -5, 5, col="red", add=TRUE) 

plot(function(x) {dnorm(x, sd=1.26)}, -5, 5, col="blue", add=TRUE) 

plot(function(x) {dnorm(x, sd=1.22)}, -5, 5, col="green", add=TRUE) 

plot(function(x) {dnorm(x, sd=1.73)}, -5, 5, col="orange", add=TRUE) 

legend(x = "topleft", legend = c("True value", "pooled OLS", "Within","2SLS","GLS"),  lty = 

c(1, 1, 1), col = c("black", "red", "blue","green","orange")) 

title(" N=100 , T=10") 

plot(function(x) {dnorm(x)}, -5, 5, ylab="Density") 

plot(function(x) {dnorm(x, sd=1.62)}, -5, 5, col="red", add=TRUE) 

plot(function(x) {dnorm(x, sd=1.20)}, -5, 5, col="blue", add=TRUE) 

plot(function(x) {dnorm(x, sd=1.17)}, -5, 5, col="green", add=TRUE) 

plot(function(x) {dnorm(x, sd=1.39)}, -5, 5, col="orange", add=TRUE) 

legend(x = "topleft", legend = c("True value", "pooled OLS", "Within","2SLS","GLS"),  lty = 

c(1, 1, 1), col = c("black", "red", "blue","green","orange")) 

title(" N=200 , T=10") 

# simulation for comparision of estimators using betas and sigmas 

plot(function(x) {dnorm(x,mean=5,sd=1)}, -2, 12, ylab="Density") 

plot(function(x) {dnorm(x, mean=3.7,sd=2.3)} ,  -8, 10, col="red", add=TRUE) 

plot(function(x) {dnorm(x, mean=3.2,sd=1.5)} , -8, 10, col="blue", add=TRUE) 

plot(function(x) {dnorm(x, mean=4.1, sd=1.65)}, -8, 10, col="green", add=TRUE) 

plot(function(x) {dnorm(x, mean=2.9,sd=1.9)} , -8, 10, col="orange", add=TRUE) 
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legend(x = "topleft", legend = c("True value", "pooled OLS", "Within","2SLS","GLS"),  lty = 

c(1, 1, 1),col = c("black", "red", "blue","green","orange")) 

title("N=30, T=10") 

 

plot(function(x) {dnorm(x,mean=5,sd=1)}, -2, 12, ylab="Density") 

plot(function(x) {dnorm(x, mean=3.7,sd=2.3)} ,  -8, 10, col="red", add=TRUE) 

plot(function(x) {dnorm(x, mean=3.2,sd=1.5)} , -8, 10, col="blue", add=TRUE) 

plot(function(x) {dnorm(x, mean=4.193, sd=1.69)}, -8, 10, col="green", add=TRUE) 

plot(function(x) {dnorm(x, mean=2.9,sd=1.9)} , -8, 10, col="orange", add=TRUE) 

legend(x = "topleft", legend = c("True value", "pooled OLS", "Within","2SLS","GLS"),  lty = 

c(1, 1, 1),col = c("black", "red", "blue","green","orange")) 

title("N=50, T=10") 

plot(function(x) {dnorm(x,mean=5,sd=1)}, -2, 12, ylab="Density") 

plot(function(x) {dnorm(x, mean=4.36,sd=2.1)} ,  -2, 12, col="red", add=TRUE) 

plot(function(x) {dnorm(x, mean=3.5,sd=1.35)} , -8, 12, col="blue", add=TRUE) 

plot(function(x) {dnorm(x, mean=4.41, sd=1.72)}, -8, 10, col="green", add=TRUE) 

plot(function(x) {dnorm(x, mean=3.7,sd=1.85)} , -8, 12, col="orange", add=TRUE) 

legend(x = "topleft", legend = c("True value", "pooled OLS", "Within","2SLS","GLS"),  lty = 

c(1, 1, 1),col = c("black", "red", "blue","green","orange")) 

title("N=50, T=10") 

plot(function(x) {dnorm(x,mean=5,sd=1)}, -2, 12, ylab="Density") 

plot(function(x) {dnorm(x, mean=3.6,sd=1.98)} ,  -8, 12, col="red", add=TRUE) 

plot(function(x) {dnorm(x, mean=3.9,sd=1.26)} , -8, 12, col="blue", add=TRUE) 

plot(function(x) {dnorm(x, mean=4.458, sd=1.79)}, -8, 10, col="green", add=TRUE) 

plot(function(x) {dnorm(x, mean=4.1,sd=1.63)} , -8, 12, col="orange", add=TRUE) 

legend(x = "topleft", legend = c("True value", "pooled OLS", "Within","2SLS","GLS"),  lty = 

c(1, 1, 1),col = c("black", "red", "blue","green","orange")) 

title("N=100, T=10") 

plot(function(x) {dnorm(x,mean=5,sd=1)}, -2, 12, ylab="Density") 

plot(function(x) {dnorm(x, mean=4.9,sd=1.62)} ,  -8, 12, col="red", add=TRUE) 

plot(function(x) {dnorm(x, mean=4.1,sd=1.23)} , -8, 12, col="blue", add=TRUE) 
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plot(function(x) {dnorm(x, mean=4.497, sd=1.58)}, -8, 10, col="green", add=TRUE) 

plot(function(x) {dnorm(x, mean=4.39,sd=1.37)} , -8, 12, col="orange", add=TRUE) 

legend(x = "topleft", legend = c("True value", "pooled OLS", "Within","2SLS","GLS"),  lty = 

c(1, 1, 1),col = c("black", "red", "blue","green","orange")) 

title("N=200, T=10") 

plot(function(x) {dnorm(x,mean=5,sd=1)}, -2, 12, ylab="Density") 

plot(function(x) {dnorm(x, mean=3.916,sd=1.82)} ,  -8, 12, col="red", add=TRUE) 

plot(function(x) {dnorm(x, mean=4.19,sd=1.25)} , -8, 12, col="blue", add=TRUE) 

plot(function(x) {dnorm(x, mean=4.297, sd=1.602)}, -8, 10, col="green", add=TRUE) 

plot(function(x) {dnorm(x, mean=3.92,sd=1.47)} , -8, 12, col="orange", add=TRUE) 

legend(x = "topleft", legend = c("True value", "pooled OLS", "Within","2SLS","GLS"),  lty = 

c(1, 1, 1),col = c("black", "red", "blue","green","orange")) 

title("N=200, T=10") 

 

The end ! 

 

 


