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ABSTRACT 

In this study, the combined effects of magnetic fields, buoyancy force, thermal 

radiation, viscous and Ohmic heating on turbulent hydromagnetic flow of an 

incompressible electrically conducting fluid over a moving vertical plate in a rotating 

system is investigated numerically. The governing equations are reduced to non-linear 

ordinary differential equations using the time-averaged approach known as Reynolds-

averaged Navier–Stokes equations and tackled by employing an efficient Runge-

Kutta Fehlberg integration technique coupled with shooting scheme. Graphical results 

showing the effects of various thermophysical parameters on the velocity, 

temperature, local skin friction and local Nusselt number are presented and discussed 

quantitatively. Moreover, After introducing Pseudo time spacing into our model the 

newly emerging PDE's solved using the finite difference scheme and carried the 

computations by taking a large time interval.    
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CHAPTER ONE 

Introduction 

1.1 Background Information   

Flow of fluids occur in all fields of our natural and technical environment and anyone 

perceiving their surroundings with open eyes and assessing their significance for 

themselves and their fellow beings can convince themselves of the far reaching 

effects of fluid flows. Without fluid flows life, as we know it, would not be possible 

on Earth, nor could technological processes run in the form known to us and lead to 

the multitude of products which determine the high standard of living that we 

nowadays take for granted. Without flows our natural and technical world would be 

different, and might not even exist at all. Flows are therefore vital following  

(Franz,2008)   

In this section, definition of terms will be given.  

A fluid is defined as a substance that deforms continuously when acted on by a 

shearing stress of any magnitude. A shearing stress(force per unit area) is created 

whenever a tangential force acts on a surface. Common fluids such as water, oil, and 

air satisfy the definition of a fluid. that is they will flow when acted on by the searing 

stress.  

Fluid dynamics is the study of force that causes fluid motion. The force acting on a 

fluid element may be classified as either body force or surface forces. Fluids are 

classified into two i.e Compressible and Incompressible. Fluids whose density does 

not change significantly with change in pressure or temperature are assumed to be 

incompressible fluids. When there is significant change in the density of the fluid 

with change in pressure or temperature then the fluid is considered to be 

compressible.  

The relation between searing stress and rate of shearing strain (velocity gradient) is 

given by a relationship of the form: ( Currie,1974) 

      
dU

dZ
                                                           (1.1) 
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where the constant of proportionality is designated by   and known as the Coefficient  

of viscosity of the fluid. Fluid in which the shearing stress in linearly related to the 

rate of shearing strain are designated as Newtonian fluids. Fluid for which the searing 

stress is not linearly related to the rate of shearing strain are designated as Non-

Newtonian fluids. Of course this study devoted to a Newtonian fluid.  

If   is a flow property such as velocity, pressure, mass, density or temperature, then 

we can have the following types of flows:  

   Steady flow : 0
t

 
 

 
                                            (1.2) 

   Unsteady flow:  0
t

 
 

 
                                      (1.3) 

    Uniform flow :   

0

0
t tt 

 
 

 
                                      (1.4) 

   Non- Uniform flow :  

0

0
t tt 

 
 

 
                              (1.5) 

1.1.1 Magnetohydrodynamics 

Magnetic fields influence many natural and man-made flows. They are routinely used 

in industry to heat, pump, stir and levitate liquid metals. There is the terrestrial 

magnetic field which is maintained by fluid motion in the earth's core, the solar 

magnetic field which generates sunspots and solar flares, and the galactic magnetic 

field which is thought to influence the formation of stars from interstellar clouds. The 

study of these flows is called magnetohydrodynamics (MHD), (Davidson, 2001). 

MHD is the physical-mathematical framework that concerns the dynamics of 

magnetic fields in flow of electrically conducting fluids, e.g. in plasmas and liquid 

metals. The word magnetohydrodynamics is comprised of the words magneto- 

meaning magnetic, hydro- meaning water (or liquid) and -dynamics referring to the 

movement of an entity by forces. Synonyms of MHD that are less frequently used are 

the terms magnetofluiddynamics and hydromagnetics.  
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One of the most famous scholars associated with MHD was the Swedish physicist 

Hannes Alfvén (1908-1995), who received the Nobel Prize in Physics (1970) for 

fundamental work and discoveries in magnetohydrodynamics with fruitful 

applications in different areas of plasma physics.  

Formally, MHD is concerned with the mutual interaction of flow of an electrically 

conducting fluid and magnetic fields. The fluids in question must be electrically 

conducting and non-magnetic, which limits us to liquid metals, hot ionised gases 

(plasmas) and strong electrolyte  (Davidison,        

If an electrically conducting fluid moves past a magnetic field, there arises an 

interaction between the flow field and magnetic field. The magnetic field exerts a 

force on the fluid due to induced currents and the induced currents affect the original 

magnetic field. There develops a component of electric field in the direction 

perpendicular to both the electric field and the magnetic field. The production of a 

potential difference across an electrical conductor when a magnetic field is applied in 

a direction perpendicular to that of the flow of current. This Phenomenon is known as 

Hall effect.  

1.1.2 Free Convection Flow 

In free convection, fluid motion results when body forces act on the fluid in which 

density gradient exist. The density gradient may be due to temperature gradient 

existing in the fluid, while the body force is due to gravitational force. In our study 

we consider free convection flow due to temperature difference. Buoyant or Free 

convection is a very important mechanism that is operative in a variety of 

environments from cooling electronic circuit boards in computer to causing large 

scale circulation in the atmosphere as well as in lakes and oceans that influences that 

the weather. It is caused by the action of density gradients in conjunction with a 

gravitational field.  

1.1.3 Fluid Pressure   

The Science of fluid mechanics deals principally with relationship between fluid 

motion and the forces causes the flow; Pressure forces exerted by jet enable huge 
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aircraft to takeoff and fly. Since a fluid has no definite shape, its pressure applies in 

all directions. Fluid pressure can also be amplified through hydraulic mechanisms and 

changes with the velocity of the fluid. Fluid pressure can be caused by gravity, or 

forces in a closed container. Forces on the walls of closed channels such as pipe make 

it possible for fluid like water and blood to be pumped through their distribution 

network. Fluid forces are classified in two groups namely Body Force and Surface 

Force.  

1.1.4 Body Force  

A body force is a force that acts throughout the volume of a body, in contrast to 

contact forces. Gravity and electromagnetic forces are examples of body forces are 

examples of body forces. centrifugal forces and coriolis force can also be viewed as a 

body force. A body force is distinct from a contact force in that the force does not 

require contact for transmission. Thus, common forces associated with pressure 

gradients and conductive and convective heat transmission are not body forces as they 

require contact between systems to exist. Radiation heat transfer is, on the other hand, 

is a perfect example of a body force. 

1.1.5 Surface Forces  

This is brought about by the interaction between the fluid and its surrounding. They 

include all forces that across an internal or external surface element in a material 

body. Therefore these forces appear  only at the surface of the fluid element. Surface 

forces can be resolved into two components, one along the normal to an elemental 

area and the other along the plane of the elemental area. A fluid motion will have 

surface due to viscous stresses.  

1.1.6 Heat Transfer  

If a fluid dissipates heat or heat is introduced to the flow field, then the study of heat 

transfer is necessary. Heat transfer is the energy transfer which may take place 

between bodies as a result of temperature difference. Conduction refers to heat 

transfer that takes place when the temperature gradient exists in a stationary medium, 

which may be a solid or fluid. In contrast the term convection refers to heat transfer 
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that occurs between a surface and a moving fluid when they are at different 

temperature .If the fluid motion is due to buoyancy effects resulting from variation 

caused  by the temperature difference in the fluid, the heat  transfer is said to be free 

and natural convection. All surface of finite temperature emits energy in the form of 

electromagnetic waves, hence in the absences of an intervening medium, there is a net 

transmission due to electromagnetic waves propagation medium, which can occur in a 

vacuum as well as in a medium. The emissions may occur from solid surface, liquid 

and gases. This type of heat transfer is referred to as radiation. Radiation is type of 

heat transfer in which there is a net heat transmission due to electromagnetic wave 

propagation that take place in a vacuum as well in a medium.    

Convection heat transfer may be categorized according to the nature of the flow i.e. 

forced convection, when the flow is caused by some external means such as a fan and 

free and natural convection, when the flow is as a result of density difference caused 

by temperature gradients. In the present study we will consider free convection heat 

transfer.   

1.1.8 Boundary Layer  

Boundary layers arises to a bounding surface when the influence of a physical 

quantity is restricted to small regions near confining boundaries. A layer near the 

surface of a body or solid in which the flow is affected by the viscous forces is called 

Boundary layer. This phenomenon comes into existence when the non-dimensional 

diffusion parameter, namely, rotation parameter(reciprocal of Ekman number), 

magnetic parameter (square of Hartmann number), frequency etc. are large. When a 

vast amount of viscous and incompressible fluid bounded by a rigid surface is 

rotating rapidly then there appears a thin boundary layer near the bounding surface 

based on the balance between Coriolis and viscous force. In analyzing flow problems 

that involve transfer by convection, boundary layer theory plays a significant role. 

The Boundary layers may exist when a fluid flows on the surface. These are Thermal, 

concentration and Velocity boundary layer. A zero velocity is assumed by fluid 

particles when they come into contact with a surface ( no-slip condition). Velocity 



6 

 

boundary layer is the region in which the velocity gradient is large, however this isn't 

necessarily true in all scenarios.   

The fluid particle attains a thermal equilibrium state when they come in to contact 

with as isothermal plate on its surface temperature. Thermal boundary layer is the 

region on the fluid in which temperature gradients exist.  

1.1.9 Turbulent Flow 

Turbulent flows occur when small disturbance are present in fluid due to small 

variation in physical properties of fluid motion, and wall roughness. Laminar flows 

are characterized by orderliness of the fluid particles, while in turbulent flows path of 

individual particles of fluids are not straight but are intertwined and cross one another 

in disorderly manner. In turbulent flow there would be continual variation of velocity 

and pressure almost at every point in flow region. In the diagram we have presented 

the velocity profile depicting both laminar and turbulent flow scenarios.   

 

Figure 1. 1: Velocity Profile for Turbulent and laminar flows. 

Following Narasimha et al (2007), turbulent flow is a flow regime characterized by 

chaotic variation in the fluid properties, such as low momentum diffusion, high 

momentum convection, and rapid variation of pressure and velocity in space and 

time. In turbulent flow, drag due to boundary layer increases and the unsteady 

vortices appear on many scales and interact with each other. Turbulent flows are 

always unsteady that is the flow various continuously with time even though there is 

steady downstream motion of the fluid. The unsteadiness of turbulent flow is 
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exhibited and/or manifested by eddies that appears to be random in both magnitude 

and direction.  

The momentum that is carried by the fluid particles and exchanged between layers 

exerts forces on the fluid in the layer into which the momentum has been transported 

by the turbulent eddy. Depending on the relative magnitude of the momentum 

involved, the affected fluid layer may be accelerated. while laminar flows are 

associated with relatively low Reynolds number turbulent flows corresponds to high 

values of Reynolds number. Turbulization leads to a rapid mixing of particles in a 

continuous medium and to an increase in the efficiency of mass, momentum, and heat 

transfer; in multiphase multi component media, it also contributes to the acceleration 

of phase transitions and chemical reactions. As the knowledge about the various 

natural objects in which turbulence plays a significant role, modeling this 

phenomenon and related hydrodynamic effects acquires a key importance. 

In most flows of practical interest especially those of large scale the condition in a 

boundary layer or wake are more likely to be turbulent than laminar. The overall 

direction of the flow is well defined but the instantaneous direction of motion of any 

particle is highly unpredictable, and  individual particles distort and rotate as the fluid 

flows. 

Indeed, the early works on fluid dynamics is mostly on laminar flows with very little 

devotion given to turbulent flows but most flows of engineering importance are 

turbulent. 

MHD turbulent describes in an electrically conducting, magnetized fluid. Strictly 

speaking, MHD only applies to collision dominated fluids. however, it is often a 

useful guide to the behavior of magnetized plasmas even in the collision limit. Nature 

routinely produced MHD turbulence. Ionized gas pervades the region between and 

within galaxies and inside stars. It is likely that most of the baryonic matter in the 

universe is in a state of MHD turbulence.  
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1.2 Statement of the Problem  

We shall consider  the fluid flow in the presence of a strong  magnetic force; 

moreover in the course of our model formulation the effect of the Hall current will 

not be neglect. When an electrically conducting fluid flows past a vertical infinite 

plate in a rotating system in the presences of  magnetic field, the motion of the fluid is 

retarded and the velocity and temperature changed are observed. 

The main objective of this present study is to extend the theoretical model of MHD 

turbulent flow in a rotating system and therefore intends to obtain an approximation 

solution to the shape of the velocity , temperature  profiles and both skin friction & 

Nuseelt number. We further let the fluid and the plate to be in a state of rigid rotation 

with uniform angular velocity   about the  -axis taken normal to the plate. The 

strong magnetic field,   which is assumed to be applied transversely to the direction 

of the flow. 

1.3 Justification 

Prominently Fluid mechanics considerations are applied in many fields, especially 

in engineering. Fluid mechanics has become an essential part of diverse field such as 

Medicine, Metrology, Astronomy and Oceanography. In general MHD has its 

application in heat transfer devices. MHD convection flow has many important 

engineering application in the design of power generator, heat exchangers, pumps and 

flow meters, in solving space vehicle propulsion, control and re-entry problems; in 

designing communication and radar system; in creating novel power generating 

system; in developing confinement schemes for controlled fusion and in design of 

nuclear cooling reactor and MHD accelerator; Turbulence causes the formation of 

eddies of many different length scales. Studies related to turbulent flow and heat 

transfer not only present a mathematical challenge but find several applications in 

many industrial, engineering and technological processes (Trevethan & Chanso, 2010). 

For instance, the external flow over all kind of vehicles such as cars, airplanes, ships 

and submarine are turbulence. The flow conditions in many industrial equipment such 

as pipes, ducts, precipitators, gas scrubbers, dynamic scraped surface heat 

exchangers, internal combustion engines and gas turbines are turbulence. In many 

http://en.wikipedia.org/wiki/Eddy_(fluid_dynamics)
http://en.wikipedia.org/wiki/Hubert_Chanson
http://en.wikipedia.org/wiki/Scrubber
http://en.wikipedia.org/wiki/Dynamic_scraped_surface_heat_exchanger
http://en.wikipedia.org/wiki/Dynamic_scraped_surface_heat_exchanger
http://en.wikipedia.org/wiki/Internal_combustion_engine
http://en.wikipedia.org/wiki/Gas_turbine
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geophysical flows such as rivers and atmospheric boundary layer, the flow turbulence 

is dominated by the coherent structure activities and associated turbulent events. In 

the medical field of cardiology, a stethoscope is used to detect heart sounds and 

bruits, which are due to turbulent blood flow. Moreover, when flow is turbulent, 

particles exhibit additional transverse motion which enhances the rate of energy and 

momentum exchange between them thus increasing the heat transfer and the friction 

coefficient (Avila et al , 2011).  

Hydromagnetic flow and heat transfer have received considerable attention in recent 

years due to its various applications in science, engineering and industries. Melt 

refining involves magnetic field applications to control excessive heat transfer rate.  

Fluid flow involving rotating fluid have their application in some phenomena as we 

have mentioned earlier. When a large objects such as ships, automobiles and aircrafts 

move through fluids and the flow of the fluid around them is always turbulent. 

Turbulent also occurs when a fluid moves through fans, pumps, ducts and pipes.   

1.4 Research Hypothesis 

     1.4.1 Null Hypothesis  

The Hall current, other parameter like the Grashoff number, Hall parameter , 

Heat(radaition) Parameter, Prandtl number and rotational Parameter do not affect the 

flow variables. 

1.5 Research Objective  

     1.5.1 General Objective  

      The main objective of this present study is to extend the theoretical model of 

MHD turbulent flow in a rotating system and to include the combined effects of 

magnetic fields, buoyancy force, thermal radiation, viscous and Ohmic heating.  

    1.5.2 Specific Objectives  

The specific objective of this study are to determine : 

i. Mathematical Formulation and Modeling of the problem . 

http://en.wikipedia.org/wiki/Cardiology
http://en.wikipedia.org/wiki/Heart_sounds
http://en.wikipedia.org/wiki/Bruits
http://en.wikipedia.org/wiki/Heat_transfer_coefficient
http://en.wikipedia.org/wiki/Friction
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ii. The velocity , temperature, skin friction, and rate of Heat Transfer profiles for 

electrically conducting fluid flowing past a vertical infinite plate in a rotating 

system subjected to strong magnetic field. 

iii. The effect of Hall current,  Hall Parameter, Radiation parameter,  Eckert 

number, Grsshof number, Prandtl (and turbulence Prandtl) number, Rotation 

parameter and magnetic parameter on the flow variables. 
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CHAPTER TWO 

Literature Review 

2.1 Introduction  

In this  chapter, we give literature review, in which reassess some recent studies 

related to our research. In doing so, this section is prominently devoted to a brief 

literature review of the earlier investigation made on the MHD heat transfer and 

turbulence flow .  

2.2 Literature Review 

Studies of fluid flow problems involving electrically conducting fluids has over the 

recent years received much attentions. In the review of work related to this study, we 

consider some of the studies in MHD fluid flow involving convection heat transfer, 

mass transfer, and flows involving rotating fluids in the presence of magnetic field. 

According to Shercliff , (1965), studies involving hydromagnetic fluid flow date as 

early as 1830 when Faraday experimented on mercury flowing in a glass tube 

between the poles of magnet and discovered that a voltage was induced across the 

magnetic field perpendicular to both the direction of the flow and the magnetic field. 

Hertmann and Lazarus (1937) were the first to discuss both experimentally and 

theoretically the hydromagnetic flow between two parallel plates and studies the flow 

of mercury in a channel under a transverse magnetic field. Alfve'n(1942) discovered 

the magneto fluid dynamics waves called Alfve'n waves. 

Studies in MHD however become popular in the 1950's due to controlled fusion 

research and space technology. Sparrow and Cess (1961) discussed the effect of  a 

magnetic field on free convection heat transfer. Chartuverdi (1996) studied the flow 

of an incompressible viscous fluid past an impulsively started horizontal plate and 

MHD flow past an infinite plate with a constant and variable suction. He also studied 

the finite difference of MHD of stokes problem for a vertical infinite plate in a 

dissipative heat generating fluid with Hall and Ion-slip current. 
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Model studies of the phenomena of MHD convection with respect to turbulent flow 

have been made by many authors. Burr et al. (2000)  presented the analysis of 

hydromagnetic turbulent flow and heat transfer in a rectangular duct with strong 

sidewall jets. Ji et al.  (1997). conducted a numerical investigation into turbulent pipe 

flow under the influence of an imposed transverse magnetic field.  Kenjere and 

Hanjalic (2000).  numerically studied the effects of Lorentz force in turbulence 

closure models. Kitamura and Hirata (1978). investigated the problem of turbulent 

heat and momentum transfer for electrically conducting fluid flowing in two-

dimensional channel under the influence of an imposed transverse magnetic field. 

Numerical simulation of large-eddy in conductive flows at low magnetic Reynolds 

number was reported by (Knaepen and Moin, 2004). Kobayashi (2006). also 

presented large eddy simulation of hydromagnetic turbulent channel flows with local 

subgrid-scale model based on coherent structures. Dibaker (2006) discussed the 

behavior  of turbulent flow with variable surface heat and mass transfer past a parallel 

plate.  

Meanwhile, all conducting fluids with a temperature greater than absolute zero emit 

thermal radiation. Thermal radiation is the emission of electromagnetic waves. It 

represents a conversion of thermal energy into electromagnetic, energy (Cogley et al , 

1968). Thermal energy results in kinetic energy in the random movements of 

molecules in the conducting fluid. Therefore, whenever the temperature of 

surrounding fluid is high, the radiation effects play a very important role in the flow 

process, (Makinde and Tshehla, 2014). This situation does occur in many engineering 

and industrial flow systems. In such cases one has to take into account the effects of 

radiation and free convection. Aboeldahab and Gendy (2002). studied the radiation 

effects on MHD free convective flow of a gas past a semi-infinite vertical plate with 

variable thermophysical properties for higher-temperature difference. Ishak (2011) 

investigated the thermal radiation effects on hydro-magnetic flow due to an 

exponentially stretching sheet. Mohammad et al (2013), studied the radiation effect 

on MHD free convection flow along vertical flat plate in presences of Joule heating 

and heat generation; and they observed that the radiation affect substantially the fluid 

velocity, temperature and skin frication. Although Emad (2005),  Kafousias & 

http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Absolute_zero
http://en.wikipedia.org/wiki/Electromagnetic_waves
http://en.wikipedia.org/wiki/Thermal_energy
http://en.wikipedia.org/wiki/Electromagnetic_energy
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Daskakakis(1985)  investigated the effect of both viscous and Joules dissipation on 

the magnetohydrodynamic convection flow. Palani and Srikanth (2009) investigated 

the free convection MHD flow with thermal radiation from an impulsively started 

vertical plate. They observed that velocity increases with a decreasing magnetic 

parameter Sivaiah et al  (2010) discussed the radiation effects on MHD free 

convective flow over a vertical plate with heat and mass transfer. 

Furthermore, hydromagnetic flow in a rotating systems as received significant 

attention of several researchers due to its applications in various technological 

situations which are governed by the action of Coriolis force. Oceanography, 

meteorology, atmospheric science and limnology all contain some important and 

essential features of rotating fluids. An order of magnitude analysis shows that in 

basic field equations the effects of Coriolis force is more significant as compared to 

that of inertia and viscous forces. It is worthy to note that Coriolis and 

magnetohydrodynamic forces are comparable in magnitude and Coriolis force 

induces secondary flow in the fluid. Seth et al. (2012) investigated unsteady 

hydromagnetic Couette flow of a viscous incompressible and electrically conducting 

fluid in a rotating system in the presence of uniform transverse magnetic field 

considering different aspects of the problem. More recently, Ghosh and Ghosh (2008) 

studied the hydromagnetic rotating flow of a dusty fluid near a pulsating plate with 

several limiting case studies.  Seth and Ghosh (1986) investigated the unsteady 

Hydromagnetic flow in a rotating channel in the presence of inclined magnetic field. 

The fluid was viscous, incompressible and electrically conducting. The pressure 

gradient was applied periodically and magnetic field was applied uniformly. The 

study observed that flow reversals arose in the direction of pressure gradient. 

Kinyanjui et al. (2012) investigated the effect of Hall current on MHD turbulent flow 

over a vertical plate in a rotating system. From the literature review, it appears that 

the combined effects of magnetic fields, buoyancy force, thermal radiation, viscous 

and Ohmic heating on turbulent hydromagnetic boundary layer flow in a rotating 

system has not been reported.   

      The main objective of this present study is to extend the theoretical model of 

MHD turbulent flow in a rotating system by Kinyanjui et al. (2012), and to include 
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the combined effects of magnetic fields, buoyancy force, thermal radiation, viscous 

and Ohmic heating. The mathematical formulation of the problem based on the 

Reynolds averaged Navier-Stokes (or RANS) method is established and Numerical 

scheme is employed to tackle the problem . Both computational and graphical results 

are presented and discussed quantitatively with respect to various parameters 

embedded in the system in section three. 
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CHAPTER THREE 

Governing Equation and Mathematical Modelling 

3.1 Introduction  

It is known that the theory of Magnetohyrodynamics (MHD) is important for the 

description of plasma phenomena especially for the creation of fusion reactors. 

However, this theory-at least at present - has an ad hoc character, since the 

fundamental equations of it are accepted from different branches of disciplines of 

physics. Formally, MHD is concerned with the mutual interaction of fluid flow and 

magnetic fields. The fluids in question must be electrically conducting and non-

magnetic, which limits us to liquid metals, hot ionized gases (plasmas) and strong 

electrolytes. The mutual interaction of a magnetic field,  , and velocity field,  , 

arises partially as a result of the laws of Faraday and Ampere, and partially because of 

the Lorentz force experienced by a current-carrying body.  

In this chapter, we shall describe a mathematical model for the physical problem. 

However, many physical problems provide mathematical challenges and it is 

instructive to make some physically meaningful assumptions to reduce the problem 

into a solvable one. We shall first develop the general physical equations, reduce 

these equations by making assumptions, adopt the non-dimensional parameters so as 

to proceed in trimming dawn the complexity along the formulation and finally 

introduce turbulence. We shall then set up our final governing model equations for 

the problem.  

3.2 Assumptions  

In modeling a natural phenomena into mathematical relationship some assumption are 

made. We make use of the following in our model formulation.    

i .Assume the ratio of the square of the fluid velocity   and that of the square of the 

velocity of light   are too small, i.e 
2

2
1

V

C
  

ii . The Fluid flow is going to be restricted to a Turbulent domain. 
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iii . The fluid shall be considered incompressible hence the density of the fluid is 

assumed to remain constant.  

iv .There is no chemical reaction talking place in the Fluid. 

v . There is no externally applied electric current thus the Lorenz Force is given by 

ˆ ˆJ B  Thus force ˆ 0eE   due to electric filed induced is negligible i.e. ˆ 0E   

vi .The Displacement current   is negligible with respect to the electric current 

density Ĵ . 

vii . The plate is non-conducting. 

viii . Liquid metals and ionized gases have permeability  , so we write ˆ ˆ
eB H   in 

frame of reference. 

ix . The Magnetic number is very large.  

3.3 Basic Equation of Magnetho-Hydrodynamics in a Rotating  Frame 

This section considers the Governing equations of the Magneto-Hydrodynamics that 

are obtained from a combination of electromagnetic and hydrodynamics. The 

combination of the Navier-stokes equation of fluid dynamics and Maxwell's relations 

of the electromagnetism describes Megnetohydrodynamics flow in a rotating frame. 

As Maxwell's relation define the property of the electric and magnetic fields, the 

fundamental laws of electrodynamics are governed by including the Ohm's law(which 

relates the electric current to induced voltage) is to be modified by including induced 

current. The effect of rotation, electric and magnetic fields have to be taken to 

account to modify the basic laws of fluid dynamics comprising of conservation of 

mass, momentum and energy along with the thermal and caloric equations. 

Thermodynamics property of an electrically conducting fluid remains same as that of 

non-conducting fluid if we consider it as non-magnetic and neglect the phenomena 

like electrostriction. In Magnetohydrodynamics, when fluid velocity is small 

compared to the velocity of light, the displacement current being very small 

compared to conduction current, can be neglected. We mention below the basic 

equations of Magnetohydrodyanmics for the flow of a homogenous, isotopic, 
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electrically conducting and constant density   , constant electrical conductivity   and 

constant kinematic coefficient of viscosity   in a rotating frame which rotates with 

uniform angular velocity  relative to an inertia frame. 

The equation of continuity 

This equation is based on the universal law of conservation of mass, which states that 

mass is  neither created nor destroyed. Mathematical this expressed as:  

   . 0q                               (3.3.1) 

The momentum equation (equation of motion) 

This derived from the second Newton's law of motion which states that the sum of 

resultant forces is equal to rate of change of momentum of the flow. In tensor form 

the momentum equation is given by: 

  * 21 1ˆ. 2
q

q q k q p q J B
t

 
 


            


             (3.3.2) 

The Energy equation  

The energy equation is derived from the first law of thermodynamics which states 

that energy is neither created nor destroyed but can be transformed from one form to 

another. Equation for an incompressible fluid is given by as :      

  2 21
.p

T
C q T T J

t
  




      


           (3.3.3) 

 The electromagnetic equation that help in model and formulate MHD problem are 

Maxwell's equation and Ohm's law. Generally they are well discussed in any book on 

electromagnetic theory. here they are adopted as presented by (Neff , 1981). 

 

0

0

eB J

B
E

t

B

B

 


  



 

  

                              (3.3.4) 
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The constitutive field relation  

eB H                 (3.3.5) 

Ohm's law for a moving conductor  

J = [ ]E u B            (3.3.6)      

and Ohm's law for a moving conductor taking Hall current into account  

0

( ) [ ]e eJ J B E u B
B

 
         (3.3.7)  

gF  in (3.3.3) is the body force per unit mass including gravitational effects. In free 

conviction flow, the fluid motion is as result of buoyancy forces due to presence of 

fluid density gradient. We also need to take note that body forces act in the direction 

of the flow. Density gradient is caused by temperature gradient of the fluid; and the 

body force is agreed to be:  

gF g       (3.3.8) 

The pressure gradient 
i

dp

dx
 (this gradient will be zero at free stream due the fact seen 

at the boundary condition) in the x  direction results from the change in elevation up 

the plate thus 

dp
g

dx
         (3.3.9) 

And, the electromagnetic force may be written as: 

ˆ ˆ ˆ ˆ
e eF E J B              (3.3.10)   

In most flow problems the electrostatic force ˆ
eE is negligibly small as compared to 

the electromagnetic force ˆ ˆJ B , since there is no externally applied electric current; 

hence  

ˆ ˆ ˆ
eF J B      (3.3.11) 
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According to many text books the density difference        may be expressed in 

terms of the volume coefficient of expansion   defined  

  
 

 
 
  

  
 
 
  

 

 
 
    
    

 
    

       
 

or  

( )T T              (3.3.12) 

Applying the vector cross product rule to simplify  
     

 
   

 

0 0

0

ˆˆ ˆ
ˆ ˆ 1 1 ˆ

0 0

x y z y x

i j k
J B

J J J B J i B J

B
  

 
 

      
 
 

         (3.3.13)                                                          

Hence the above simplification results a Laplace force to have component along x  

and y ;             
 
 and        

 
 respectively.  

The Coriolis force        can be simplifies as :  

 
ˆˆ ˆ

ˆ ˆ ˆˆ2 2 0 0 2

0

z z z

i j k

k q v i u j

u v

          
    (3.3.14) 

Then Coriolis force has two components ˆ2 zv i   and ˆ2 zu j  along x  and y  

respectively.  

And from equation (3.3.3) All the effect due to viscous stress in the energy equation 

are described by the dissipation function  which, after considerable algebra, can be 

shown to be equal to Versteeg  (1995 ) 

2 2 22 2 2

22 ( . )
du dv dw du dv du dw dv dw

div u
dx dy dz dy dx dz dx dz dy

 
            
                                    

                    (3.3.15) 
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The dissipation function is non negative since it only consist of squared terms and 

represents a source of internal energy due to deformation work on the fluid particle. 

This work is extracted from the mechanical activity which causes the motion and is 

converted into internal energy or heat. 

Given the scenario discussed this far, the governing equation in the absences the 

chaotic and/or fluctuation outlined as follows: 

 

02

2 0

2 2

0

2 ( )

2

1
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z
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z

r

i

u v w

x y z

J Bu u u u
u v w v u g T T

t x y z
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u v w v v

t x y z
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u v w T J

t x y z x
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
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 



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  

  

   
         

   

   
       

   

    
        

    

    (3.3.16) 

 In the above equation (3.3.16) The Laplace force components can be simplified so 

that it can be more convenient to work with as we continuing in the model 

formulation. The desired simplification cab be carried out by making use of the 

Ohm's law.  

Cothran et al (2005) discussed in low collisionality plasma the structure of Ohm's law 

as modified by kinetic effects is of a special importance in understanding  

reconnection; moreover the generalized Ohm's law which accompanying the so-called 

Hall current effect and written as : 

   
 

2

1
. e

e

m J
E u B J J B P

ne ne t



      

    (3.3.17) 

The J term may be due to classical collisional resistivity or "turbulent resistivity" 

due to fluctuation. The Hall term 
1

J B
ne

  associated with differential flow of ions 

and electrons, becomes appreciable at the ion inertia scale ii

pi

C
P


   The electron 
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pressure tensor term is formally of the order of e iiP  (where e  is the ratio of electron 

pressure to magnetic pressure). The final term in (3.3.17), the electron inertia term is 

appreciable at the electron inertial scale /
ipC  . For the ideal MHD, 0E u B   . 

Moreau, (1990) has suggested the generalized Ohm's law including the effect of Hall 

current is written as 

     
0

1
( ) ( )e e

e e

e

J J B E q B P
B e

 
 


          (3.3.17) 

for partially ionized fluid the electron pressure gradient may be neglected; In our case 

we consider      (3.4.17) reduce to  

    
0

( ) ( )e e
eJ q B J B

B

 
                             (3.3.18)       

Note that e  is a constant, in some MHD textbooks, they represent 0 0eB H   while 

others use 0 0eH B  . All this are constant representing the magnetic field strenght 

and does not make any different to the model problem. 

Applying the cross product on equation (3.3.18) as: 

 

    
0

0 0
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

 
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  
 
 

          (3.3.18)  

and yields for xJ  & yJ  from the system and note that 0 0eB H  
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      (3.3.19) 

and similarly for yJ  
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                       (3.3.20) 

hence 

  0 0

2 2

( ) ( )

(1 ) 1
x y

B v mu B u mv
J J

m m

    
  

  
          (3.3.20) 

The Joule heating term 21
J


 also needs to be simplify using (3.3.20) as : 

 
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                      (3.3.21) 

  

 

Now, we need make use of  (3.3.20 - 21) so as to modify  (3.3.16) as : 
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                          (3.3.21) 

3.4 The Geometry and Physics of the Problem in the Present Study 

The current problem deals with a turbulent MHD flow and heat transfer past an  

infinite vertical plate in rotating system. A turbulent flow of an incompressible 

electrically conducting fluid past infinite plate which is subjected to a magnetic field 

applied in the normal direction is considered. Moreover the flow is in a rotating 

system. By faraday’s law of electromagnetic induction, we have that a conductor 

moving in a magnetic field has an electric current induced in it. An ionized fluid 
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flows through a magnetic field, then current is induced in the fluid and this per unit 

area is the current density, J . The Hall effect usually occurs when the Lorentz force 

acts on a charge current in a conductor in the presence of perpendicular magnetic 

field. The introduced heat in the flow field results a heat dissipation. Heat transfer is a 

form of energy transfer. According Kafousias et.al (1985) neglecting the terms 

representing the Joule heating and viscous dissipation from the energy equation may 

lead to erroneous(or non-satisfactory) solution of the problem hence in the present 

problem we have considered it and the energy equation will accompany both effects. 

The effect of the turbulence brought us the additional term ( ' ')R

i ju u   as we 

formulate the fluid flow problem. The R  is the so-called Reynolds-stress tensor Joel 

(2014). And its deemed R to be approximate with an appropriate scheme so that we 

can use it in the Navier-Stokes equation and the model can be implementable.        

Consider the hydromagnetic turbulent flow of an incompressible electrically 

conducting fluid past a moving vertical plate in a rotating system with thermal 

radiation in the presence of a uniform transverse magnetic field of strength B0. 

Choose the coordinate system in such a way that x-axis is along the plate in upward 

direction, z - axis normal to plane of the plate in the fluid and y - axis perpendicular to 

x z- plane. The uniform transverse magnetic field B0 is applied in a direction which is 

parallel to z - axis. It is assumed that no applied or polarization voltages exist 

consequently electric field is zero. The magnetic Reynolds number is very small and 

the induced magnetic field produced by fluid motion is negligible in comparison to 

applied one. The plate moves along x-axis with velocity U0 and both the plate and the 

fluid rotate in unison with uniform angular velocity   about z – axis as shown in 

figure 3.1. 
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Figure 3. 1: Geometry of the problem 

The vertical plate is kept at a higher temperature than the fluid i.e. wT T . The fluid 

flow being studied is free convectional and takes place along the  -axis is under the 

action of transverse variable magnetic field. The boundary layer thickness is along the 

 -axis hence the velocity components will changes along it.  

The flow is taken place in two dimensions in general; as a result it's deemed  the flow 

variables to be depend on two coordinate space and the geometry of the flow ought 

depicted on 3D coordinate space. The velocity u  and v  are depends on , ,x z t .The 

velocity v  does not change along y . For the magnetic field, for it to have an effect on 

the flow it must have been applied in the direction perpendicular to the flow region. 

 The velocity vector is ( , ,0)q u v , where ( , , )u u x z t  and ( , , )v v x z t  in fact based 

on the theoretical concept, before the flow became turbulent the velocity w  along z  

was there. the magnetic field 0(0,0, )B B . The condition over the surface of the 

plate which is at, 0z  , the plate is moving and as same time rotating hence we set 

0u U 0v   as the boundary condition, and the temperature of the plate maintained  

constant at fixed temperature thus, wT T  Also far away from the plate i.e. z     

we set the boundary condition as 0u v   and T T . Due to gravitation which 

occurred as a result of the geometry of the present problem, the effect of buoyancy 
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force must taken to account in the formulation. Its noteworthy that in this study, one 

of our major task is to determine how the flow variables would behave, knowing 

them in the boundary regions.    

3.5 Turbulence Modelling 

All flows encountered in engineering applications, from simple ones to complex three 

dimensional ones, become unstable above a certain Reynolds number. In turbulent 

flow the hydrodynamic and thermodynamic characteristics undergo chaotic 

fluctuation and hence, vary highly irregularly in space and time.(from the smallest 

turbulent eddies characterized by Kolmogorov micro-scales, to the flow features 

comparable with the size of the geometry). A turbulent(outwardly disordered) regime 

of fluid motion arises as a laminar flow loses its stability when the dimensionless 

Reynolds number /R UL  , exceeds some critical value Recr  or turbulence arises 

either from the growth with small perturbation in a laminar flow or from the 

convective instability of motion. Re is the most general characteristics of a turbulized 

fluid.  

According to Joel (2014), there are several possible approaches for the numerical 

simulation of turbulent flows. The first and most intuitive one, is by directly 

numerically solving the governing equations over the whole range of the turbulent 

scales (temporal and spatial). This deterministic approach is referred as Direct 

Numerical Simulation (DNS). In DNS, a fine enough mesh and small enough time-

step size must be used so that all of the turbulent scales are resolved. Although some 

simple problems have been solved using DNS, it is not possible to tackle industrial 

problems due to that prohibitive computer cost imposed by the mesh and time-step 

requirements. Hence, this approach is mainly used for benchmarking, research and 

academic applications. 

Another approach used to model turbulent model flows is Large Eddy Simulation 

(LES). Here, large scale turbulent structures are directly simulated whereas the small 

turbulent scales are filtered out and modeled by turbulence models called subgrid 

scale models. According to turbulent theory, small scale eddies are more uniform and 

have more or less common characteristics; therefore, modeling small scale turbulence 
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appears more appropriate, rather than resolving it. the computational cost of LES is 

less than that of DNS.  

Today's workhorse for industrial and research turbulence modeling application is the 

Reynolds Averaged Navier-Stokes (RANS) approach. In this approach, the RANS 

equations are derived by decomposing the flow variables of the governing equation 

into time-mean (obtained over an appropriate time interval) and fluctuating part, and 

then time averaging the entire equations. Time averaging the governing equations 

gives rise to new terms, these new quantities must be related to the mean flow 

variables through turbulence models. This process introduces further assumption. The 

turbulences models are primarily developed based on experiment data obtained from 

relatively simple flows under controlled conditions. This in turn limits the range of 

applicability of the turbulence models. That is, no single RANS turbulence model is 

capable of providing accurate solution over a wide range of flow condition and 

geometries. Hereafter, we limit our discussion to Reynolds averaging.   

3.5.1 Reynolds Averaging  

In turbulent flow, the transport phenomena variables ( . ., , , , , , )i e u v w T p etc  always vary 

with time. The instantaneous velocity value for a general flow variable say velocity   

for a turbulent flow of moving fluid, provided for any location         can be 

expressed as summation of its Mean and its Fluctuation due to the small  

perturbation: 

 ( , , , ) '( , , , )u u x y z t u x y z t   where 

1
( , , , ) ( , , , )

t t

t

u x y z t u x y z t dt
t

 
  
  

                                                              (3.5.1) 

 is the Time-averaged velocity at point ( , , , )x y z t   In the turbulence flow the mean 

fluctuation defined as: .i e  

1
' '( , , , ) 0

t t

t

u u x y z t dt
t

 
  
  

                                   (3.5.2) 
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The time interval for the Time-averaged, t , must be very long compared with the 

duration of fluctuation. The mean value of the fluctuation must be zero, 

Similarly, the velocity components in the y- and z- direction can be expressed as: 

( , , , ) '( , , , )

( , , , ) '( , , , )

( , , , ) '( , , , )

v v x y z t v x y z t

w w x y z t w x y z t

T T x y z t T x y z t

 

 

 

 

and apply the time-averaging on time dependent  momentum and energy balance 

equations under laminar flow scenario such that the time averaging of fluctuating part 

(with prime symbol) is zero. The Reynolds's averaging rules shall be used to 

transform equations governing laminar flow to turbulent flow. Time averaging of 

transport phenomena equations should provide the net effect of the turbulent 

perturbation. Following Scott  (2004) the term involving  

' ' '
0

u v T

t t t

  
  

  
                                           (3.5.3) 

3.5.1 Time Averaged Continuity Equation  

0
u v w

x y z

  
  

  
 

( ') ( ') ( ')
0

u u v v d w w

x y z

    
  

  
 

Integrating over period 0 t  

( ) ( ) ( )
0

u d v d w

x y z


  

  
                                                                                         (3.5.4) 

3.5.2 Time-Averaged Momentum Equation  

 -direction momentum equation is : 

2
2 0

2

( )
2 ( )

(1 )
z

u u u u B u mv
u v w v u g T T

t x dy z m


 




    
         

   
           (3.5.5) 

Multiplying continuity equation by u  as: 
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0
u v w

u
x y z

   
    
   

and adding to (3.5.5) equation  

2 2
2 0

2

( ) ( ) ( )
2 ( )

(1 )
z

u u uv uw B u mv
u v u g T T

t x y z m


 




    
         

    
 

Averaging over period 0 t  

2 2
2 0

2

( ) ( ) ( )
2 ( )

(1 )
z

u u uv uw B u mv
v u g T T

t x y z m


 




    
         

    
            

(3.5.6) 

Then, Consequently from  (3.5.6) 

2 2
2 0

2

( ) ( ) ( )
2 ( )

(1 )
z

u uv uw B u mv
v u g T T

x y z m


 




   
        

   
                    (3.5.7) 

Substituting for '( ), '( )u u u t v v v t    , '( )w w w t  and '( )T T T t   in (3.5.7).  

 
2

2

2

0

2

( ') (( ')( ')) (( ')( '))
2 ' ( ')

(( ') ( '))
(( ') )

(1 )

z

u u u u v v u u w w
v v u u

x y z

B u u m v v
g T T T

m









       
        

  

  
  



 

then 

 
22 2

2 0

2

' ( ) ( ' ') ( ) ( ' ') ( )
2 ( )

(1 )
z

uu uv u v uw d u w B u mv
v u g T T

x x y y z dz m


 




         
                

           

 

from chain law: 

2

2
u u

u
x x

 


 
, 

( ) ( ) ( )uv v u
u v

y y y

  
 

  
 and 

( ) ( ) ( )uw w u
u w

y y y

  
 

  
   then     

 
2

2
2 0

2

' ( ) ( ) ( ' ') ( ) ( ) ( ' ')
2 2

( )
( )

(1 )

z

uu v u u v w u d u w
u u v u w v

x x y y y y y dz

B u mv
u g T T

m


 




          
              

            


   



                (3.5.8) 

Multiplying the time-averaged (3.5.4) equation by    as:  
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( ) ( ) ( )
0

d u d v d w
u

dx dy dz

 
   

 
                                               (3.8.9) 

Subtracting equation (3.5.8) with (3.8.9) equation, it yields : 

 
2 2

2 0

2

' ( ) ( ' ') ( ) ( ' ') ( )
2 ( )

(1 )
z

uu u u v u d u w B u mv
u v w v u g T T

x x y y y dz m


 




         
                

           
 

Then: 

 
22

2 0

2

'( ) ( ) ( ) ( ' ') ( ' ')
2 ( )

(1 )
z

uu u u B u mv u v d u w
u v w v u g T T

x y y m x y dz


 




    
           

     

                                                                                                                                              

(3.5.10)                        

 -direction momentum equation is : 

2
2 0

2

( )
2

(1 )
z

v v v v B v mu
u v w u v

t x y z m






    
       

    
                                             

               (3.5.11) 

with similar procedure as we did for the x direction momentum :  

2 2
2 0

2

( ) ( ') ( ' ') ( ' ')
2

(1 )
z

v v v B v mu v u v v w
u v w u v

x y z m x y z






      
         

      
                        

                                                (3.5.12)    

3.5.3 Time-Averaged Energy Equation 

we need to recall the energy equation stated under equation (3.3.21) 

2 2 2
2 0

2 2

1 ( ) ( )

(1 )

r

z p p i p

T T dT T dq B v mu u mv
u v w T

t x dy z C C dz C m

 
 

  

     
       

   
 

Then 

2

2 2 2

0

2 2

( ' ') ( ' ') ( ' ') 1

( ) ( )

(1 )

r

p p i

p

T T T u T v T w T q
u v w T

x y z x y z C C z

B v mu u mv

C m


 

 





      
         

      

  



  

                            (3.5.13)    
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pC





                         

It is possible that from (3.5.7) and (3.5.12) to obtain the  

Molecular shear stress :                                                                                                     

u

z




  & 

v

z




  

The eddy shear stress : ' ' m

du
u w

dz
    m  is momentum eddy diffusivity or 

turbulent eddy viscosity. m  is a characteristics flow field and not a physical property 

of the fluid.  

Note that velocity fluctuations ' 'u w  are assumed to be induced by 
du

dz
 and 

From (3.5.12) it possible to obtain  

Molecular heat flux   

The eddy heat flux : ' ' H

dT
T w

dz
    H  is eddy thermal diffusivity and m

H

rtP


   

where   rtP ≡ turblent prandtl number m

H




  

The Reynolds averaged approach for a turbulence modeling requires to capture and 

treat for the Reynolds stress; to do so this we adopted the Boussinsq approximation 

(Boussinesq,1903) 

' 't m

u
u v

y
  


  


               (3.5.14) 

m  is not a property of the fluid like   but depends on the mean velocity  . we use 

the semi empirical methods to resolve the Reynolds shear stress terms in the model 

equation; and that lead us to the study and use of the Prandtly mixing length 

hypothesis which for a long time has been an important tool in the analysis of 

turbulent boundary layers. 



31 

 

The Reynold shear ' 'u v  represents the flux of  -mmomentum  in the direction of 

y . Prandtly assumed that this momentum was transported by eddies which moved in 

the y-direction over a distance l  without interaction( . .i e momentum is assumed to be 

conserved over distance l ) and then mixed with existing fluid at the new location 

(McComb,1990) 

Prandtl, from His experiment deduce that : 

2

2' '
u

u v l
y

 
 

   
 

                 (3.5.15) 

At this stage further assumption has made . .i e  l ny  where n is the Von Karman 

constant, 0.4n   (McComb, 1990). 

And, thus   

2

2 2' '
u

u v n y
y

 
 

   
 

              (3.5.16) 

Both Boussinesq approximation and Prandtl mixing length hypothesis Bejan,  (1995) 

are also applied to resolve the time-averaging of product of fluctuating part i.e.  

2 2

2 2 2 2

2 2 2 2
2 2

2 2

0,   ' ' ,   ' ' ,

' ' ,   ,  
Pr

' ' ' ' ' '
 ,   , ,  ,  

' ' ' '
 ,

m
H H

t

m

u v T u v
u w n z v w n z

t t t z z

T
T w

z

u u u w v v w
n z

z x z x z x z

u T T w

x z


 



       
         

       


  



      
   

      

 


 

                (3.5.17) 

The terms M and H are known as the momentum eddy diffusivity and the thermal 

eddy diffusivity. 

Thus, the approximation of the terms due to the turbulence effect for our model shall 

be : 
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2

2 2

2

2 2

2 2

2 2 2 2

2 2

' '

' '

' '

' '

t t

t

m

m

m
m H

r r

m

r

du du
u w n z

dz dz

dv dv
w v n z

dz dz

dT n z du
w T

dz P P dz

du dv
n z n z

dz dz

n z dT
w T

P dz

  

  


 



 
   

 

 
   

 

 
     

 

 

 

                                                                 (3.5.18) 

Taking into consideration the assumptions made above together with the application 

of Reynolds averaged Navier-Stokes (or RANS) methods, the governing equations 

for hydromagnetic turbulent boundary layer flow of a viscous, incompressible, 

electrically conducting fluid with Hall effects and thermal radiations, under 

Boussinesq approximation, in a rotating frame of reference are given by 

[Kitamura,1978 Makinde, 2014 Kinyanjui et al 2012 and Bejan, 1995] as : 





















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









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
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1
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v




 ,       

     (3.5.19) 



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


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 (3.5.20) 
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             (3.5.21) 

Together with the Boundary Condition  

wTTvUu    ,0  ,0 ,   at  z = 0,               (3.5.22) 
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 TTvu   ,0  ,0 ,   as   z  ,                                                             (3.5.23) 

where u  and v  are the mean velocity components,    is the mean temperature, Tw is 

the plate surface temperature, T  is the free stream temperature, g is acceleration due 

to gravity, n is the von Karman constant (=0.4),  is the thermal diffusivity 

coefficient,  is the fluid density, is the fluid electrical conductivity, m is Hall 

parameter,  is the kinematic viscosity, t is the time,  cp is the specific heat at constant 

pressure, β is the thermal expansion coefficient and Prt is the turbulence Prandtl 

number.  It is assumed that the fluid medium is optically thin with relatively low 

density and following Cogley et al. (1968), the radiative heat flux qr is given as 

)(4 2





TT

z

qr  ,            (3.5.24) 

where  

            2

0

e
d

x



 
 

 
             (3.5.25) 

where  << 1 is the radiation absorption coefficient,    is the absorbtion 

coefficient,  is the wave length and    is the plank's function. .Again , it is important 

to note that in order to obtain the turbulent flow model equations (3.5.19)- (3.5.21), 

we have decomposed the flow variables u, v and T into time-mean and fluctuating 

part. 

The Turbulent Prandtl Number -    is highly important for predication of heat transfer 

coefficient for fluid. The classical approach for obtaining the transport mechanism for 

the heat transfer problem follows the laminar approach, namely, the momentum and 

thermal transport mechanisms are related by a factor, the Prandtl number, hence 

combining the molecular and eddy viscosities one obtain the Boussinesq relation for 

shear stress / ( / Pr )m t

du

dz
      and the analogues relation for heat flux 

/ ( / Pr )p m t

dT
q C

dz
      thus if one knows the eddy diffusivity and turbulent 

prandtl number,     the heat transfer problem can be solved, Simpson et al (1970). 
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Hence we need to get an appropriate model for Prt . various researcher suggested a 

model for it as Tyldesley and Silver (1968) whereby they consider high turbulence 

intensity: 

                   
2 9Pr

Pr
3 9Pr

t
t

t





             (3.5.26) 

   and as it is presented by Marchello and Toor (1963) for high turbulence intensity, 

the turbulent Prandtl number is given as. 

                                  Pr Pt r                                    (3.5.27) 

  this will be the one which we are going to adopt.   

3.6  Non-Dimensionalization  

Non-dimensional analysis has got a vital importance in the study & model 

formulation for problems arises from areas of Hydrodynamics and  MHD in general. 

As the word suggest it makes equations and the solution of the problem independent 

of units. We have already formulate our problem mathematical and came up with the 

following Dimensional model equations.  

3.6.1Governing Equations in Dimensional Form 
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oU d u d du B u mv
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              (3.6.1) 
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The boundary conditions given by: 

0 0, 0, ,u U v T T    at 0z                                                                                (3.6.4) 

,0, 0,u v T T     as  z              (3.6.31) 

In equations (3.5.28) -(3.5.30) we dropped the bars above the flow variables for to 

make easy the process of non dimensinalizing the model.    

3.6.2 Non Dimensional Parameters and Their Physical Significance   

Dimensional groups are useful in our present investigation since; 

.i  The analysis of these dimensional groups helps in experimental investigation of 

reducing the number of variables in the problem. The result of the analysis is to 

replace an unknown relation between variables by a relationship between in the 

number of variables greatly reduces the labor of experimental investigation. 

.ii  Dimensional presentation of experimental data is independent of the units 

employed and should, be internationally intelligible and convenient to use. 

3.6.1Common Non–Dimensional Numbers and Parameters in MHD 

Equations (3.6.28) -(3.6.30) can be simplified further by employing common non–

dimensional numbers and parameters. In this section we describe a few of these 

numbers that will be used in the current problem. We shall denote velocity, pressure, 

length, time and magnetic field by the letters U , P , L , t  and B  respectively. 

3.6.1.1 Prandtl Number 

This number describes the ratio of momentum diffusivity to heat diffusivity. A high 

Prandtl number indicates that heat diffuses very slowly relative to momentum while a 

low Prandtl number indicates that heat diffuses very fast relative to momentum. A 

Prandtl number of about 1 implies that heat and momentum are diffused within the 

material at almost the same rate. The Prandtl number is given by: 

pC
Pr

k




 (3.6.4) 
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3.6.1.2 Grashof Number 

The Grashof number is a dimensionless number in fluid dynamic and heat transfer 

which approximate the ratio of buoyancy forces to viscous forces. It frequently arises 

in the study of situations involving natural convection. Therefore Grashof number can 

be thought of as Reynolds number with the velocity of natural convection replacing 

the velocity in Reynolds number's formula. It is given by: 

 
3

0

wg T T
Gr

U

  


 (3.6.5) 

3.6.1.3 Eckert Number 

The Eckert number provides a measure of the kinetic energy of the flow relative to 

the enthalpy difference.  It is a dimensionless quantity useful in determining the 

relative importance in a heat transfer situation of the kinetic energy of a flow. It is 

given by: 

 

2

0

p w

U
Ec

C T T




 (3.6.6) 

 

3.6.3.4 Magnetic Parameter 

This is the ratio of the magnetic force to the viscous force. The magnetic parameter is 

given by: 

2 2
2

2

0

e oH
M

U

 




 (3.6.7) 

3.6.3.5 Rotational Parameter 

The rotational parameter is the ratio of angular kinetic energy to translational kinetic 

energy and is given by: 

2

0

R
U




 (3.6.8) 
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3.6.3.6 Radaition Parameter 
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                                                                                                           

(3.6.9) 

To allow for independence of units and scales, dimensionless groups are employed. 

We define the following non–dimensional variables for the MHD problem: 
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(3.6.10)

 

We, now carry out the non dimensinaliztion process using set of equation of (3.6.10) 

It's clear that  

0v VU ,  
0

z
U


      and     

2

2

d u d du d

dz d dz dz


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 
  

 
  using chain rule.  

Equation (3.6.1) becomes:  
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dividing (3.6.11) through by 
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        (3.6.12) 

upon inserting the appropriate parameters given above in (3.6.12)  the last equation 

can be written as : 
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Similarily Equation (3.6.2) 
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From Equation         
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Then  
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dividing (3.6.19)  through by 
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                                                                                                                         (3.6.19) 
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3.7 Final Set of Governing Equations 

Using the non–dimensional quantities defined in the previous section, we are able to 

simplify the equation of motion (3.6.1 - 3.6.2) and the energy equation (3.6.3)  and 

obtain the following final  equations for hydromagnetic turbulent boundary layer flow 

of a viscous, incompressible, electrically conducting fluid with Hall effects and 

thermal radiations as: 
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With the Boundary conditions  

1  ,0  ,1  VU ,   at   = 0,       

   (3.7.4) 

0  ,0  ,0  VU ,   as     ,       

   (3.7.5) 

where M is the magnetic field parameter, Nr is the radiation parameter, R is the 

rotational parameter, Ec is the Eckert number, Gr is the Grashof number and Pr is the 

Prandtl number. Following Marchello and Toor (1963), for high turbulence intensity, 

the turbulent Prandtl number is given in term of the fluid Prandtl number as PrPr t   

3.8 Other quantities of interest 

Other quantities of interest are the skin friction (Cf) coefficient and the Nusselt 

number (Nu) at the plate surface which are given as  
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3.8.1 Skin Friction  

Friction between a fluid and the surface of a solid moving through it or between a 

moving fluid and its enclosing surface. The boundary layer normally generates a drag 

on the plate as a result of the viscous stresses which are developed at the wall. This 

drag is normally referred to as skin friction. Skin friction occurs from the interaction 

amid the fluid and the skin of the body, and is directly associated to the wetted 

surface, the area of the facade of the body that is in contact with the fluid. Hence the 

skin friction mathematically give as :  

00
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w
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kq                                                              (3.8.1) 

3.8.2 Nusselt number :  in heat transfer at a boundary within a fluid, the Nusselt 

number is the ratio of convective to conductive heat transfer across the boundary. In 

this context, convection includes both advection and diffusion. A thermal boundary 

layer develops if the fluid free stream temperature and the surface temperatures differ. 

A temperature profile exists due to the energy exchange resulting from this 

temperature difference.  
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CHAPTER FOUR  

Numerical Technique 

4.1 Introduction   

Many real life problems generally do not have "analytical" solutions. Mathematics 

being one of the scientific research disciplines that lead to real life situations requires 

numerical techniques to accomplish non-analytical solutions. The mathematical 

formulation of the problem is the reduction of the physical problem to a set of either 

algebraic or differential equations subject to certain assumptions. The process of 

modeling of physical systems in the real world should generally follow the path 

illustrated schematically in the chart below:  

 

Figure 4. 1: Schematic Illustration for the Numerical Procedure 

4.2 Numerical Implementations of The Model Equation  

The nonlinear dimensionless model equations : (3.7.1), (3.7.2) and (3.7.3) together 

with the boundary conditions constitute a BVP (3.7.4 - 3.7.5) can be easily solved 

directly using appropriate finite difference numerical technique or by using shooting 

method coupled with Runge-Kutta Fehlberg integration scheme. This method 

involves, transforming equations (3.7.1) & (3.7.3) into a set of  IVP which contain 
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unknown initial values that need to be determined by guessing, after which Runge-

Kutta Fehlberg integration scheme is employed to integrate the set of initial valued 

problems until the given boundary conditions are satisfied. The entire computation 

procedure is implemented on computer using a program written in MAPLE language. 

From the process of numerical computation, the mean velocity and mean temperature 

are obtained. The numerical values are used to compute the skin friction coefficient 

and the Nusselt number as given in equation (3.8.1) and (3.8.2).  

The second possible numerical approach is the finite difference scheme; In order to 

employ FDM, a Pseudo time space have been introduced to the model equations ( 

3.7.1) - (3.7.3). Its noteworthy that the introduction of PTS results a non linear PDE 

which can be solved by dicrtizing the solution domain in to finite grid points. Its 

deemed that for large time interval the newly emerging coupled PDE's has behaves to 

converge to the original non linear ODE. 

 Basically, According to Kelley and David (1998) Pseudo time-stepping, probably 

better known as pseudo-transient continuation, is the technique of solving for the 

steady-state solution of time-evolving PED by setting an initial guess and using a 

time-stepper to evolve the solution forward. It tends to succeed where standard 

globalization strategies fail by taking advantage of the natural structure of the 

problem.  

To the governing equation ( 3.7.1) - (3.7.3)  we have assigned pseudo time derivative 

similar to that described  as and  together with the boundary conditions outlined as 

follows : 
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(4.2.3) 

 

With Boundary Condition :  
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Initial Condition : 
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        (4.2.6) 

  

The set of governing equations: (4.1), (4.2) and (4.3) involving a pseudo time 

derivative in it, cannot be solved analytically since they are coupled and highly 

nonlinear. With the help of the boundary conditions set out in relations (4.4)-(4.5) , 

The easiest and most appropriate difference scheme to implement for the system of 

equations is the explicit method. It is apparent that both velocity and temperature are 

functions of time  t  and space   . We, therefore, need to discretize the time and 

space coordinates to form a solution mesh.  

The space co-ordinate is subdivided into 1N   intervals of equal length   so that 

there are N  nodal points. On the other hand, the temporal co-ordinate is subdivided 

into 1K   intervals of equal length t  so that there are K  nodal points. Each of the  
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nodal points is labeled by a pair of indices, j  and k . Below is a schematic diagram 

of the representative mesh. 

 

Figure 4. 2: Grid of important points in explicit finite difference method 

This method is highly stable and the most accurate method. It is, therefore, the most 

recommended finite difference method for estimating solutions to partial differential 

equations. Although fewer time steps can be used with this method to achieve similar 

accuracy with the explicit method, it is also the most difficult to implement. In the 

next subsequent section the discrete model equations has presented.  

4.3 Difference Equations for the Present Model 

All the flow variables of interest in the present problem has involved both temporal 

and spatial partial derivatives in the same equation. There are known methods in 

solving such equations. These are the fully explicit method, the fully implicit and the 

mixed implicit–explicit methods. For the governing equations as set out in (4.1)-(4.3), 

the easiest and most appropriate difference scheme to implement for the system of 

equations the explicitly method. The system of equations describes the evolution of 

velocity (both primary and secondary) and temperature. Below we evaluate the finite 

difference schemes for these fluid properties. 
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4.3.1 Velocity 

For The primary Velocity :  

The velocity along the x axis ,  ,U t   is the Primary velocity. Using the finite 

difference formulas defined in equations and employing the explicit difference 

method we write: 
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 Multiplying through by t  and using the ratios 
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And  

For the secondary  velocity,  ,V t   we proceed as follows. 
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(4.3.3) 

Multiplying equation (4.3.3) through by t  and using the ratios  

   
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 we obtain: 
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 4.3.2 Temperature 

For the temperature,  ,t  , we have the difference equation given as: 
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Multiplying equation (4.3.5) through by t  and using the ratios 
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 (4.3.6) 

Equations (4.3.2), (4.3.4) and (4.3.11) are the difference form equations for the 

primary, secondary velocity and temperature variables. In this form they can be 

evaluated by a computer to obtain solutions time levels. 

Its noteworthy that the abovementioned equations in difference forms, will take very 

long to carry out the numerical computation manually; particularly when there a small 

step size are  used within the solution domain. It's possible to handle the 

implementation in the mathematical package which performs the computations.  
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In the upcoming chapter we dealt with the result, observations and discussion with 

respect to the effect of the embedded parameters for our model.   
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CHAPTER FIVE 

Results and Discussion 

5.1 Overview 

In order to understand the physical situation of the problem and effects of various 

parameters controlling the flow regime, we have computed the numerical values of 

mean velocities, mean temperature, the skin friction and the Nusselt number with 

respect to each parameter variation as shown in figures 2-31. It is important to note 

that Gr > 0 corresponds to cooling of the plate by convection current while Gr < 0 

implies heating of the plate by convection current. Moreover, the cooling problem is  

Table 5. 1:Values for Computation showing the skin friction and Nusselt number.  

M m R Gr Ec Nr Pr Cfx Cfy Nu 

1.0 0.1 1.0 0.1 0.1 1.0 0.71 1.21183514 0.81877576 0.83925868 

2.0 0.1 1.0 0.1 0.1 1.0 0.71 1.51494067 0.70318128 0.82053306 

3.0 0.1 1.0 0.1 0.1 1.0 0.71 1.78458544 0.63077322 0.80364695 

1.0 0.5 1.0 0.1 0.1 1.0 0.71 1.21244422 0.94064112 0.84088432 

1.0 1.0 1.0 0.1 0.1 1.0 0.71 1.14983533 1.02958701 0.84583895 

1.0 0.1 2.0 0.1 0.1 1.0 0.71 1.55777192 1.28916619 0.82453955 

1.0 0.1 3.0 0.1 0.1 1.0 0.71 1.84502594 1.62487996 0.80871950 

1.0 0.1 1.0 0.5 0.1 1.0 0.71 1.04984232 0.86729541 0.83701858 

1.0 0.1 1.0 1.0 0.1 1.0 0.71 0.84543532 0.92903706 0.83237814 

1.0 0.1 1.0 -0.5 0.1 1.0 0.71 1.45275334 0.74715631 0.84034948 

1.0 0.1 1.0 -1.0 0.1 1.0 0.71 1.65199584 0.68831179 0.83930426 

1.0 0.1 1.0 0.1 0.5 1.0 0.71 1.20895408 0.82012949 0.52261924 

1.0 0.1 1.0 0.1 1.0 1.0 0.71 1.20534494 0.82182793 0.12720102 

1.0 0.1 1.0 0.1 0.1 2.0 0.71 1.21843079 0.81542480 1.41337547 

1.0 0.1 1.0 0.1 0.1 3.0 0.71 1.22393362 0.81296122 2.06881414 

1.0 0.1 1.0 0.1 0.1 1.0 4.00 1.23139532 0.81022002 3.49966374 

1.0 0.1 1.0 0.1 0.1 1.0 7.10 1.23772125 0.80862109 6.20529525 
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often encountered in engineering applications such as cooling of electronic 

components and nuclear reactors. Numerical values in table 1 depict the effect of 

parameter variation on skin friction and Nusselt number. From the table, it is 

observed that the primary skin friction at the plate surface increases with an increase 

in parameter values of M, R, Nr, Pr, Gr < 0 and decreases with an increase in 

parameter m, Ec and Gr > 0. The secondary skin friction increases with parameter m, 

R, Ec, Gr>0 and decreases with parameter M, Nr, Pr, Gr <0. An increase in parameter 

m, Nr and Pr increases the Nusselt number while an increase in parameter values of 

M, R, Ec and gr decreases the nusselt number.   

5.2 Effects of Parameter Variation on Mean Velocities 

Figures 5.1-5.7 illustrate the effects of parameter variation on the primary mean 

velocity component. Generally the primary mean velocity is highest at the moving 

plate surface and tends zero free stream value far away from the place surface 

satisfying the prescribed boundary conditions. An increase in the fluid rotation, 

magnetic field intensity, hall current, thermal radiation and Prandtl number decreases 

the momentum boundary layer thickness as shown in figures 5.1-5.5, consequently 

the primary mean velocity decreases. In figure 5.6, it is observed that the momentum 

boundary layer thickness increases with cooling of the plate by convectional current 

(Gr>0) due to buoyancy force and decreases with heating of the plate by convectional 

current (Gr < 0). As the viscous heating increases (Ec), the primary mean velocity 

increases leading to a rise in momentum boundary layer thickness as shown in figure 

5.7 Figures 5.8-5.14 depict the secondary mean velocity for some selected values of 

the parameters. Interestingly, flow reversal is generally observed with its peak value 

within the boundary layer regime and zero secondary mean velocity at both the plate 

surface and free stream satisfying the prescribed boundary conditions. As the values 

of parameter R, Nr, M and Pr increase due to combined effects of fluid rotation, 

magnetic field and thermal radiation, the fluid flows toward the plate surface with a 

decrease in the reverse flow intensity as shown in figures 5.8-5.12  This is expected, 

since increase in magnetic field enhances the effect of Lorentz force which acts as a 

resistance to the flow, leading to a decrease in the momentum boundary layer 

thickness. Figure 14 shows that the secondary mean flow reversal and its peak values 
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increase with cooling (Gr > 0) and decreases with heating (Gr < 0) of the plate 

surface by convectional current due to buoyancy force. Increase viscous heating (Ec) 

increases the secondary mean flow reversal and the momentum boundary layer 

thickness as shown figure 5.14.            

 

Figure 5. 1: Primary velocity profiles with increasing R. 

 

 

Figure 5. 2: Primary velocity profiles with increasing M. 
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Figure 5. 3: Primary velocity profiles with increasing m. 

 

 

Figure 5. 4: Primary velocity profiles with increasing Nr. 
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Figure 5. 5: Primary velocity profiles with increasing Pr. 

 

 

 

Figure 5. 6: Primary velocity profiles with increasing Gr. 
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Figure 5. 7: Primary velocity profiles with increasing Ec. 

 

 

Figure 5. 8: Secondary velocity profiles with increasing R. 
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Figure 5. 9: Secondary velocity profiles with increasing Nr. 

 

 

Figure 5. 10: Secondary velocity profiles with increasing M. 
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Figure 5. 11: Secondary velocity profiles with increasing Pr. 

 

 

Figure 5. 12: Secondary velocity profiles with increasing m. 

 

 



56 

 

 

Figure 5. 13: Secondary velocity profiles with increasing Gr. 

 

 

Figure 5. 14: Secondary velocity profiles with increasing Ec. 

5.3 Effects of Parameter Variation on Mean Temperature Profiles 

Figures 5.15-5.21 illustrate the effects of various thermophysical parameters on the 

mean temperature profiles. It is noteworthy that the mean temperature decreases from 

the plate surface to the prescribed free stream zero value far away the plate. 

Meanwhile, as the parameter values of R, M and Ec increase, the thermal boundary 

layer thickness increases near the plate surface as shown in figures 5.15-5.17. This 
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may be attributed to the combined effects of fluid rotation, viscous and Ohmic 

heating, and leading to a rise in the mean temperature. In figures 5.18-5.20, a 

decrease in the thermal boundary layer thickness in observed with increasing 

parameter values of Nr, m and Pr, consequently, the mean temperature decreases. 

Figure 5.21 shows that the mean temperature within the boundary layer regime is 

enhanced by plate cooling while the heating of the plate by buoyancy force decreases 

the boundary layer thickness. This can be explained by the fact that the heat is 

transferred from the plate to the fluid by buoyancy force during cooling leading to a 

rise in the mean temperature.  

 

Figure 5. 15: Temperature profiles with increasing R. 
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Figure 5. 16: Temperature profiles with increasing M. 

 

Figure 5. 17: Temperature profiles with increasing Ec. 
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Figure 5. 18: Temperature profiles with increasing Ec. 

 

Figure 5. 19: Temperature profiles with increasing m. 
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Figure 5. 20: Temperature profiles with increasing Pr. 

 

 

Figure 5. 21: Temperature profiles with increasing Gr. 

5.4 Effects of Parameter Variation on Skin Friction and Nusselt number 

Figures 5.22-5.24 demonstrate the effects of increasing each thermophysical 

parameter on the primary skin friction. We observed that the primary skin friction 

increases with an increase in magnetic field intensity, fluid rotation, thermal radiation, 
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Prandtl number and plate heating by convectional current. This can be attributed to a 

rise in mean velocity gradient at the plate surface. Meanwhile a fall in the primary 

skin friction is noticed with increasing intensity of Hall current, viscous heating and 

plate cooling due to buoyancy force.  Figures 25-27 depict the effects of parameter 

variation on secondary skin friction. A combined increase in the fluid rotation, Hall 

current, viscous heating and plate cooling due to buoyancy force increases the 

secondary skin friction while an increase in the Ohmic heating; thermal radiation and 

Prandtl number decreases the secondary skin friction at the plate surface. In figures 

28-30, the variation in Nusselt number is illustrated with different parameters. An 

increase in Hall current, thermal radiation and Prandtl number enhances the Nusselt 

number due to a rise in the temperature gradient at the plate surface. However, the 

Nusselt number decreases with a combined increase in Ohmic and viscous heating, 

fluid rotation and buoyancy force.   

  

 

Figure 5. 22: Primary skin friction with increasing M, R and m. 
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Figure 5. 23: Primary skin friction with increasing Ec, Nr and Gr. 

 

 

Figure 5. 24: Primary skin friction with increasing Pr. 
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Figure 5. 25: Secondary skin friction with increasing M, R and m. 

 

Figure 5. 26: Secondary skin friction with increasing Ec, Nr and Gr. 
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Figure 5. 27: Secondary skin friction with increasing Pr. 

 

Figure 5. 28: Nusselt number with increasing M, R and m. 
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Figure 5. 29: Nusselt number with increasing Ec, Nr and Gr. 

 

 

Figure 5. 30: Nusselt number with increasing Pr. 
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CHAPTER SIX 

Conclusion and Recommendation 

In this chapter, a conclusion is given with references to the results obtained in the 

preceding chapter. Recommendations are also given for further areas of study as well 

as published work.       

6.1 Conclusions  

We have analyzed the effect of various parameters on the velocity and temperature; 

moreover, the hydromagnetic turbulent flow of a conducting fluid over a moving 

plate in a rotating system with thermal radiation, viscous and Ohmic heating is 

numerically investigated. The effects of various thermophysical parameters on the 

mean velocity, mean temperature, skin friction and Nusselt number were obtained. 

Our results can be summarized as follows: 

The primary mean velocity and momentum boundary layer increases with Gr >0, Ec 

and decreases with R, M, m, Nr, Pr, Gr < 0. The secondary mean velocity shows flow 

reversal and momentum boundary layer increases with m, Gr >0, Ec and decreases 

with R, Nr, M, Pr, Gr < 0. The mean temperature and thermal boundary layer 

increases with R, M, Ec, Gr >0 and decreases with Nr, Pr, m, Gr < 0. The primary 

skin friction increases with M, R, Nr, Pr, Gr < 0 and decreases with m, Ec and Gr > 0. 

The secondary skin friction increases m, R, Ec, Gr>0 and decreases M, Nr, Pr, Gr <0. 

The Nusselt number increases with m, Nr, Pr increases and decreases with M, R, Ec, 

Gr. 

It is evident that the results reported in the present model are in a good agreement 

with general trends. This follows the physical expectation of the effect of various 

parameters. As discussed in chapter five physical trends were eminent in the results. 

6.2 Recommendation 

Our research work is a significant contribution to the study of turbulance MHD and 

heat transfer. However its deemed there is much more that is yet to be studied and 

researched. We therefore recommended further analysis and development in 
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 A similar problem embedded in porous medium on it and fluid flow in three 

dimensions. 

 Study of turbulent fluid flow where one or both plates are rotating in rotating 

system. 

  Given an applied magnetic filed is inclined study both laminar and turbulent fluid 

flow. 

  The study of MHD and heat transfer for a Coutte flow.    
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APPENDICES 

 

Appendix I: Publications 

[1]. Dawit H. Gebre, O. D. Makinde, M. Kinyanjui, Analysis of 

Turbulent Hydromagnetic Flow with Radiative Heat over a Moving 

Vertical Plate in a Rotating System, Applied and Computational 

Mathematics. Vol. 3, No. 3, 2014, pp. 100-109. 

doi: 10.11648/j.acm.20140303.15. 

http://www.sciencepublishinggroup.com/journal/paperinfo.aspx?journalid=147&doi=

10.11648/j.acm.20140303.15  

[2]. RANS – Modeling of MHD Flow Over Infinite Vertical Plate in 

Rotating System Under the Effect of Viscous Dissipation, Joule 

Heating and Radiation. 

http://www.ijsr.net/archive/v3i6/MDIwMTQ0NTY=.pdf  
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