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ABSTRACT 

In this study, we investigate the flow in an open rectangular channel with a lateral inflow 

channel. The flow of an incompressible Newtonian fluid through a man-made open 

rectangular channel with a lateral inflow channel is investigated. We have considered the 

effects of angle as it varies from zero to ninety degrees, the cross-sectional area, velocity and 

length of the lateral inflow channel on how they affect the flow velocity in the main open 

rectangular channel. Since the discharge is directly proportional to the flow velocity, the 

increase in the flow velocity means an increase in the discharge and vice versa. The 

equations governing the flow are the continuity and momentum equation of motions, which 

are highly nonlinear and cannot be solved by an exact method. Therefore, an approximate 

solution of these partial differential equations is determined numerically using the finite 

difference method. The finite difference method is used to solve these equations because of 

its accuracy, consistency, stability and convergence.  

Matlab software is used to generate the results which are then analyzed using graphs. The 

findings are that, at zero degrees of the lateral rectangular channel, the results compare to 

earlier research done. It is also found out that an increase in the area and the length of the 

lateral inflow channel leads to a reduction in the velocity while an increase in the velocity of 

this channel leads to an increase in the velocity of the main channel. Finally, an increase in 

the angle of the lateral inflow channel does not necessarily lead to an increase in the velocity 

in the main channel. That, angles of between 30
0
 and 50

0
 exhibits higher values of velocities 

in the main open channel compared to other angles of the lateral inflow channel. 
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NOMENCLATURE 

Symbol   Meaning 

А    Cross-sectional area of flow of the main channel (m
2
) 

a    Cross-sectional area of flow of the lateral inflow channel (m
2
) 

b    Top width of the main channel (m) 

      Top width of the lateral inflow channel (m) 

С    Resistance coefficient of flow (Chezy coefficient) 

y    Depth of flow in the main channel (m) 

      Depth of flow in the lateral inflow channel (m) 

K    constant of proportionality in Chezy formula 

     Length of the lateral inflow channel (m) 

     Wetted perimeter of the main channel (m) 

     Discharge in the main channel (m
3
 s

-1
) 

R     Hydraulic radius (m) 

Re    The Reynolds number 

Fr    The Froude number 

FR    Resisting force (N) 

So    Slope of the channel bottom (m) 

Sf    Friction slope (m) 

     Top width of the free surface (m) 

 ⃗     Traction force (N) 

V    Mean velocity of flow in the main channel (ms
-1

) 

     Mean velocity of flow in the lateral inflow channel (ms
-1

) 

g    Acceleration due to gravity (ms
-2

) 

n/ni    The manning coefficient of roughness (s m
-⅓

) 
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q    Lateral discharge or uniform inflow (m
3
s

-1
) 

t    Time (s) 

x    Distance along the main flow direction (m) 

                                                Body force (N) 

W    Weight of the fluid (N) 

      Velocity vector (ui + vj + wk) 

△    Forward difference 

∇     Divergence vector 

α    Energy coefficient 

ν    Kinematic viscosity (m
2
s) 

γ    Fluid specific weight (N) 

τ    Shear stresses (Nm
-2

) 

ρ    Density(kg m
-3

) 

ϑ    Coefficient of viscosity (Ns
-1

) 

θ    Angle of lateral discharge channel (degrees) 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information 

In the year 2002, Kenya experienced heavy rainfall, which resulted in bridges being swept 

away as rivers flooded. During this heavy rainfall, water flowed from highlands to lowlands 

and led to saturation of the soil, which resulted in excess water remaining stagnant. 

Moreover, some areas still suffer from floods even when normal rain falls. Thus, designing 

channels that would control such an environmental disaster and more so divert the same 

water to agricultural land is very important. The fact that the flood problem still persists and 

the need to convey water for irrigation is still in demand, there is need to come up with an 

efficient model of a channel with lateral inflow channel to convey the maximum discharge.  

A channel may be closed or open at the top. The channels that have an open top are referred 

to as open channels while those with a closed top are referred to as closed conduits. Good 

examples of open channels are rivers and streams while examples of closed conduits are 

pipes and tunnels. . In the past, open channels made of earth and concrete have been designed 

to meet these needs. They have been of different cross-sections such as trapezoidal, 

rectangular and circular.  

This chapter begins with some definitions of open channel terminologies followed by 

literature review related to the study of open channels with lateral inflow channel. Finally, 

the model of the problem, objectives, research questions, null hypothesis and justification of 

the research are presented towards the end of the chapter. 

1.2 Definitions  

In this study several terms will be used extensively and in this section such terms are defined. 

These terms are mostly used in channel flow. 
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1.2.1 Fluid 

Matter is said to be a fluid if it undergoes continuous deformation when some external force 

is applied. It is said to undergo deformation if the distance between any two neighboring 

molecules change. A fluid has no definite shape but assumes the shape of the container. 

Fluids are conventionally classified as liquids or gases. Liquids do not change significantly in 

volume when subjected to change in pressure and temperature. For this reason they are 

treated as incompressible fluids. Gases show notable volume changes when subjected to 

change in pressure and temperature. This implies that they are compressible.  

1.2.2 Newtonian fluid 

Gutfinger and Pnueli (1992), defined that a fluid as Newtonian if it obeys the Newton’s law 

of viscosity, which states that the shear stress is proportional to the velocity gradient, and the 

coefficient of viscosity is taken as a constant. Otherwise, if the coefficient of viscosity varies 

from one point to another in the channel, the fluid is known as non-Newtonian. Since the 

fluid is considered to be Newtonian, the traction forces in the momentum equation are a sum 

of the pressure gradient and viscous forces (which are assumed to be uniform throughout the 

flow). However, we know that no natural free flowing fluid is Newtonian. This is because as 

the fluid flows in layers, the distance between the layers at different points gradually 

changes, which makes the coefficient of viscosity to change. In addition, as the fluid moves 

from one section of the channel due to either variation of the slope or width of the channel 

due to erosion, the velocity of the fluid is bound to change which will affect the viscosity of 

the fluid. So for the fluid to be considered as Newtonian is an assumption. The coefficient of 

viscosity is defined as the shear stress multiplied by the distance between the two adjacent 

layers of the fluid, and then divided by the relative change in velocity between the two layers. 
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1.2.3 Open channel flow 

The flow of a liquid, for example, water in a conduit may either be in an open channel or 

pipe flow. The two kinds of flow are similar in many ways but differ in one important aspect. 

Open channel flow is characterized by a free surface, whereas pipe flow has none. A free 

surface is defined as the surface of contact between the liquid and the overlying gaseous 

fluid. According to Chow (1973), in an open channel a fluid does not fill the conduit 

completely. Flow in open channels is due to the difference in the potential energy. A lateral 

inflow channel has discharge resulting from the addition of fluid or water along the direction 

of flow. The channel that adds water to a stream, river, or lake is referred to as a lateral 

inflow channel while the one that draws water from the latter is referred to as a lateral 

outflow channel. Lateral inflow may also include groundwater flow and overland flow. 

1.3 Classification of flow 

There are several types of flows classified according to changes in flow depth with respect to 

time and space. The flow is said to be steady if the depth of flow at a particular point does 

not change with time interval under consideration. A flow in which depth changes with time 

and space is said to be unsteady. This is the most common type of flow and requires the 

solution of the energy, momentum and friction equations with time. Open channel flow is 

said to be uniform if the depth and velocity of flow are the same at every section of the 

channel. Hence it follows that uniform flow can only occur in prismatic channels. For steady, 

uniform flow, depth and velocity is constant as you move along the channel.  

This constitutes the fundamental type of flow in an open channel. It occurs when 

gravitational forces are in equilibrium with resistance forces. A flow in which depth varies 

with distance, but not with time is called steady non-uniform flow. The type of flow may 

either be gradually varied or rapidly varied. The former requires application of energy and 

frictional resistance equations.  

http://glossary.ametsoc.org/wiki/Stream
http://glossary.ametsoc.org/wiki/Inflow
http://glossary.ametsoc.org/wiki/Groundwater_flow
http://glossary.ametsoc.org/wiki/Overland_flow
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1.4 Types of channels 

There are two types of open channels, namely natural and artificial channels. Artificial 

channels are channels made by man. They include irrigation canals, navigation canals, 

spillways, sewers, culverts and drainage ditches. They are usually constructed in a regular 

cross-section shape throughout and are thus prismatic channels. In the field, they are 

commonly constructed of concrete and have the surface roughness reasonably well defined 

although this may change with age. Analysis of flow in such channels will give reasonably 

accurate results.  

Natural channels are not regular or prismatic and their materials of construction can vary 

widely. The surface roughness will often change with time, distance and elevation. 

Consequently, it becomes more difficult to accurately analyze and obtain satisfactory results 

for natural channels than it is with man-made ones. This situation may be further complicated 

if the boundary is not fixed due to erosion and deposition of sediments occur. For analysis, 

various geometric properties of the channel cross-sections are required. For artificial 

channels, these can usually be defined using simple geometric equations given the depth of 

flow.  

1.5 State of flow 

The effects of viscosity in relation to the inertia forces of the flow govern the state or 

behavior of open channel flow. The flow may be laminar, transitional or turbulent depending 

on the effect of viscosity relative to inertia forces. In laminar flow the fluid particles appear 

to move in thin layers of fluid which seem to slide over adjacent layers with no disruptions 

between the layers. The flow is turbulent if the inertial forces are strong relative to the 

viscous forces. In turbulent flow, the fluid particles move in irregular paths. A flow is termed 

transitional if it is neither laminar nor turbulent. 
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Reynolds’s number is a non-dimensional parameter which represents the effect of viscosity 

relative to inertia. It is defined as           ν, where ν is the kinematic viscosity, V is the 

mean velocity of flow and L is the characteristic length. The flow in the channel changes 

from laminar to turbulent if depending on the Reynolds number. If Re is less than about 2000 

the flow is laminar and if Re is greater than 4000 the flow is turbulent. The flow is in 

transition if it is between these values. Laminar flow is known to exist where thin sheets of 

water flow or where the conditions are altered like in model testing. 

The dimensionless Froude number is important in analyzing the effect of gravity in fluid 

flow. It is defined as the ratio of inertial forces and gravity forces. It is defined as         

where D is the hydraulic depth; V is the mean velocity and   is the acceleration due to 

gravity. If    is number one, it means that the inertial forces and gravity are equivalent and 

critical flow exists. Flow around or at critical is characterized by instability since small 

changes in the hydraulic condition results to abnormal changes in velocity and depth. If    

has a value less than one it means that gravity forces dominate and the open channel is 

classified as sub-critical or tranquil range of flow. If    has a value greater than one, it means 

that the inertial forces dominate and the flow is classified as super-critical flow. 

1.6 Statement of the problem 

Several studies of  fluid flow through open channels have been carried out in the laboratory. 

However, mathematical modelling of open channels with lateral inflow channel has received 

little attention. This research seeks to determine the effect of  angle, velocity, cross-sectional 

area and length of the lateral inflow channel  on the flow velocity in the open rectangular 

channel. The fluid  to be considered is Newtonian and the flow is uniform. This study, 

therefore, aims at coming up with a hydraulically efficient  model of flow through an open 

rectangular channel with a lateral inflow channel. 
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1.7 Geometry of the problem 

In the present study, the lateral inflow channel is introduced into the open rectangular 

channel as illustrated in Fig. 1. The discharge in the open rectangular channel and the lateral 

inflow channel are denoted by   and   respectively.   and θ represent the length and the 

varying angle respectively, of the lateral inflow channel. The net volume of fluid that enters 

through the cell dx is considered at a time interval dt. 

 

Figure 1: Model of the open rectangular channel with lateral inflow channel at an angle 

 

1.8 Objectives of study  

1.8.1 General objective 

To analyze fluid flow in an open rectangular channel with a lateral inflow channel  

1.8.2 Specific objectives 

1. To investigate how the variation of the angle of the lateral inflow channel affects 

 velocity in the main open channel. 
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2. To investigate how the cross-sectional area of lateral inflow channel affects velocity 

 in the main open channel. 

3. To investigate how the length of the lateral inflow channel affects velocity in the 

 main channel. 

4. To investigate how the velocity of the lateral inflow channel affects velocity in the 

 main channel. 

1.9 Research questions 

1.  How does the variation of the angle of the lateral inflow channel affect the velocity 

 in the  main open channel? 

2.  How does the cross-sectional area of lateral inflow channel affect velocity in the 

 main  open channel? 

3. How does the length of the lateral inflow channel affect velocity in the main channel? 

4. How does the velocity of the lateral inflow channel affect velocity in the main 

 channel? 

1.10 Null hypothesis 

The variation of the cross-section area, length, velocity and angle of the lateral inflow 

channel do not affect the velocity in the main open channel. 

1.11 Justification 

For any civilization to exist and thrive, it needs water. Water is life, yet too much water can 

lead to death due to floods. To direct water to lakes and rivers, man has constructed channels 

and canals. However, the problem of flood still persists, especially when there is heavy rain. 

Up to date, there is still a challenge to construct a channel that has a lateral inflow channel 

that will convey the maximum amount of water in an efficient way. Therefore, an efficient 

model of open channels with lateral intake channels has to be designed to meet these needs. 
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 The mathematical model in this study can be employed in the construction of lateral inflow 

channels that will increase the discharge while conveying water to farms for irrigation and in 

draining water from flood stricken areas. Moreover, the findings are applicable in flour or 

textile production and in the design of water mills where large volumes of high velocity 

water are required to turn large turbines and also drive mechanical processes.  
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CHAPTER TWO  

LITERATURE REVIEW 

2.1 Introduction 

The literature review in this chapter deals with three aspects of the current study. In the first 

section of this review, the equations that govern open channel flow are discussed, followed 

by review of lateral flow studies and equations. Then the literature on one of the numerical 

methods that is used to solve open channel flow is discussed and finally a summary why 

there is a gap in this literature to conduct the present study. 

An open channel, whether in the form of an artificial or man-made channel constructed with 

a view to convey water to the required destination is common in many places. The forces at 

work in open channels are the inertia, gravity and viscosity forces. By neglecting forces that 

are generated in the junction area, the momentum equation is used to analyze lateral inflow in 

an open channel. 

2.2 Review of Open channel flow equations 

Chezy equation was one of the earliest equations developed for average computations of the 

velocity of a uniform flow, Henderson (1966). However, the formula that is mostly used in 

open channel problems is the Manning formula, Bilgil (1998). The Manning formula is 

highly very useful compared to the Chezy equation because it takes into account the degree 

of the channel irregularity, the bed materials, the relative effect of obstruction of the channel, 

vegetation growing in the channel, variation in shape and size of the channel and meandering 

in the channel, Chadwick and Morfet (1993).  

Many relationships, such as the velocity formula for open channel flow were studied by 

Chow (1959), which helped in analyzing open channels.  The principles of conservation of 

momentum and mass are preserved by the Saint Venant equations and that is why they are 
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used to govern unsteady open channel flow.  The mathematical models of these unsteady 

open channel flows are applicable in flood defense and irrigation control design, Chaudhry 

(1993). Tuiteek and Hicks (2001), with the aim of controlling floods were able to model 

unsteady flow in compound channels. They incorporated some terms to account for the 

momentum transfer phenomenon to incorporate unsteady flow in compound channels by 

developing a model based on the Saint Venant equations of flow.  

 Kwanza, Kinyanjui and Nkoroi (2007) studied and analyzed the effects of slope of the 

channel, the width of the channel, velocity and depth as they vary from one point to another 

in the channel and the lateral discharge on the fluid velocity and channel discharge for both 

rectangular and trapezoidal channels. They noted that to increase the discharge in the 

channels, the slope of the channel, width of the channel and the lateral discharge need to be 

increased. In addition, by minimizing the wetted perimeter, the velocity of the fluid flow 

increased. Thiong’o (2011) investigated fluid flow in open rectangular and triangular 

channels. Her findings on the study of rectangular channels compared with Kwanza et al 

(2007). That, the velocity in the open rectangular channel increased when the slope, 

discharge and width increased. However, increasing the wetted perimeter of the channel 

resulted in a decrease in the flow velocity. To solve the continuity and momentum equations, 

they both used the finite difference method as a numerical tool. 

2.3 Review of flow with Lateral inflow flow 

 Taylor (1944) presented  the earliest literature on open-channel junction flows  showing that 

the number of equations provided by a one dimensional analysis based on the  momentum 

conservation is incomplete to  solve analytically  the junction problem, Kesserwani (2008a, 

2008b). Later, the branch channel problem was regarded as a lateral overflow through a side-

weir of zero crest height, Rajaratnam and Pattabhiramiah (1960). 
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The outflow and inflow discharge, the downstream and upstream and depth of water and the 

recirculation flow in the branch channel characterizes open channel dividing flow. 

Ramamurthy and Satish (1988), and Ingle and Mahankal (1990) were all able to  establish 

that the downstream to the upstream discharge ratio of the main channel was the most 

relevant parameter that analyzed open flow with a lateral channel at 90
0
. Comparing these 

results with some experimental observations, it was observed that the results of the above 

analysis were satisfactory. Neary and Odgaard (1993) also concluded that the roughness of 

the bed as well as the branch-channel to main-channel velocity-ratio would affect the 

structure of the flow. Barkdoll (1999) was able to demonstrate in his research that the 

diversion flow ratio has the greatest effect on the sediment delivery ratio of the lateral intake, 

which is carried out in a straight path with 90
0
 intake angle. Ramamurthy (2007) presented 

experimental data for open channels with dividing flows that were related to three dimension 

main velocity components and water surface profiles. Yang (2009) was able to study flow 

structures with diversion angles of 90°, 45° and 30°. A diversion angle of between 30° and 

45° was recommended to get a better flow pattern of the fluid. Fan and Li (2005) were able 

to formulate the diffusive wave equations for open channel flows with uniform and 

concentrated lateral inflow. In their formulation, they were able to present the continuity and 

momentum equations of an open channel with a lateral inflow channel that joins the main 

open channel at a varying angle. 

 Ramamurthy and Satish (1988) theoretically and experimentally investigated dividing flows 

with a submerged lateral branch when focusing on the sub-critical flow regime. The 

investigators developed a model theoretically by relating the discharge ratios and the 

downstream-to-upstream depth with the upstream Froude number. Ramamurthy (1990) 

formulated a more general expression with no restriction on the flow nature of the lateral 

branch. The best that can be expected is an approximation of the theoretical relationship 
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linking flow rate ratio and depth ratios of upstream and downstream of the junction for sub-

critical flow divisions. The discharge in the branch of the lateral channel can be computed by 

the formula formulated by Mizumura (2003) for super-critical overflowing rivers, which, 

when compared with experiments by Mizumura (2003 and 2005) compares well. 

Mohammed (2013) investigated how the discharge coefficient is affected by varying four 

different angles using an oblique weir with respect to the side of the channel wall in the flow 

direction. The four angles were 30
o
, 60

o
, 75

o
 and 90

o
 all

 
of which were varied along the flow 

direction. The findings were that maximum discharge was achieved at angle 30
0
 of the side 

weir. Moreover, Masjedi and Taeedi (2011) studied in the laboratory the effect of intake 

angle on discharge ratio in lateral intakes in 180
0
 bend. The investigations were carried out in 

a laboratory flume under clear water. The experiments were conducted with varying Froude 

number of various intake angles. The investigations showed that the discharge ratio increased 

at a lateral intake angle of 45
0
 in all locations of the 180

0
 flume bend. 

2.4 Review of the numerical method 

Shamaa (2002) used the finite difference Preissmann implicit model to solve open channel 

operation-type problems which were based on the Saint Venant equations. Comparing with 

an explicit model, the implicit finite difference method model showed less oscillation and 

more accuracy. 

Akbari and Firoozi (2010) investigated the Preissmann and Lax diffusive schemes which are 

two different numerical methods for the numerical solution of the Saint Venant equations 

that govern the propagation of flood wave in natural rivers with the objective of gaining 

better understanding of the propagation process. These findings in the flood wave 

propagations showed that the hydraulic parameters play an important role in these waves. 

Chagas and Souza (2005) provided the solution of Saint Venant equation through the study 

of flood in rivers by discretization for better understanding of this propagation process. Their 
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findings in the propagation of the flood wave showed that the hydraulic parameters play an 

important role in these waves. 

2.5 Summary 

The Saint Venant equations are used to analyze fluid flow in both open channels and lateral 

inflow channel. The finite difference method is then used as a numerical tool to solve the 

equations. The literature above demonstrates that much research seems to have been done in 

open channels with no lateral inflow channel. However, the research that has been done on 

the lateral inflow channel is limited only in the laboratory. Therefore, little research has been 

done in open channels with lateral inflow channel by modeling the problem mathematically. 

That is why in our research, we shall model our problem mathematically using the Saint 

Venant equations and use the finite difference method to solve the equations.  
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

In this chapter, we review some uniform flow formulas like the Chezy and Manning 

formulae that have been developed over the years. Next the saint Venant equations which 

govern open channel flow are outlined and modified to incorporate an open channel with the 

lateral discharge at an angle. Then, the method of solution is also discussed. Moreover, the 

governing equations in their finite difference forms with the initial and boundary conditions 

are presented.  Finally, investigations are done on how the variation of the angle, the cross-

sectional area, velocity and length of the lateral inflow channel affect the velocity in the main 

rectangular channel.  

3.2 Assumptions 

1. The flow is one-dimensional such that the main component of velocity is along the x-    

 axis and is a function of x alone 

2. The forces causing the flow are due to gravity alone 

3. The fluid is considered incompressible 

4. The fluid is Newtonian 

5. The flow is unsteady 

6. Sediment formation between the lateral inflow channel and the main open channel is 

 negligible 

7. Turbulent formation between the lateral inflow channel and the main open channel is 

 negligible. 
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3.3  The Chezy and Manning formula 

3.3.1 The Chezy formula 

This formula is based on two assumptions, Cecen (1982). First, the force resisting the flow 

per unit of wetted area is proportional to the square of the velocity, and second, the force 

causing the motion equals to resistance force. 

From the first assumption, resisting force per unit of wetted area is proportional to velocity 

squared, which implies it is equal to     where   is a constant. Hence 

                  (3.1) 

Wetted area = wetted perimeter (P) multiplied by Length (L) =   , where 

           and total resisting force 

                    (3.2)  

Force that is causing the flow is equal to the component of the weight of water in the 

direction of flow or  

                  (3.3) 

where θ is the angle of inclination of the channel bottom with the horizontal force causing 

flow.  

By the second assumption 

           , which implies       (3.4) 

    √
 

 
√

 

 
√      √   , where       (3.5) 

  
 

 
  , known as the hydraulic radius,      (3.6) 

    
 

 
  , is the flow resistance factor known as the Chezy’s coefficient  (3.7) 

This coefficient is believed to be dependent upon the channel slope S, the hydraulic radius R 

and the coefficient of roughness n.  
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3.3.2 The Manning formula 

The formula was developed by Bilgil (1998) through studies he performed. Then the 

manning formula is given by, 

  
 

 
 

 

  
 

 

           (3.8) 

According to the above equation, the mean velocity of flow is a function of the hydraulic 

radius, channel roughness and the energy gradient slope where in uniform flow the energy 

gradient slope is assumed to be equal to the channel bottom slope. 

Given the velocity, the discharge is defined as the product of cross-sectional area and 

velocity, 

                (3.9) 

Substituting the Manning equation (3.8) into equation (3.9) we get 

     
 

 , where         (3.10) 

  
 

 
 
 

 

           (3.11) 

This equation gives the flow rate through a channel of a given slope, radius and roughness 

coefficient. 

From (3.6), R increases as P decreases. Furthermore, from (3.10), an increase in R will lead 

to increase in the discharge  .Hence, to get a maximum discharge from our channel, we need 

to minimize P, which is the wetted perimeter. 

We now consider an open rectangular channel with depth y and width b. Then the wetted 

perimeter is, 

                     (3.12) 

The cross-section area of the channel is given by 

               (3.13) 

Now, making b the subject of the formula from the equation (3.13) we have  
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           (3.14) 

Substituting equation (3.14) into equation (3.12) we get 

  
 

 
             (3.15) 

For a given channel slope S, surface roughness n and area A, the wetted perimeter P, will be 

maximized when 

  

  
             (3.16) 

Now, 
  

  
  

 

   + 2            (3.17) 

From the condition (3.16) and (3.17), we have 

 
 

   + 2 = 0              (3.18) 

 

   = 2               (3.19) 

                 (3.20) 

Now to confirm that p is maximized, we check  
   

   
   

Differentiating equation (3.17) with respect to y we get 

   

   
  

  

            (3.21) 

Which means that since A and y are always positive, then from the equation (3.21), 

   

   
   

Substituting equation (3.13) in equation (3.20), we get 

               (3.22) 

Therefore, to achieve maximum discharge for an open rectangular channel, the width b 

should be twice the depth y. 
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3.4 Governing equations 

The Saint Venant’s equations basically describe the propagation of a wave in an open 

channel, predominantly one dimensional flow where the fluid is incompressible. These 

equations are the continuity equation and equation of motion derived from Newton’s second 

law of motion. Moreover, according to the number of elements considered in the model, 

waves can be classified as gravitational waves, diffusive waves, dynamic waves or cinematic 

waves. 

3.4.1 Continuity equation 

The principle of continuity is based on the law which states that mass can neither be created 

nor destroyed. Therefore a continuity equation is a type of differential equation that describes 

the transport of some kind of conserved quantity for example mass.  

For any arbitrary shape, the continuity equation governing unsteady flow in open channels is, 

 

  

  
  

  

  
                                                                                                                                      

 

According to figure 1, the cell with lateral inflow   , in a time interval    is considered. The 

net volume of the fluid in this cell is 
  

  
     . But since our lateral discharge channel is 

inclined at an angle θ, the lateral inflow is 
 

 
           The increment of the fluid in this 

cell is 
  

  
     . Considering the density of our fluid as constant and in line with the 

conservation law of the fluid, we have 
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This equation (3.24) reduces to 

  

  
 

  

  
  

 

 
                                                                                                                               

 

Substituting equation (3.9) above into equation (3.25) and differentiating partially with 

respect to x we get 

 

 
  

  
  

  

  
 

  

  
  

 

 
                                                                                                            

 

The flow area can be assumed to be a known function of the depth and therefore the 

derivatives of A can be expressed in terms of y. 

 

  

  
 

  

  

  

  
  

  

  
                                                                                                                         

  

  
 

  

  

  

  
  

  

  
                                                                                                                         

Where T is the channel top width and Franz (1982) assumed that T is determined by  

  
  

  
                                                                                                                                                

Since the area of the channel is given by      , where   is the top width and y the depth of 

the channel, we get the equation (3.29). 

Substituting equation (3.27) and (3.28) into equation (3.26) we get, 

 

  
  

  
  

  

  
  

  

  
 

 

 
                                                                                                        

 

Dividing equation 3.30 throughout by T and rearranging we get, 
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The term q  can be defined by 

                         (3.32) 

Furthermore, the area in the lateral intake angle is given by, 

                       (3.33) 

Equation (3.31) is the general equation of continuity for open channel flow with lateral 

inflow channel at an angle. 

3.4.2 Momentum equation 

Since the energy equation does not account for the dissipation of energy due to the 

turbulence of the fluid that is generated by the mixing of the open rectangular channel and 

the lateral inflow channel, the momentum equation becomes an appropriate equation for 

lateral inflow problems. The momentum equation describes the motion of fluid particles. 

This equation is derived from the Newton’s second law of motion, together with the 

assumption that fluid stress is the sum of diffusing viscous term, plus a pressure term. This 

equation relates the sum of forces acting on an element of fluid to its acceleration or rate of 

change of momentum. 

The law of conservation of momentum requires that the time rate of change of the 

momentum accumulated within the element is equal to the sum of the net rate of momentum 

transfer into the element and sum of the external forces in the flow direction.From figure 1, 

in a time interval of   , the net momentum for the cell    is 
     

  
    . The lateral inflow 

component of velocity in the flow direction is      . Thus, lateral inflow momentum into 

cell    at a time interval    becomes 
 

 
               . The fluid pressure and fluid 
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weight in the direction of flow are  
     

  
      and   (     )      respectively. The 

increment in the momentum for the cell dx is 
  

  
      .Therefore, according to the 

conservation law in the momentum equation we have, 

 

  

  
      

     

  
        

     

  
       (     )    

   
 

 
                                                                                                          

 

This equation (3.34) simplifies to 

 

  

  
 

     

  
   

     

  
   (     )    

 

 
                                                            

 

Substituting equation (3.9) into equation (3.35) above and differentiating partially with 

respect to x considering the area A is a constant we get, 

 

 
  

  
  

  

  
  

  

  
  

  

  
   

  

  
     (     )   

 

 
                                  

 

Rearranging equation (3.36), we have 

 

 ( 
  

  
 

  

  
 )   

  

  
  

  

  
   

  

  
     (     )  

 

 
                                   

 

Substituting Equation (3.25) into equation (3.37) we get, 
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 ( 
 

 
    )   

  

  
  

  

  
   

  

  
     (     )   

 

 
                                        

 

Noting that       and dividing equation (3.38) throughout by   we get 

 

  

  
  

  

  
  

  

  
    (     )  

 

 
( 
 

 
    )   

 

   
                                              

 

Now rearranging the equation (3.39) we get, 

 

  

  
  

  

  
  

  

  
    (     )   

 

   
                                                              

 

Equation (3.40) is the general momentum equation of an open channel with lateral inflow 

channel at varying angles. 

3.5  Method of solution 

In this study, we analyzed analytically how the variation of the angle in the lateral inflow 

channel affects discharge and depth in the main rectangular channel. The equations 

governing the flow considered in the problem are non-linear. The non-linearity is due to the 

term  
  

  
 in the momentum equation. These equations are non-linear first order partial 

differential equations. It is not possible to solve these equations using an exact method; thus, 

the finite difference method is used to obtain approximate solutions. In this method, the 

partial differential equations are estimated from a set of linear equations linking the values of 

the functions at each mesh point. Finally, these sets of algebraic equations are solved. 

Accuracy is a measure of how well the discrete solution represents the exact solution of the 

problem. In other words, a technique is accurate if the truncation error is negligible. A 
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technique is consistent if the truncation error decreases as the step size is reduced. A 

technique is stable if the errors in the solution will remain bounded (if the solution tends to 

infinity the method is unstable). Finally, a numerical technique is convergent if the solution 

approaches the exact solution as the grid spacing is reduced to zero. All these four factors 

have been proven in the finite difference method, Nicholas (1996). Hence, that is why it is 

used to solve the non-linear Saint Venant equations. 

3.5.1 Finite difference method 

The finite difference approximations of these partial differential equations are obtained from 

Taylor’s series expansion of the independent variables. From definition 

   
  

  
    

△   

    △         

△  
                                                                                                 

This formula can be used as an approximation to the derivative of u at x taking △x is very 

small. Now from Taylors series 

    △           △         
△   

 
                                                                             

On rearranging we get 

    △        

△  
        

△  

 
                                                                                       

If we consider the step △x to be very small, then the square, the cube and higher powers of 

this step will be very small and hence the product of the step size and their derivatives will be 

negligible. From this fact the equation (3.43) truncates and reduces to 

   
    △        

△  
    △                                                                                                        

This equation is a first order finite approximation and it helps us to solve the non-linear Saint 

Venant equations. The above analysis deals with continuous solution, however the objective 

is to calculate u at a set of discrete points on the mesh, and this is the numerical solution. The 

numerical solution of equations (3.31) and (3.40) will be approximated from a rectangular 
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grid approximated at a discrete number of points. This rectangular grid is obtained by 

dividing the (x, t) plane into a network of rectangles of sides △x and △t  by drawing the set of 

lines where h and k are the equal spacing in the x an t axis respectively. 

x = i△x=ih, i=0,1,2,…                                                                                 (3.45) 

t = j△t = jk, j=o,1,2,…                                                                                  (3.46) 

The nodes or mesh points of the network occur at the intersections of the straight lines drawn 

parallel to the x and t axes. The lines parallel to the x axis represent time while those drawn 

parallel to the y axis represent locations along the channel. The location lines are drawn with 

spacing △x while the time lines are drawn with spacing △t.Two indices identify each node in 

the network. The first designates spatial point (location) of the node in the time while the 

second designates the time. 

 

Figure 2: Finite difference mesh 
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x (m)   
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If we let ui,j be the numerical approximation for u(xi ,tj), then the first order forward 

difference approximation of the derivatives of V and y with respect to time t respectively are 

given by: 

   
           

 
                                                                                                                         

 

   
           

 
                                                                                                                        

 

Similarly the first order finite difference derivatives of   and   with respect to x respectively 

are given by: 

   
           

 
                                                                                                                      

   
           

 
                                                                                                                     

Now the governing equations (3.31) and (3.40) are replaced by the finite difference analogies 

of the partial differential equations.  

3.6  Governing equations in finite difference form 

The equations (3.31) and (3.40) are non-linear hence cannot be solved analytically hence we 

have to establish the finite difference method to solve them subject to the initial conditions 

                                                     (3.51) 

boundary conditions 

                                                    (3.52) 

 (  , t)                                           (3.53) 

The point    refers to the exit point of the section of the open rectangular channel. the 

considered section of the channel was 10m.Because of numerical unstable solutions of the 
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implicit finite difference method, Viessman et al (1972) noted that more stable solutions 

could be obtained by diffusing the finite difference approximations. 

  

  
  

            (                  )

△  
                                                                  

 

  

  
  

            (                  )

△  
                                                                    

 

   
                   

 
                                                                                                       

 

  

  
  

                 

 △  
                                                                                                       

  

  
  

                 

 △  
                                                                                                        

 

Now, we convert equation (3.3) into finite difference form. Therefore, we have, 

 

            (                  )

△  
       

                 

 △  
 

 
 

 
 
                 

 △  
  

 

   
                                                              

 

            (                  )   △  ,      
                 

 △  
 

 
 

                                    
 

 

                 

 △  
 

 

   
    -                                                 
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Equation (3.60) is the finite difference method for the continuity equation for an open 

channel with lateral intake at an angle.Now we convert the momentum equation (3.40) into 

the finite difference form. We have, 

            (                  )

△  
        

                 

 △  
 

  
                 

 △  
  (

                   

 
   ) 

                            
 

   
                                                                                        

 

The friction slope    in unsteady flow can be estimated by either using the Chezy or the 

Manning resistance equations. In this work we decide to use the Manning resistance 

equation. From the Manning equation, 

  
 

 
 

 

  
 

 

                                                                                                                                                

Now letting Sf to be our friction slope and making it the subject of the formula we have 

 
 

 

  
   

 
 

 

                                                                                                                                                   

Now squaring both sides, we get 

   
    

 
 

 

                                                                                                                                                

Substituting equation (3.64) into equation (3.61) we get 

            (                  )  △  ,      
                 

 △  
 

              
                 

 △  
   *

  

  
 

 

(                    )    + 

              
 

   
                   }                                                                                      
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The equations (3.60) and (3.65) are the continuity and the momentum equations respectively 

in finite difference form of an open channel with lateral intake at an angle. The index i refer 

to spatial points, whereas the index j refers to time. The terms          and          in 

equations (3.60) and (3.65) respectively, are computed subject to the initial and boundary 

conditions below. 

Now taking the velocity Vo =10 m/s and depth of the channel to be yo = 0.5 m, the initial and 

boundary conditions in finite difference form become where the index i stands for x which is 

the distance along the channel while j stands for time. 

Initial conditions, 

      = 0                        (3.66) 

The boundary conditions 

                              (3.67) 

                                        (3.68) 

 

The two equations are solved using very small values of △  .  In this research, we set 

△        and △    0.0001. This finite difference method is known to be convergent and 

numerically stable whenever 
△ 

 △   
 

 

 
 .The number of sub-divisions along the channel was 

taken to be 100 while along the time was taken to be 10000 sub-divisions. 

 

 

 

 

 

http://en.wikipedia.org/wiki/Numerically_stable
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CHAPTER FOUR 

  RESULTS AND DISCUSSION  
 

The Matlab software is used to simulate the equations (3.60) and (3.65) which appear in 

Appendix 1. This was done by varying i and j at various nodal points. Then various graphs 

were plotted using the values of the velocity   and the depth   at a certain location. Various 

flow parameters of width, slope, roughness coefficient, energy coefficient at an angle zero 

were investigated to determine how they affect the velocity. This was done so as to compare 

with the results obtained by Kwanza et al (2007). With the introduction of the lateral inflow 

channel, various flow parameters of angle, the cross-sectional area, velocity and length of the 

lateral inflow channel were varied to investigate how they affect the velocity in the main 

open channel.  The following graphs for different values of the flow parameters mentioned 

above. 
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Figure 3: Velocity profiles versus depth at angle zero for varying width and slope of the 

channel 
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Figure 4: Velocity profiles versus depth at angle zero for varying roughness and energy 

coefficients 
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Figure 5: Velocity profiles versus depth at varying cross-sectional area of the lateral inflow 

channel at angle 40
0
. 
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Figure 6: Velocity profiles versus time along the channel for varying angle of lateral 

inflow channel. 
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Figure 7: Velocity profiles versus depth for varying angle of the lateral inflow channel  
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Figure 8: Velocity profiles versus time along the channel for varying length and velocity of 

the lateral inflow channel at angle 40
0 
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Figure 3 and 4 correspond to the findings of an open rectangular channel with no lateral 

discharge; if the angle is zero, it means there is no lateral channel. 

From figure 3, it is noted that an increase in the width of the channel from 1m to 2m leads to 

a decrease in the flow velocity. This is because an increase in the width results in the increase 

in the wetted perimeter of the fluid under the conduit. This increase in the wetted perimeter 

will lead to an increase in the shear stress in the channel bottom, which will result in a 

reduction in the flow velocity.  It is also noted that an increase in the slope will lead to an 

increase in the fluid flow velocity. Thus, an increase in the slope from 0.002 to 0.08 will lead 

to the increase in the flow velocity. This can be seen in the Manning formula where an 

increase in the slope results in an increase in the flow velocity since the two are directly 

proportional to each other. 

From figure 4, it is noted that a decrease in the roughness coefficient from 0.029 to 0.012 will 

lead to an increase in the flow velocity. This is because an increase in the roughness 

coefficient leads to increase in the shear stresses at the sides of the channel which reduces the 

velocity. This increase in the shear stress leads to a reduction of the motion of the fluid 

particles near or at the surface of the conduit. The speed of the particles which neighbor these 

slow moving molecules will be reduced. This will result in the overall velocity of the fluid 

being reduced.  We also note that an increase in the energy coefficient, Alpha, from 1 to 2 

will lead to an increase in the flow velocity of the fluid. An increase in the energy coefficient 

will lead to an increase in the fluid particle’s energy. This increase in the fluid particle’s 

energy results to the particles attaining more random motion which causes constant 

bombardments with other fluid particles which leads to an increase in the flow velocity of the 

particles. This increase in the velocity of the particles will lead to an increase in the velocity 

of the fluid. 
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From figure 5, an increase in the cross-sectional area from 0.08 m
2
 to 0.32 m

2
 of the lateral 

inflow channel leads to a decrease in the flow velocity of the main channel. An increase in 

the area will lead to an increase in the wetted perimeter of the lateral inflow channel because 

the fluid will spread more in along the conduit. A large wetted perimeter leads to large shear 

stress at the sides of the channel which results to the flow velocity being reduced. Moreover, 

an increase in depth will lead to an increase in the velocity. It is also noted that at a depth of 

about 0.45m that is where maximum velocity occurs. The fluid flow velocity at the channel 

bottom is zero due to the non-slip condition of fluids. The non-slip condition states that a 

fluid in contact with a surface will achieve the same velocity at the surface. Since at the 

channel bottom the surface is not moving, the flow velocity at this section of the channel will 

be zero. However, as you move vertically upwards, the velocity increases since the frictional 

forces decrease and velocity becomes maximum slightly below the free surface. At the free 

surface the velocity is not maximum due to surface tension that is caused by strong cohesive 

forces between the fluid molecules.  Moreover, the wind blowing across the free surface 

causes frictional forces which reduce the fluid flow velocity. The velocity is much lower 

when the wind is blowing in the opposite direction.  

From figure 6, an increase in the angle of the lateral inflow channel does not necessarily 

mean an increase in the fluid flow velocity of the open rectangular channel. We see that an 

angle of 40
0
 has a higher velocity value than an angle of 90

0
. Those angles of 10

0
, 60

0
, 80

0
 

and 90
0
 have lower values of velocity compared to 30

0
, 40

0
 and 50

0
 angles. Moreover, figure 

7 also shows that at 35
0
 of the lateral inflow channel has higher value of velocity compared 

to other angles. Since the discharge is directly proportional to velocity, for one to get a 

maximum discharge from the lateral inflow channel, one has to construct it with an angle 

ranging from 30
0
 to 50

0
. The reason why the flow velocity in the open channel at an angle of 

90
0
 of the lateral inflow channel is lower is because the velocity in this lateral inflow channel 
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is maximized. At this angle, turbulence occurs in the section where the two channels meet 

resulting in a reduction in the flow velocity in the main channel. 

From figure 8, it is observed that an increase in the velocity of the lateral inflow channel 

from 10m/s to 12 m/s will lead to an increase in the flow velocity of the main open channel. 

However, an increase in the length of the lateral inflow channel from 1m to 2m leads to a 

reduction in the flow velocity in the main open channel. An increase in the flow velocity of 

the lateral inflow channel means that more fluid particles at a given time will collide with the 

fluid particles in the main open channel resulting in more random motion of the particles. 

This random motion leads to bombardments between the fluid particles leading to an increase 

in the velocity of the particles which in turn will lead to an increase in the fluid flow velocity. 

An increase in the length of the lateral inflow channel will lead to a decrease in the velocity. 

This is due to the increase in the shear stress on the walls and the channel bottom. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

Conclusion 

The objectives of modeling fluid flow in an open channel with a lateral inflow channel have 

been achieved. The results also compare with earlier research done when various flow 

parameters are compared. Moreover, investigations of the effects of varying angle, the cross-

sectional area, velocity and length of the lateral inflow channel on velocity in the main open 

in the summary are that, 

1. Increasing the angle of the lateral inflow channel does not necessarily mean an 

 increase in the velocity in the main open channel. That angles of between 30
0
 and 50

0
 

 exhibits higher values of velocity in the main open channel than other angles. 

2. Increasing the cross-sectional area of the lateral inflow channel leads to decrease in 

 the flow velocity in the main open channel. 

3. Increasing the velocity in the lateral inflow channel leads to an increase in the flow 

 velocity in the main open channel. 

4. Increasing the length of the lateral inflow channel leads to a decrease in the velocity 

 in the main open channel. 

Recommendations 

There is still a need to compare experimentally the theoretical results found in this research 

with laboratory results. Rectangular channels with lateral inflow channels can be developed 

in a laboratory and investigations on how the various flow parameters like length of the 

lateral inflow channel affects the discharge in the open channel. Finally, it is recommended 

that future research should be carried out on  

 The effect of lateral outflow channel on discharge  



 

40 
 

 The effect of two or more lateral inflow channels at various locations on discharge 

in the main channel 

 Flow in a trapezoidal, triangular or circular open channel with lateral 

inflow/outflow channel 

 Solving the above problem using a different numerical technique like perturbation 

or finite element method 
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APPENDIX 1 
 

Matlab code 

The finite difference equations (3.10) and (3.65) were solved simultaneously using the 

Matlab code below and subject to the initial (3.66) and the boundary conditions (3.67) and 

(3.68). The various results were obtained by varying the flow parameters of cross-sectional 

area of flow, velocity of flow, length of flow and angle of the lateral inflow channel on how 

each affects the velocity of the main open rectangular channel. 

function lateralintakechannel() 

%generate array x value 

N=100; 

x1=0; 

xN=10; 

dx =(xN-x1)/N; 

x = zeros(1,N); 

  

%generate array t values 

K=10000; 

t1=0; 

tK=1; 

dt=(tK-t1)/K; 

t=zeros(1,K); 

  

Y= zeros(N,K); 

V= zeros(N,K); 

  

%constants 

g=9.81; So=0.002; yi=0.5; ni=0.012; b=1; Alpha=1; 

b1=0.6; y2=0.3; u=10; L=1; 
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a=b1*y2;  

A=b*yi; 

P=b+(2*yi); 

 

%variable angle 

angle=35; 

theta = (angle*pi/180); 

 

for k=1:K+1 

        V(1,k)=10;  Y(1,k)=0.5;              %ENTRY 

        V(N,k)=10;  Y(N,k)=0.5;          %EXIT 

        t(k)=(k-1)*dt; 

 end 

for i=1:N+1 

        V(i,1)=0;  Y(i,1)=0; 

        x(i)=(i-1)*dx; 

end 

for k=1:K 

for i=2:N 

    Y(i,k+1)= 0.5*(Y(i-1,k)+Y(i+1,k))-dt*((A/b)*(V(i+1,k)-V(i-

1,k))/(2*dx)-V(i,k)*(Y(i+1,k)-Y(i-1,k))/(2*dx)-(a*u*sin(theta))/(b*L)); 

  

    V(i,k+1)= 0.5*(V(i-1,k)+V(i+1,k))-dt*(Alpha*V(i,k)*(V(i+1,k)-V(i-

1,k))/(2*dx)+g*(Y(i+1,k)-Y(i-1,k))/(2*dx)-g*(So-

((0.5*(ni^2)/(A/P)^(4/3))*(V(i-1,k)^2)+(V(i+1,k)^2))))+ 

dt*a*u*sin(theta)*((u*cos(theta))-(V(i,k)))/(L*A); 

end 

end 
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% figure 

%   hold all;  

%         plot(Y(7,:),V(7,:)); 

%         title('GRAPH OF VELOCITY AGAINST DEPTH'); 

%         xlabel('depth,Y(m)'); 

%         ylabel('Velocity,V(m/s)'); 

%         [~,~,~,current_entries] =legend; 

%         legend([current_entries {sprintf([texlabel('a'),' = %g'],a)}]); 
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