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ABSTRACT

In recent years, the question of whether expected shortfall is backtestable has

been hot topic of discussion after the �ndings in 2011 that expected shortfall

lacks the elicitability property in mathematics. However, current literature has

indicated that expected shortfall is backtestable and that it does not have to be

very di�cult. Several researches on risk measures have revealed that Value-at-

Risk (VaR) is not a coherent risk measure while Expected Shortfall is coherent.

Due to this weakness of VaR, Expected Shortfall has been popular and conse-

quently in 2012 the Basel committee suggest that bank or �nancial institutions

should move from VaR to ES as a measure of risk for minimum capital cover

for potential loss. Models are backtest to establish whether their predictions are

concurrent with the actual realized values. The backtesting of VaR is simple,

direct and well establish in many �nancial literature. That of Expected Short-

fall is not well explored and widely unknown. In this work the Extreme Value

Theory and GARCH model are combined to estimate conditional quantile and

conditional expected shortfall so as to estimate risk of assets more accurately.

This hybrid model provides a robust risk measure for the Nairobi 20 Share index

by combining two well known facts about return time series: volatility cluster-

ing, and non-normality leading to fat tailedness of the return distribution. First

the GARCH model with di�erent innovations is �tted to our return data using

pseudo maximum likelihood to estimate the current volatility and then the GPD-

approximation proposed by EVT to model the tail of the innovation distribution

of the GARCH-model. The estimates are then backtested. In backtesting VaR,

three methods are used: Unconditional coverage test, independent test and con-

ditional coverage test whereas for Expected Shortfall two methods were used:

bootstrap method and V-test.
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Chapter 1

INTRODUCTION

1.1 Background Information

In recent years, both practitioners and academics from the �nancial community

have become interested in extreme events analysis particularly concerning �nan-

cial risk management. The quanti�cation of market risk for derivative pricing,

portfolio choice and market risk management has been of crucial interest to �-

nancial institutions and researchers especially during the last two decades. Since

the early 1990s VaR has been the leading tool for measuring risk. Indeed, the

ability to estimate extreme market movements can be particularly useful for de-

tecting risky portfolios. Supervisors increase the control on banks to make sure

they have enough capital to survive in bad markets. While risk is associated with

probabilities about the future, one usually uses risk measures to estimate the to-

tal risk exposure. A risk measure summarizes the total risk of an entity into one

single number. While this is bene�cial in many respects, it opens up a debate

regarding what risk measures are appropriate to use and how one can test their

performance. The Basel Committee of Banking Supervisor uses VaR for internal

control as well as in the supervision of banks. VaR quanti�es the maximum loss

for a portfolio under normal market condition over a given holding period with

a certain con�dence level. Despite been universal, conceptually simple and being

easy to evaluate, VaR has been criticized for not being able to account for tail

risk. It only tells us the maximum we can lose if a tail event does not occur, but

if tail event occurs, we can expect to lose more than VaR. It is also criticized for

its lack of subadditivity, Artzner et al. (1997).

Because of the above limitations of VaR, these has prompted the implemen-

tation of a more coherent risk measure, Expected Shortfall. Artzner et al. (1997)

introduced ES to overcome the shortcoming of VaR. ES quanti�es the expected

value of the loss if a VaR violation occurs. The Basel committee on bank su-
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pervision in 2012 raised the prospect of replacing VaR with Expected Shortfall

as a risk measure. The greatest challenge confronting the implementation of ES

as the leading measure of market risk is the unavailability of simple tools for

back testing it. In fact, Gneiting (2011) proved that ES is not elicitable, unlike

VaR. This result sparks a lot of debate, some scholars believe that since ES lack

such an important mathematics property it is not backtestable. However, Szekely

et al. (2014) proposed three non-parametric methods for backtesting ES with-

out exploiting it backtestability and Zaichao Du et al. (2015) proposed another

method, conditional backtesing ES using cumulative violation.

1.2 Properties of a Good Risk Measure

A risk measure that is used for specifying capital requirements can be thought of

as the amount of cash (or capital) that must be added to a position to make it

risk acceptable to regulators. Artzner, et al. (1999) have proposed a number of

properties that such a risk measure should have. These are:

i. Monotonicity: If a portfolio has lower returns than another portfolio for

every state of the world, its risk measure should be greater. ie ρ is monotonic

if all loss variable L1 and L2 it holds are such that

L1 ≤ L2 → ρ (L1) ≤ ρ (L2)

ii. Translation invariance: Translation invariance means if an amount of cash

α is added to a portfolio, its risk measure should go down by α i.e ρ is

translation invariant if for all loss variable and α ∈ R it holds that

ρ (L+ α) = ρ (L)− α

iii. Positive Homogeneity: Changing the size of a portfolio by a factor (α)

while keeping the relative amounts of di�erent items in the portfolio the

2



same should result in the risk measure being multiplied by α i.e

ρ (αL) = αρ (L)

for α ≥ 0

iv. Sub-additivity: The risk measure for two portfolios after they have been

merged should be not be greater than the sum of their risk measures before

they were merged i.e ρ is subadditive if all loss variable L1 and L2 are such

that

ρ (L1 + L2) ≤ ρ (L1) + ρ (L2)

v. Normalization: This means you have no risk in taking no position. It is

given by

ρ (0) = 0

vi. Convexity:

ρ (αL1 + (1− α)L2) = αρ (L1) + (1− α) ρL2

Convexity means that when we diversify portfolios or invest di�erent asset, our

risk should never increase but may decrease.

Beside the above properties of coherent risk measures, comonotonic additivity is

another property of risk measures that is mainly of interest as a complementary

property to subadditivity. A risk measure satisfying the properties of transla-

tion invariance, monotonicity, positive homogeneity and subadditivity is called a

coherent risk measure.

1.3 Elicitability

Osband (1985) introduced the concept of elicitability, which was further developed

by Lambert et al. (2008). It is a mathematical property which is important in

3



evaluating forecast performance. In general, law invariant risk measure takes

a probability distribution and transforms it into a single value point forecast.

Geneiting (2011), showed that expected shortfall is not elicitable. Depending

on the type forecast made di�erent scoring functions are used in evaluating the

model performance. A statistical function (δ) of a random variable Y is elicitable

if it minimizes the expected value of scoring function S ,i.e

δ (Y ) = arg min
x

(E(S(x, Y )))

If δ is elicitable and given historical points of the predictions xt for the statistics

and realizations yt of a random variable, the natural model to perform backtesting

is given by the average expected score

Ŝ =
1

T

T∑
t=1

S (xt, yt)

The quantile function (VaR) is elicitable with the scoring function:

S (x, Y ) = ((x > y)− α) (x− y)

1.4 Statement of the Problem

Over the past two decades, the �nance world has relied on VaR as a risk measure.

The Basel committee for bank supervision in 2012 proposed to phase out VaR as

risk measure and replace it with ES which is argued has more bene�ts as a risk

measure (Basel committee, 2012). The changes are motivated by the appealing

theoretical properties of ES as a risk measure which are superior to those of VaR

(VaR is not subadditive and fail to control for tail risk). The greatest challenge

facing �nancial institutions and regulatory authorities is the unavailability of

simple tools for backtesting ES.
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1.5 Objectives of the Study

1.5.1 General Objective

To backtest estimates of Conditional Expected Shortfall.

1.5.2 Speci�c Objectives

i. To determine Conditional Expected Shortfall using GARCH-EVT.

ii. To backtest the estimated Conditional Expected Shortfall.

1.6 Justi�cation

Findings in this work will be helpful to both portfolio investor, risk managers,

banks and bank supervisors to be able to estimate ES using extreme value theory,

which have better theoretical properties than VaR. In fact, the Basel committee

in 2011 proposed the replacement of VaR as risk measure by Bank with ES.

Since banks are allowed by the Basel committee to use their own models for

internal risk management, the ability to backtest these models is a crucial tool

for supervisory authorities in order to be able to establish whether these banks

are over estimating or under estimating risk.

1.7 Scope

The daily returns of Nairobi Security Exchange for the time from 2nd January

2000 to 31st December 2015 is used in this work. It consist of 4018 daily closing

prices. The data was provided by Nairobi Security Exchange. The estimates of

conditional Value-at-Risk and Conditional Expected Shortfall were estimated at

coverage levels 95%, 99%, 99.5% and backtested at 5%.
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Chapter 2

LITERATURE REVIEW

The main purpose of this section is to have an overall view on the estimation of

daily return volatility and the use of extreme value theory. This will enables us

to gain insight into our research work which is risk estimation and backtesting.

2.1 Daily Return Volatility

Statistically, it is often measured as the sample standard deviation and mathe-

matically de�ned as follows:

σ̂ =

[
1

T − 1

T∑
t=1

(yt − ȳ)2

] 1
2

, t = 1, 2, 3, 4, 4, ..., T (2.1)

where yt represents the daily return at time t and ȳ is the average returns over a

period of T days. Risk is related to volatility but they are not exactly the same.

Is an undesirable outcome in business. Volatility can be de�ned as a measures

of how prices change over time. Hence daily return volatility is a measure of the

�uctuations in the daily returns. A high volatility scare investors, since it will

be very di�cult to predict. According Smith et al. (1990) the volatility in prices

has implications on the pro�ts and survivals of business.

2.1.1 Stylized Facts of Financial Time Series

Financial time series are known to exhibit certain stylized facts which are vital for

correct model selection, estimation and forecasting. The most common among

them are Volatility Clustering and Persistence, Fattailedness and leverage e�ects.

i. Volatility Clustering and Persistence: Volatility clustering means small

changes been followed by small changes(occur in clusters) while large changes

been followed by large changes. Engle and Mangsnelli (2001) show that �-

nancial time series are not norm and su�er from volatility clustering.
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ii. Fat Tail: The kurtosis which is the fourth central moment of a random

variable Y measures the tail behavior and denoted by K(y). It is mathe-

matically de�ned as:

K(y) = E[
(Y − ȳ)4

σ4
x

]

where ȳ representing the �rst central moment whereas σ4
x the square of the

second moment. The Kurosis of a normal distribution is 3. If the kurtosis

of a distribution is greater than 3 then it is fat tail (leptokurtosis), whereas

if it is less than 3 the distribution is short tail (platykurtic). When the

Kurtosis is exactly 3 then the distribution is normal. It is a well known fact

that �nancial time series are fat tail

iii. Non-Linear Dependence: The non-linear property means the correlations

between returns depends on the individual markets. For instance there

might be lower correlation in the bull market than bear market.

2.2 Review on GARCH-EVT

Engle (1982) �rst introduced the ARCH model for capturing time variant vari-

ance exhibited by almost all �nancial and economic time series. The generalized

version of ARCH model (GARCH model) which gives more parsimonious results

than ARCH model was formulated by Bolleslev (1986) and Nelson (1990). The

two GARCH-family model that allow for asymmetric shocks to volatility are GJR-

GARCH (Glosten-Jagannathan Runkle GARCH) model introduced by Glosten et

al. (1993) and EGARCH(exponential GARCH) model proposed by Nelson(1991).

In the same vein Extreme Value Theory, which is used to study the distribu-

tion of extreme realization of a given distribution satisfying certain assumption is

well established. The foundation of this theory can be trace back to the theorems

of Fisher and Tippet (1928) and Gnedenko (1943), who found that the distri-
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bution of extreme values of an independent and identically distributed sample

converges to only one of three distribution (Frechet , Weibull or Gumbel).

The use of Extreme Value Theory has become popular in �nance, after its pub-

lication in some papers such as Embrechts et al. (1999), Bensalah (2000) and

Brodin and Kluppelberg (2006). The results showed that Extreme Value Theory

methods �t the tails of heavy-tailed �nancial time series better than more conven-

tional distributional approaches. It was the best approach in estimating the tail

of a loss distribution. Besides �nance, several research papers have demonstrated

the superiority of EVT in di�erent �elds especially in �nance, insurance, agricul-

ture and meteorology. McNeil (1997) studied the perform of EVT in �nance and

insurance. The study uses both the POT where the Generalized pareto distri-

bution �tted to the excess of over a given high threshold and the block maixma

method. Due to the 1990s currency crisis, stock market turbulence and credit de-

fault, several researchers like Gilli and Kelleiz (2006), Mancini and Trojani (2010)

show the power of EVT approach in model VaR, ES and return level by using

both Block Maxima and Peak Over Threshold. It show that the POT method is

more e�cient in modeling data than the block maxima Method.

The work by Mc Neil (1999) combined Extremes Value Theory (EVT) and

stochastic volatility models. The �rst step is to �lter returns volatility by �tting a

GARCH model using ML (Maximum Likelihood). The second step is to apply the

extreme value theory to residuals extracted from an optimal GARCH model using

GPD (Generalized Pareto Distribution) or GEV (Generalized Extreme Values).

Other studies that follow Mcneil procedure are: Soltane et al(2012) uses GARCH-

EVT to forecast volatility in the Tunisian Financial Market. The work reveal that

hybrid method provide a robust risk measure for the Tunisian stock market (with

much chances of predictive abilities). The backtest of the estimates show that
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GARCH-EVT model is good in predicting risk for the Tunisian Stock market.

Singh et al. (2011) also use GARCH-EVT to model forecast VaR for ASX-ALL

ordinary (Australia) and The S&P (USA) and backtest their estimates. The

result show that the forecast Values for VaR are good estimates of risk for ASX-

ALL ordinary (Australia) and The S&P (USA). The use of GARCH-EVT does

not only stop at forecasting risk but some other people use to compare markets.

Mwamba et al. (2014) use GARCH-EVT to compare risk on the conventional

stock market and the sharia compliant stock market. The study uses data from

Dow Jones Islamic market, US S&P 500 and S&P Europe. The result show that

the Conventional stock markets has a fatter tail and it is also riskier. Murenzi

et al. (2015) model the Rwanda's currency-USD exchange rate volatility using

GARCH-EVT. The study uses di�erent ARMA-GARCH-models and found out

all the model work out well in modeling risk but ARMA(1,1)-APARCH(1,1,1)

stand out. GARCH-EVT is not only useful in estimating risk for �nancial re-

lated institutions but also other �elds.

Odening et. al (2000) uses GARCH-EVT along side Variance-Covariance and His-

torical simulation to model rsik for German Hog Market. Comparison of there

result shows that the GARCH-EVT out perform the other methods in model

risk for the German Hog Markets. Their show that we can use the GARCH-

EVT also to model risk for other non-�nance markets. Paul (2015) forecast

intraday VaR using Component GARCH-EVT with di�erent innovation on a

selected stock markets. His study highlight that component GARCH-EVT out

perform GARCH-EVT. Hence according to Paul (2015) it is better to use compo-

nent GARCH=EVT in forecasting Intraday VaR then GARCH=EVT. In another

study by Kourouma (2010) using data sets from CAC 40, S&P 500 Wheat and

Crude Oil during �nancial crisis shows that VaR and Estimates using the condi-

tional models are more reliable in predicting market risk than the unconditional
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models. Frad and Zouari (2014) use GARCH-EVT to estimate VaR in the Islam

Stock Market. According their study the VaR estimates show a strong stability

across thresholds which imply the accuracy and reliability of the VaR estimates.

This means that the GARCH-EVT is good method in forecasting VaR for the

Islamic Market. Lauridsen (2001) use various methods including GARCH-EVT

to estimate VaR and compare he result. The comparison of the results indicate

that the GARCCH-EVT are the best.Financial turbulence are periods in which

�uctuation in stock markets is very high. Uppal (2013) et al. uses GARCH-

EVT to forecast risk during the Pre-Global Financial Crisis (GFC) and during

Global Financial Crisis period, his study shows that with exception UK and US,

the GARCH-EVT explains the observed distributions well in both Pre-Global

Financial Crisis (GFC) and during Global Financial Crisis period. In other study

by Su E. and Knowles (2006) who use the GARCH-EVT to modeled volatility

and analyze VaR for the Asian Paci�c Market found out that the estimates of

VaR using the conditional market are more reliable. An empirical study on the

dynamic VaR on the index of Shanghai Security Market base on GARCH-EVT

by Yulin et al. (2009) shows that the estimate of VaR using GARCH-EVT are

better then GARCH-norm.This is quite true since �nancial time series are know

to posses stylized facts. The results the study include backtesting estimates to

ascertain the veracity of the results. The backtest result shows that estimates by

GARCH-EVT are better than that of GARCH-norm. Another market that has

recently experience high Volatility is the Oil Market. Prices of oil has been peak-

ing to around 200 dollars per barrel and dropping to less than 30 dollars within a

short space of time, hence practitioner in the Oil section need reliable estimates

of their expected loss. Hence Marimoutou (2006) using various methods includ-

ing GARCH-EVT and �ltered Historical simulation. The result indicate that the

forecast by conditional estimates and �lter Historical simulation perform better

than other models in estimating Risk for the oil market. Gencay et al. (2003)
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use GARCH-EVT, GARCH, Variance-covariance and historical simulations, ac-

cording to their study the adaptive GPD and the non adaptive GPD give more

stable quantiles forecast.

2.3 Review on Backtesting Expected Shortfall

The backtesting of Expected Shortfall is not well exploited in contrast to the VaR

which has several literature's written it. The Earliest known backtesting proce-

dure for expected shortfall was perform by McNeil and Frey 2000. The study used

the bootstrap method. Also Acerbi et al. (2014) propose three non parametric

methods for backtesting ES. They where able to show that their test at con�dent

level 2.5% is equivalent to backtesting VaR at 1% and their test perform better

than VaR. Zaichao et al. (2015) proposed two other methods for backtesting ES.

They proposed an unconditional backtest which is a t-test for the p,E[Ht|α, θ0]

analogue to the unconditional test for VaR by Kupiee (1995). The other method

proposed by them is a conditional test which is a portmanteau Box-Pierece test

on the sample of Ht(α, θ0).

Maana et al. (2015) used EVT to established if the extreme volatility witnessed

in the daily exchange rate of the Kenya Shilling against the U.S. dollar in the

period January 1999 to December 2013 could have been predicted. The also de-

termined if the long-term stability in the exchange rate was a�ected during the

period. The study GARCH (1,1) model to estimate the volatility of the exchange

rate returns of the Kenya Shilling against the U.S. dollar and found it to de-

scribe the volatility process well. The analysis of result revealed three key things

for volatility of the exchange rate returns of the Kenya Shilling against the U.S.

dollar in the study period. First the quasi Maximum likelihood estimates corre-

sponding to the GED parameters of the exchange rate returns are signi�cant and
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corresponds to a distribution with a tail heavier than normal. It also show that

the estimated volatility in the daily exchange rates was comparatively extreme

in the period 2008 to 2010. An �nally its also show that every 3 years extreme

volatility is expected in the exchange returns. These can help the Central Bank

of Kenya to prepare for such on undesirable circumstances.

2.4 Research Gap

In literature few methods for the backtesting Expected Shortfall has been de-

veloped. The most popular methods applied by researcher are those for the

backtesting Expected Shortfall. However this methods do not estimate Expected

well and hence the backtesting might also be not reliable. Hence to over come

these shortcomings, this study �rst estimate the conditional Expected Shortfall

using GARCH-EVT and �nally backtest results which is expected to give more

plausible results.

2.5 Summary

The section review what other researcher have done on the estimation and back-

testing of conditional Expected Shortfall. It has also explain some stylist facts

exhibited by �nancial time series.
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Chapter 3

GARCH-Extreme Value Theory

The ARCH models capture the stylized facts of real return data, but in order to

have a good �t to real data need a larger number of parameters which reduce

the data required for estimation. The GARCH model introduced by Bollerslev

(1986) added the concept for tomorrow volatility depends not only the past real-

izations but also depend on the errors of the volatility predicted. The GARCH

model has advantage over the ARCH model since it can capture the series corre-

lation in squared residuals using a smaller number of parameters. The GARCH

models have been extremely widely used in �nance since they integrate the two

main characteristics of �nancial returns, which are unconditional normalities and

volatility clustering. Several parametric and non-parametric methods have been

used in the estimations of CVaR and CES in di�erent literature, notable among

them are normal distribution, Kernel functions, student-t distribution and GPD.

3.1 ARCH-Model

A stochastic process is ARCH if the time varying conditional variance is het-

eroscedasticity. It is in the form

yt = σtet where et ∼ N(0, 1) (3.1)

σt =

√√√√β0 +

p∑
t=1

βiy2
t−1

where et is independent and identically distributed with mean zero and variance

one, and β0 > 0, 0 ≤ βi < 1 to ensure that conditional Variance is stationary

and strictly positive for all t.

Given yt = σtet =
√
β0 + βy2

t=1et

here
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E
(
y2
t

)
= E

((
β0 + βy2

t−1

)
e2
t

)
(3.2)

= E
(
β0 + β1y

2
t−1

)
E
(
e2
t

)
=

β0

1− β1

3.1.1 Properties of the ARCH Model

i. E (yt|Ft) = 0

ii. V ar (yt|Ft) = σ2
t where Ft = yt−1, yt−1, ..., yt−p The conditional variance is

a positive non-trivial parametric function of the past information.

iii. et = yt
σt
are independent and identically distributed and also independent of

the past information.b

3.2 GARCH Model

The ARCH models capture the stylized facts of real return data, but in order

to have a good �t to real data we need a larger number of parameters which

reduce the data required for estimation. The GARCH model has advantage over

the ARCH model since it can capture the series correlation in squared residuals

using a smaller number of parameters. The GARCH have been extremely widely

use they integrate the two main characteristics of �nancial returns which are

unconditional normalities and volatility clustering. The general GARCH(p,q) is

de�ne as follows

yt = σtet, εt ∼ N
(
0, σ2

t

)
(3.3)

σt =

√√√√ω +

p∑
i=1

δiy2
t−i +

q∑
j=1

βiσ2
t−j (3.4)

In the above equation the Autoregression part has an order p ≥ 0 while the

number of lagged of the variance terms is q ≥ 0. The magnitude parameters δi

and βj determine the short run dynamics of the resulting volatility process. To
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ensure that σ2
t is strictly positive, δi and βj most be non-negative and for the

process to be strictly then
∑p

i=1 δi +
∑q

j=1 βj < 1. If δi large, these implies that

volatility reacts to market movement whereas if βj is large indicates that shocks

to the conditional variance take long time to die out. The most widely used

GARCH models in �nancial data GARCH (1, 1). The GARCH is referred as a

symmetric model since the impact of sign is not taken into account.

3.2.1 Properties of the GARCH Model

The yt follows GARCH(p, q) if the following properties hold:

1. E (yt|Ft−1) = 0, where Ft−1 is the set of past information up to t− 1.

2. V ar (yt|Ft−1) = σ2
t

3. σt =
√
ω +

∑p
i=1 δiy

2
t−i +

∑q
j=1 βjσ

2
t−j, et = yt

σt
are independent and identi-

cally distributed and independent of past information. And Ft−1 contains

all past information of yt and σt up to t-1.

3.3 Tests for Model Suitability

3.3.1 Test for Normality

Jarque and Bera test is one of the most popular test for normality in many time

series studies. It can be applied using the method of moments where the �rst

moment is the measure of location; the second moment measures the variability

of the random variable. The �rst and the second moments determine a normal

distribution. The third and fourth moments are skewness and kurtosis respec-

tively, which are used to determine the degree of asymmetry and fat tailedness of

the distribution under study. The Jarque Bera statistic is given by the following

equation
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JB =
s2

6/T
+

(k − 3)2

4/T
(3.5)

where T is the number of observation, k is the kurtosis and s is the sample

skewness. If the p-value of the JB statistic is less than the required signi�cant

level, then the null hypothesis that the data is normal distributed is rejected. For

a larger sample size the JB statistic asymptotically has a chi-squared distribution

with two degrees of freedom.

3.3.2 Test for Stationarity

In dealing with GARCH models, one assumes that the time series is stationary.

This implies a putting constrains on the maximum likelihood estimators. If the

data is non-stationary, there is the presence of unit root. When non-stationary

time series is regressed, signi�cant relation is obtained for uncorrelated variables,

which is called spurious regression. There are several ways to check if there exist

a unit root, but the most popular way is the Augmented Dickey fuller test. It

is named after the statisticians David Dickey and Wayne Fuller, who developed

the test in 1979. There are two type of Dickey Fuller tests, the standard Dickey

Fuller test and the Augmented Dickey test. The standard Dickey test is only able

to test unit root for �rst order Autoregressive model. It is of the form

4yt = (p− 1) yt−1 + εt

Here the Dickey Fuller test is of the form

H0 : p = 1 and H1 : p ≤ 1

if the null hypothesis is accepted, this simply means there is a unit root. The

t-statistic converges to the distribution function of wiener process instead of the

normal distribution.

On the other hand, Augmented Dickey Fuller test builds correlation for higher
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order correction by including lag di�erence of the time series, if the time series is

correlated at higher The Augmented Dickey Fuller is of the form

∆yt = (p− 1)) yt−1 +

q∑
i=1

δi4yt−i + εt

The order q can be chosen by using AIC or BIC statistics

3.3.3 Autocorrelation

The Ljung-Box test (1978), named after Grea M. Ljung and George E. P. Box

is a type of statistical test of whether any of a group of autocorrelations of a

time series are di�erent from zero. Instead of testing randomness at each distinct

lag, it tests the overall randomness based on a number of lags, and is therefore a

portmanteau test. In general, the Ljung-Box test is de�ned as

H0 : The model does not exhibit lack of �t (no autocorrelation)

H1 : The model exhibits lack of �t (there is autocorrelation)

The test Statistics Q of length n is de�ned as

Q = T (T − 2)
∑m

k=1
p̂2i
T−1

where p̂i is the estimated autocorrelation of the series at lag k and n is the number

of lags been tested. The test reject H0 ,if Q > X2
1−α,d (that is model exhibits lack

of �t) where X2
1−α,d is the chi-square distribution with d degree of freedom and

α signi�cant level.

3.3.4 Test for ARCH E�ects

Before applying the GARCH on the data, one needs to test whether the residual

exhibit ARCH e�ects which is a pre-requisite condition for its application. Engel

(1982) proposed the Langrange Multiplier test for ARCH e�ects. In conducting

the test, we �rst estimate the best �tting autoregressive model

AR(q) yt = b0 +
∑q

i=1 yt−i + εt. Then next we regress the square residuals εt on

a constant and q lags as in the follows
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ε2
t = b0 + b1ε

2
t−1 + b2ε

2
t−2 + ...+ bpε

2
t−1 + γt

where the test is de�ned as follows: H0 : b1 = b2 = ... = bp = 0 against H1 : bi 6= 0

for at least one, i = 1, 2, 3, ..., p. The test statistics is LM = TR2 ∼ χ2
d. T is the

sample size and the R2 is computed from the regression of the square residuals

εt on a constant and p lags. If the p-value is less than the signi�cant level, we

reject H0, indicating the existence of ARCH e�ects.

3.4 GARCH Model Selection

In any statistical analysis the selection of model play an integral role. It is always

a decision problem on what model to select in order to perform statistical analysis,

such as policy analysis, forecasting, estimation and testing. Hence, the choice of

a good model plays crucial role in the analysis of �nancial time series. Therefore,

the main challenge is to select a model that takes into account the characteristics

of data. Tools such as the Akaike information Criterion (A.I.C) or Bayesian

information Criterion (BIC), F-test and Q-test. The most popular are AIC and

BIC which will be applied in selecting a model for the data in use.

3.5 Akaike and Schwartz information Criterion

Akaike (1973) came up with the AIC test as an extension to the maximum like-

lihood principle. This test was the �rst model selection criterion to bene�t from

widespread acceptance. AIC is an estimate of a constant plus the relative distance

between the unknown true likelihood function of the data and �tted likelihood

function of the model. A small AIC means a model is considerable to be closer

to the truth. The selection criterion is based on the information content of the

model. It is mathematically de�ned as

AIC = −2(ln(l(θ̂|yt + k)
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where likelihood is the probability of the data given a model and k is the number

of �tted parameters in the model. In order words, AIC can also be de�ned as

AIC = −2(log(maximize Likelihood) + 2(number of �ltered parameters)

The �rst term on the right hand side of AIC equation is a measure of the lack of

�t of the chosen model while the second term on the right hand side measures the

increased number of model parameters. Schwartz (1978) proposed another model

selection criterion based on information theory in Bayesian context call BIC. BIC

is an estimate of a function of a future probability of a model being true under

a certain Bayesian setup. A lower BIC means that a model is considerably more

likely to be the true model. Mathematically, BIC can be de�ned as follows

BIC = −2 ∗ loglikelihood+ k ∗ log(T ),

where T is the number of observation and ln is log-likelihood function using the

k estimated parameters. This de�nition allows multiple models to be compared

at once; where the model with the highest future probability is the one that

minimizes the BIC

3.6 Autocorrelation Function and Partial Auto-

correlation Functions

ACF and PACF are measures of correlation between current and past series

values and show, which past series values are most useful in predicting future

values. Hence,it is use to select the order of the process in GARCH model.

ACF can be de�ned, as a set of correlation coe�cient between the series and

the lags of itself over time, the lag at which the ACF cuts o� is the indicated

number of GARCH term or conditional variance. In the same way, PACF can

also be de�ned as partial correlation coe�cient between the series and lag of

itself over time. The lag at which the PACF cuts o� is the indicated number of

Autoregressive or ARCH term. A positive correlation indicates that large current
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values correspond with small values at the speci�ed lag. The absolute value of a

correlation is a measure of strength of the association, with large absolute values

indicating stronger relationship, wang et al. (2005). For stationary processes,

autocorrelation between any two observations only depends on the time lag h

between them. De�ne Cov(yt, yt−h) = γh. Lag h autocorrelation is given by

ρh = Corr(yt, yt−h) = γh
γ0
, where the denominator γ0 is the lag 0 covariance.

Partial autocorrelation is the autocorrelation between yt and yt−h after removing

any linear dependence on y1, y2, y3, ..., y(t−h)+1. The partial lag-h autocorrelation

is denoted by Φh,h for h = 1, 2, 3, 4, ..., T − 1

3.7 Estimation of Volatility

We consider the process that describes the daily returns under the following model

yt = µt + εt, εt = σtet

σ2
t = V ar (yt|Ft−1)

In order to estimate the conditional volatility, the residuals are substituted by

sample residuals. The residuals of the returns can be given as εt = yt−µt. Where

et is i.i.d random variable with E(et) = 0 and E(e2
t ) = 1. The residuals may be

estimated as follows
ε̂t = yt − µ̂t

σ̂têt = yt − µ̂t

where σt =
√
ω +

∑p
i=1 δiε

2
t−i +

∑q
j=1 βiσ

2
t−i is GARCH(p,q) model. The GARCH(p,q)

model is �tted to negative return data using Quasi-Maximum likelihood Estima-

tion procedure in order to get the current volatility. The GARCH model is de�ned

as
σ̂t =

√√√√ω +

p∑
i=1

δ̂iε2
t−i +

q∑
i=1

βiσ2
t−i

where σt is the estimated volatility and its asymptotic consistency and asymptotic

normality were investigated in the next section.
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3.8 Quasi Maximum Likelihood Estimator

Quasi-Maximum Likelihood Estimate is appropriate when the estimator is de-

rived from a normal likelihood but the disturbance in the model are not truly

normally distributed. An important assumption made is that the speci�cation of

the likelihood function, in terms of the joint probability density of the variable

is correct. Under the condition that the maximum likelihood estimator has the

desirable properties of consistency and asymptotically normally, Straumann and

Mikosch (2006). Lumsdaine (1996) investigated the QMLE for GARCH models

and showed that the parameters of GARCH models are consistent and asymp-

totically normal. In this study, we applied QMLE to estimate parameters of

GARCH(p,q) models assuming that conditional expectation of returns is negligi-

ble.

To get the Quasi-Likelihood function, we consider the situation where the true

probability distribution fγ (yt, θγ) of the returns at time t and incorrect probabil-

ity distribution given by f (yt, θγ) are used to build the likelihood function.

Now the model can be reformulated by letting yt to be a sequence with the true

model giving

yt = µt + εγt, εγt = σγtet (3.6)

σ2
γt = V ar (yt|Ft−1) = E

(
y2
t |Ft−1

)
where εγt ∼ N

(
θ, σ2

γt

)
“E (εγt|Ft−1) = 0 almost sure and σt = σ (εγt, εγt−1, ...) the

conditional variance can be de�ne as E
(
ε2
γt|Ft−1

)
= σ2

γt (the subscript γ indicates

the true value of the parameter). We also assume yt = εt = σtet εt ∼ N (0, σ2
t )

to be the model for the unknown parameters (misspeci�ed) model. Hence the

true and misspeci�ed distribution are

fγ (yt) =
1√

2Πσ2
γt

exp
(
− ε2γt

2σ2
γt

)
(3.7)
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f (yt) =
1√

2Πσ2
t

exp
(
− ε2t

2σ2
t

)
(3.8)

Assume that the innovations follow a GARCH (1,1) process

σ2
γt = ωγ (1− βγ) + ε2

γt−1 + βγσ
2
γt−1 (3.9)

An equivalent expression for the conditional variance can be derived as

σ2
γt = ωγ + δγ

∞∑
k=0

βkγε
2
t−1−ka.s (3.10)

Again assume that the process is described with true parameters in the vector

form given as

θγ = [ωγ, δγ, βγ]
/ (3.11)

and for the model with the unknown parameters

σ2
t (θ) = ω (1− β) + δε2

t−1 + βσ2
t−1, t = 1, 2, 3, 4, ..., T (3.12)

with the setup or initial conditional, σ2
t (θ) = ω this gives the convenient expres-

sion for the conditional variance process

σ2
t = ω + δγ

∞∑
k=0

βkε2
t−1−k (3.13)

Finally, assume that the innovation εt are the model for unknown parameters

θ = [ω, δ, β]/ with |β| ≤ 1 Now de�ne the compact parameter space Θ in the

following way

Θ = [θ : 0 < ωa ≤ ω ≤ ωb, 0 < δa ≤ δ ≤ δb, 0 < βa ≤ β ≤ βb ≤ 1]

where subscripts a and a indicate lower and upper limits respectively. We assume

that the true parameter θγεΘ this implies that δγ > 0, βγ > 0 which means

that εt.is strictly a GARCH process. We can also de�ne standardized residuals

εt
σt

by constructing E (et|Ft−1) = 0 and E (e2
t |Ft−1) = 1 most of the time the

estimation of GARCH model is done under assumption that et ∼ N(0, 1) so

that the likelihood is easily speci�ed. The maximum likelihood estimators of

the parameter of the misspeci�ed distribution obtained by maximizing the log-

likelihood function
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lnL(θ) =
n∑
t=1

lnf (yt, θ) (3.14)

The estimator θ̂ is obtained by setting the �rst order condition given by

l(θ) =
∂lnL

∂θ
=

n∑
t=1

∂lnf (yt, θ)

∂θ
(3.15)

n∑
t=1

∂

∂θ
(1) = 0 (3.16)

Thus su�cient condition for 3.16 to hold is that the model is speci�ed correctly.

There are however, some important cases where Eτ [l(θ)] = 0 even when the dis-

tribution is misspeci�ed. Lets assumed that the Gaussian likelihood is applied to

form the estimator. Then, the log likelihood takes the form

Ln(θ) = 1
2n

∑n
t=1lt(θ)

where lt(θ) = −
[
lnσ2

t (θ) +
ε2t

σ2
t (θ)

]
and ln(θ) is typically referred to as quasi-

likelihood function of parameter θ, since the likelihood need not to be of the

correct density. The vector of parameter value, denoted by θ̂n maximizes the

likelihood ln(θ) on the subspace Θ1 of compact space Θ and is given as

θ̂n = argminXθεΘln(θ)

The asymptotic consistent and asymptotic normal properties of the quasi-maximum

estimator θ̂n of the GARCH process also need to be investigated.

3.8.1 Asymptotic Consistency

An estimator θ̂n is said to be consistent to the actual parameter θn if when the

sample size is su�ciently large the estimators θ̂n will be very likely to be close to

the actual parameter value θn. When an estimator converges in probability to the

true value as the sample size increases the estimator is asymptotically consistent.

Suppose that the daily returns data y−p+1, .., y0, y1, ..., yn generated by the Model

3.6 with θ as the parameter. Suppose that the data up to y0 are available and
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the process y0 is described with the true parameter in the form a vector. The σ̂2
γt

de�ne

σ̂2
γt = ω (1− β) + δε̂2

γt−1 + βσ̂2
γt−1, t=1,2,3,4,...,T (3.17)

Together with the initialization σ̂2
γt ≥ 0 this means that the log-likelihood of

(y1, ..., yn)/ given (ytσ)/ under ε ∼ N (0, 1) is approximately equal to

l̂n = −1

2

n∑
t=1

(
lnσ̂2

tγ(θ) +
y2
t

σ̂2
γt(θ)

)
(3.18)

The QMLE θn is the parameter value, which maximizes l̂n on the parameter space

Θ1, since Θ1 is an approximately chosen compact subset of the parameter space

Θ. The QMLE θn is strongly consistent if the following conditions on the random

variable εt are satis�ed

M1 : εt is a sequence of iid random variables such that E(εt) = 0

M2 :The vector parameter θγ is in the interior of compact set Θ.

M3 : For some k > 0 there exist a constant a <∞ such that E
[
ε2+k
t

]
≤ a <∞

M4 : E [ln (β0 + δ0ε
2
t )] ≤ 0

M5 : ε2+k
t is non generate

M6 :If for some t holds σ2
γt = ω0 +

∑∞
p=1 ωpε

2
t−p and σ̂2

γt = ω?0 +
∑∞

p=1 ω
?
pε

2
t−p

,hence ωi = ω?i for 1 ≤ i <∞

If the above conditions are satis�ed then from the theorem below it can be con-

cluded that the QMLE is consistency.

Theorem

Under the above conditions M1 to M6 the QMLE estimator θ̂n is strongly con-

sistent i.e θ̂n
a.s→ θγn→∞
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3.8.2 Asymptotic Normality

The distribution of estimators is said to be asymptotically normal if when the

sample size increases, the distribution of the estimators approaches a normal

distribution. In showing that our estimators are asymptotically normal we need

the following assumptions.

M7 :σ2
γt is continuous and twice di�erentiable on the Θ1 (that is C-2 regular)

M8 : The following moment condition hold i.e E (ε4
t ) <∞ (the fourth moment

is �nite) and

E

(
(∇σ2

γ(θγ))
2

σ2
γ

)
<∞, E||∇ln||Θ1 <∞ and |∇2lnΘ1

| <∞

If the estimator is asymptotically consistence and the conditions forM7 and

M8 holds, then according to the following theorem our QMLE estimator is

asymptotic normal.

Theorem

Under the conditions M1 to M8, the QMLE θ̂n is strongly consistent and asymp-

totically normal, that is
√
n
(
θ̂n − θγ

)
d→ N (0, hγ) as n→∞

where hγ is the asymptotic variance of the θ̂n

3.9 Extreme Value Theory

The extreme value theory plays a fundamental role in modeling maxima of a

random variable just like the central limit does in modeling sums of random vari-

ables. Basically,there are two ways of identifying extreme in real data. The �rst

method is done by dividing the data in to blocks and considering the maximum in

each block as extreme event. The other approach is focusing on the realizations

exceeding a given high threshold. Any observation above the selected thresh-

old is considered an extreme event. The block maxima method is the traditional

method used to analyze data with seasonality, as for instance meteorological data.
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According Gilli et al. (2006) the threshold method uses data more e�ciently

for that reason, seems to become the choice of most recent applications. The

EVT relates to the asymptotic behavior of the extreme observation of a random

variable. It provides the fundamental for the statistical modeling of rare events

and is used to compute tail related risk measures.

1. Distribution of Maxima:

LetMn be maximums (minimums) of daily returns with n denoting the size

of the block, then limiting law of the block maxima is given by the theorem

by Fisher and Tippett and Gnedenko Theorem ( Fisher and Tippett ,1928 ,

Gnedenko, 1943). Let (Xn) be a sequence of iid random variables. If there

exists a constants cn > 0 and dn ∈ R and some non-degenerate distribution

function H such that Mn−dn
cn

d→ H Then H belongs to one of the three

standard extreme value distributions.

Frechet : Φn =

 0, if x ≤ 0

exp((−x)−α) if x > 0
., α > 0

Weibull : θn =

 exp (−(−x)α) , if x ≤ 0

1, if x > 0
., α > 0

Gumbel : 5n = exp (−exp (−x)) , x ∈ R

The Frechet distribution has a polynomial decaying tail and hence suits

heavy tailed distribution. The Gumbel distribution is exponential decay-

ing tail, which is the characteristic of thin tail while Weibull distribution

is the asymptotic distribution of �nite endpoint distribution. Jenkinson

(1955) and Mises (1954) suggested the generalized extreme value distribu-

tion. Which is given as
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Hε(x) =

 exp (−(1 + εx))
−1
ε , if ε 6= 0

exp (−exp(−x)) , if ε = 0

The GEV is obtained by letting ε = α−1 for the Frechet distribution,

ε = −α−1 for the Weibull distribution and by interpreting the Gumbel

distribution as the case when ε = 0. Usually the limiting distribution of

sample maxima is not known in advance; hence, the generalization is useful

when computing the maximum likelihood estimates. The standard GEV is

the limiting distribution for normalized extrema. But usually in practice

the distribution of the returns is not known and as such will not have idea

about the normalize constants, hence the three parameter speci�cation of

GEV is used and this is limiting distribution for the unnormalized maxima.

In this work will not only focus on the parameters only but also on the

quantiles

Hε,σ,µ (Y ) = H

(
Y − µ
σ

)
, Y εD, D =



(
−∞, µ− σ

ε

)
(−∞,∞)(
µ− σ

ε
,∞
)

ε < 0

ε = 0

ε > 0

where σ and µ scale and location parameter and σ > 0 and µ ∈ R

2. Distribution of Exceedance:

The Peak Over Threshold (POT) is another method for considering the

distribution of exceedance over a chosen threshold. Since the POT method

uses data more e�ciently it will use in chapter 4 in selecting the extremes

Let Yn to be i.i.d random variables and u1, u2, ..., un to be exceedance over

given threshold u.

Lets assume that the exceedance over u are i.i.d with conditional distri-

bution function Fu threshold u is less than endpoint yF ≤ ∞. Fu is called

the conditional distribution and is de�ned as Fu (z) = P (Y − u ≤ z|Y > u)
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0 ≤ z ≤ yF − u where Y is random variable, u is the chosen threshold and

yF <∞ is the right endpoint of F. The conditional distribution Fu can be

expressed as

Fu(z) =
P (X ≤ u+ z)− P (Y ≤ u)

P (Y > u)
(3.19)

=
F (u+ z)− F (u)

1− F (u)

1− Fu(z) = 1− F (u+ z)− F (u)

1− F (u)

According to Todorovic and Zelenhasic (1970), POT gives the frame of estimating

the distribution function of the exceedance over high threshold u, which shows

the starting of the tail.

Theorem:

(Limiting distribution of Fu(z). ( Balkan and Haan, (1974) and Pickand (1975)).

For F ∈ MDA(Hε, ε > 0), the generalized Pareto distribution (GPD) is the

limiting distribution for the distribution of excesses, as the threshold tends to the

far right endpoint yF , i.e. limu→yF sup0≤y<yF−u
∣∣Fu (y)−Gε,β(u) (y)

∣∣ = 0

3.10 Generalized Paretos Distribution

According to Balkan (1975) and Pickand theorem (1974) for a su�ciently high

threshold u the distribution function of the excess may be approximated by the

GPD, which is de�ned as follows

Gβ,ε(z) =


1− (1 + εz

β
)
1
ε

1− exp(− z
β
)

if ε 6= 0

if ε = 0

(3.20)

But F (u) = n−k
n

where n is the total number of observation k is the number of

exceedances. Hence substituting F (u) with n−k
n

and Fu(z) by Gβ,ε in 3.19 gives

F (y) = 1− k

n

[(
1− ε (x− u)

β

) 1
ε

− 1

]
(3.21)
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where ε shape parameter, α is the tail index and β is the scale parameter .Also

ε and β can be estimated using the maximum likelihood method for Y > u. For

a given probability q > F (u) the tail quantile is given by

xyq = u+
β

ε

[(
n (1− q)

k

)−ε
− 1

]
(3.22)

3.11 Maximum Likelihood Estimation

The maximum likelihood method of estimation is always an important method in

statistics, so that the MLEs of the parameters for the GPD are preferred in the

literature. In fact, Smith (1984) showed that when ε ≤ 1
2
, the MLEs for the GPD

are consistent, asymptotically normal, and e�cient. The MLEs for the GPD have

been studied by many authors, including Smith (1985),Davison (1984, Choulakian

and Stephens (2001), Grimshaw (1993), and Hosking and Wallis (1987). Let

Y = (Y1, Y2, ..., Yn) be a random vector with PDF, f(y1, y2, ..., yn : θ, θ ∈ Θ),

Then the likelihood is given as

L(y1, y2, ..., yn, θ) =
n∏
t=1

f (yi, θ)

Hence the likelihood of GPD is given by

L(θ) =
n∏
t=1

1

βu

(
1− ε

βu
zi

) 1
ε
−1

Taking the log of both sides we have

logL(θ) = l(θ) = log((
1

βu
)
n

n∑
=1

(1− βuzi)
1
ε
−1

l(θ) = −nlog(βu) +

(
1

ε
− 1

) n∑
i=1

log

(
1− ε

βu
zi

)
It is convenient to reparametize (βu, ε) of the GPD to (Φ, ε), where Φ = ε

Φ
. Then,

using estimates of (Φ, ε), βu can be estimated by β̂u = ε̂

Φ̂
. In terms of (Φ, ε), the

log-likelihood for the sample is
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l(Φ) = −nlog(
Φ

ε
) +

(
1

ε
− 1

) n∑
i=1

log (1− Φzi)

It is easy to show that the estimating equations of the MLE for (Φ, ε) are equiv-
alent to

1− ε =
n∑n

i=1 (1− Φzi)
−1

and

ε = −n−1

n∑
i=1

log (1− Φzi)

Using elimination method and eliminating ε from 3.11 and 3.11, it su�ces to

solve the equation for Φ

l(Φ) = 1− n∑n
i=1 (1− Φzi)

−1 + n−1

n∑
i=1

log (1− Φzi) = 0,Φ <
1

Y(n)

(3.23)

when Φ̂MLE is obtained,
(
β̂τ , ε̂

)
are estimated by

ε̂MLE = −n−1

n∑
i=1

log
(

1− Φ̂MLEzi

)
and β̂MLE =

ε̂MLE

Φ̂MLE

The numerical solution of Φ in 3.23 can be complex. First, the pro�le log-

likelihood function l(Φ) may steadily decrease, as Φ decreases, from an in�nity

at Φ = 1
Y(n)

, so that no local maximum may be found. The situation of no

maximum will occur with increasing probability as the true ε increases towards

and beyond 1. Second, if there is a local maximum, it may be extremely close to

Φ = 1
Y(n)

, for example, within 10−6, for some data sets, and then the solution of

3.23 will easily be passed over or may give convergence problems, Hosking and

Wallis (1987); Grimshaw (1993).

3.12 Threshold Selection

Threshold selection is still an area of ongoing research in the literature, which can

be of critical importance. Coles (2001) states that the selection of the threshold

process is always a trade-o� between the bias and variance. If the threshold is
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too low, the asymptotic arguments underlying the derivation of the GPD model

are violated. By contrast,selecting a high threshold will lead to few data points

to estimate the shape and scale parameter leading to a high variance. There are

three graphical methods of estimating the threshold.These are:

1. Quantile-Quantile plot:

In this method, the quantile of the data is plotted against the quantile of

a reference distribution. If the reference distribution is that of a medium

tail (normal or exponential distribution) then data points will form straight

line with a positive slope. If the right hand side of the graph is concave

it indicates fat tail and if it is convex at the right hand side, it indicates

short tail. If the sample is realization are from a distribution, which has the

same form as the reference distribution but with di�erence scale and / or

location parameters, then the QQ-plot, will still be linear and the intercept

of QQ-plot will indicate the location while the slope indicates the scale

parameter.

2. Mean Excess Plot (MEP):

The MEP is also known as mean residual life plot. It is one of the most com-

monly used graphical method. The theoretical reasons behind this methods

reside in the fact that when the distribution of exceedances over a thresh-

old u1 is a GPD, then the distribution of exceedances over any threshold

u1 > u2 is also a GPD with the same shape parameter ε and scale param-

eter βu2 = βu1 − ε(u1 − u2). The Mean Excess plot is the representation

of the empirical estimate of conditional expectation E(Y − u|Y > u) as a

function of the threshold. The optimal threshold u0, the distribution of the

exceedances is GPD and the conditional mean excess is given by

E(Y − u|Y > u) =
βu

1 + ε
=
βu0 − ε(u− u0)

1 + ε
, for u > u0 (3.24)
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The MEP will be roughly positive slope linear above a threshold u which

indicates that the data follows GPD with a positive slope parameter ε. IF

data is medium tail then the MEF would be horizontal while if it is fat tail

MEF will negatively sloped line. u is taken to be the beginning of the tail

of the distribution under consideration. However, in practice, the use of

an MEP is not always simple and detecting the linearity is subjective task.

We explore the range of the linearity of graph using numerical techniques

to select optimal threshold.

3. Hill Plot:

The Hill plot is done by ordering the statistics with respect their values, i.e

Y(1,n), Y(2,n), Y(3,n), ..., Y(n,n) and Y(1,n) ≥ Y(2,n) ≥ ... ≥ Y(n,n). Hill's estimator

of the tail index α = 1
ε
is given by

α̂ =

(
1

k

k∑
j=1

lnYj,n − lnYk,n

)−1

(3.25)

where Yk,n is the upper order statistics and k is the number exceedance

and n is the sample size. The plot is constructed by plotting the estimate

of α or ε as a function of the k -upper statistics. A threshold is selected

from the plot where the shape parameter α or ε is stable. Hill plot is

constructed by plotting the estimate of ε as a function of k -upper order

statistic or threshold. The threshold is selected from the plot where the

shape parameter tail index is stable, Beirlant et al (1996)

3.13 Tail Estimation

Our interest is to build tail estimator that can be used to obtain the quantile. The

method of non-parametric such as historical simulation may be used to estimate

Fu as F̂u = n−k
n
, where n is the total number of observations and k are the number

of the observations above the threshold u. The MLE of the generalized Pareto

distribution parameters give rise to the tail estimator formula as
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F̂ (y) =
k

n

[
1−

(
1− ε̂(Y − u)

β̂u

)−1
ε

]
+

(
1− k

n

)
(3.26)

=
k

n
− k

n

(
1− ε̂(Y − u)

β̂u

)−1
ε

+ 1− k

n

= 1− k

n

[(
1− ε̂(Y − u)

β̂u

) 1
ε

]

3.14 Estimation of the Extreme Quantiles

Consider a random variable Y and a high probability level q, the quantile of

random variable Y at probability level q is any real number eq satisfying the

following inequalities
P (X ≤ eq) ≥ q (3.27)

Now, de�ning the quantile eq of distribution function F as inverse of distribution

at a given probability level qε (0, 1) close to one

F̂ (eq) = 1− k

n

[(
1− ε̂(x− u)

β̂u

) 1
ε

]
(3.28)

The quantile estimate of an underlying distribution are obtained by simply in-

verting the above equation which gives

êq = u+
β̂u
ε̂

[(
n (1− q)

k

)−ε
− 1

]
(3.29)

where ε̂ and β̂u are the estimates of ε and βu shape and scale parameters respec-

tively.

3.15 Value at Risk (VaR)

The Value-at-Risk answers the question how much we can lose, with given prob-

ability, over a certain time horizon. From a mathematical perspective VaR is

simply a quantile of the pro�t and loss distribution of a given portfolio over a
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particular holding period. Hence VaR quanti�es the maximum loss for a portfo-

lio under normal market condition over a given period with a certain con�dence

level. It is one of the major tools �nance shareholders can use to assess level of

riskiness of the market. It summarizes risk in a single number which makes it

easier to understand the total exposure of the investment to market risk. It is

given by
V aRq = êq = u+

β̂u
ε̂

[
(
n(1− q)

k
)−ε − 1

]
(3.30)

3.16 Conditional VaR

The conditional volatility provided by GARCH model and extreme quantile es-

timates are combined to obtain conditional value at risk. For extreme quantiles

when q close to 1, the empirical quantiles are not e�cient estimates of the

theoretical quantiles. The conditional quantile is quantile of the predictive dis-

tribution for the return over the next h days. The conditional value at risk is

given by CV aRt+1
q = inf(xεR, Fxt+1+xt+1+...+xt+k|Πt(x) ≥ q).

Hence CV aRt
q = µt+1 + σt+1zq which by assumption does not depend on t and

the mean and volatility is estimated by volatility dynamic model. Where zq is

the upper qth quantile of the marginal distribution of zt. Conditional value at

risk estimate is given by

CV aRt+1
q = µ̂t+1 + σ̂t+1

[
u+

β̂u
ε̂

((
n (1− q)

k

)−ε
− 1

)]
(3.31)

Conditional VaR is de�ned as the q conditional quantile of the returns at q ∈

(0.95, 0.995), Gourieroux and Jasiak ( 2009). The conditional VaR estimate is

also consistent since it is composed of consistent estimates
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3.17 Expected Shortfall

Another measure of risk is expected shortfall (ES). It is used to estimate the po-

tential size of the loss exceeding VaR at q probability. It addresses the question of

how bad can things get. Mathematically it is given by ESq = E (X|X > V aRq).

It is estimated by the following formula

ÊSq =
ˆV aRq

1− ε̂
+
β + ε̂u

1− ε̂
(3.32)

3.18 Conditional Expected Shortfall

The conditional VaR is not a sub-additive risk measure. Let ρ be a generic

measure of risk that maps the riskiness of the pro�le to an amount of required

reserves to cover losses that regularly occur and let D1 and D2 be portfolios of

assets. For sub-additive property, the required reserves for the combination of

two portfolios are less than the required reserves for each treated separately

i.e p (D1 +D2) ≤ p (D1) + p (D2).

To overcome these shortcomings, Conditional ES which has better theoretical

properties was introduce. It is de�ned as the conditional expectation of all the

VaR violations. Conditional ES is de�ned as

CESt+1
q = µt+1 + σt+1E [Z|Z > zq] (3.33)

where zq is the upper q
th quantile of the marginal distribution of Zt, which by

assumption does not depend on t. The estimation of CES under extreme con-

ditions requires estimation of volatility σt and using appropriate extreme value

distribution to obtain quantiles. The estimator for the conditionals becomes

ˆCES
t+1

q = µ̂t+1 + σ̂t+1

(
ˆUV aRq

1− ε̂
+
β̂ + ε̂u

1− ε̂

)
(3.34)

where β̂ and ε̂ are the scale and shape parameters respectively of the GPD dis-

tribution, and u is the threshold. It is a consistency estimate. The estimate of
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the conditional ES is consistent since it comprises of consistent parameters.

3.19 Backtesting VaR and Expected Shortfall

In this section, the estimatd CVaR and CES are backtested using di�erent meth-

ods. In order to backtest a window of size w �x and stepping through the data

day by day, using the past h observations to estimate the VaR and ES for the

next day. let (yt(1) , .., yt(h)) be a window of raw data ordered by time which we

use to estimate our models. In other to get the estimates of conditional VaR and

conditional ES, GARCH(1,1) is �rst �tted to the data and �nal the GPD is �tted

to the standardized residuals. The standardized residuals are given by

(zt1 , ..., ztw) =
xt1 − µt1
σt1

, . . . ,
xtw − µtw

σtw
(3.35)

The standardize residuals should have a mean zero and variance of one if the

�tted model is plausible for the loss series.

To measure the performance of a speci�c model, the estimates should be com-

pared to the actual outcomes to see how well the model fared over the days for

which predictions of the ES were made. That is, the study want to test whether

the forecasts of the model are consistent with the assumptions underlying the

model choice i.e. the distribution of the losses and/or residuals in the case of

the study. Backtesting is generally described as �nding a good way to make

comparison between the reality and what our model gives. Unfortunately, the

backtesting theory and methodology is not as developed for expected shortfall as

it is for value at risk.

The backtesting of VaR is done using unconditional coverage, independence test

and conditional coverage, while that of ES is implemented using bootstrap method

used McNeil and Frey (2000) and what is known as the V test by Embrechts et

al. (2005).
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3.19.1 Backtesting CVaR

In this section the conditional coverage test by Christo�ersen (2003) is used. At

a given con�dence level q ∈ (0, 1), it is expected that Yt+1 will exceed estimated

V aRt+1
q only 100(1−q)% of the time. These exceedances are called VaR violations.

Particularly with a VaR model that adapts to recent losses and recent volatility

(i.e. the GARCH(1,1)), it is expected the VaR violations to be independent of

each other. It follows that a way to test the performance of a VaR model is to

test if the model produces the expected number of VaR violations when testing

the model on a set of data, and to test if the VaR violations are independent of

each other. The hit sequence is formed using the indicator variables representing

VaR violations as follows

It+1 =

 1, if Yt+1 > V aRt+1
q

0, if Yt+1 ≤ V aRt+1
q

(3.36)

and a VaR violations means a hit and otherwise a miss. Suppose we have data set

with T VaR predictions, then the hit sequence is given by {It}Tt=1 . The simplest

possible null hypothesis is then that It are Bernoulli variables with success prob-

ability α = 1−q, so that {It}Tt=1 is a sequence of i.i.d Bernoulli random variables.

The probability mass function of a Bernoulli(p) variable is given by

f(1t; p) = pIt(1− p)1−It (3.37)

3.19.2 Unconditional Coverage Test

In this section, the unconditional test is used to check whether the amount of VaR

violations produced by the model at a chosen coverage level α is as expected. This

is done by using the conditional coverage test described by Christo�ersen (2003).

It done by comparing the theoretical sample fraction π of VaR violations to the

promised fraction α under the null hypothesis for the unconditional coverage test

is that π = α. We do this comparison through the likelihood ratio test. Let

T1 and T0 denote the number of hits and misses respectively in a sample of size
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T, then the likelihood function under the null hypothesis is given by

L(α) = ΠT
t=1p

It(1− p)1−It = pT1(1− p)T0 (3.38)

Next,π is estimated as π̂ = T1
T
, which is the maximum likelihood estimate of π.

The maximized likelihood for the sample is then given by

L(π̂) = (
T1

T
)T1 .(

T0

T
)T0 (3.39)

The likelihood ratio statistic is then given by

LRuc = −2
L(α)

L(Φ̂)
(3.40)

and is asymptotically (in T ) distributed as a χ2 random variable with one degree

of freedom, hence the χ2 distribution can be use to conduct the test.

According Christo�ersen (2003), the number of observations T and/or the num-

ber of violations T1 (especially for small α), may be too small hence the test

might not be reliable. Hence Christo�ersen recommends doing a Monte Carlo

simulation to obtain reliable p-values for this test.The Monte Carlos simulation

is done by generating 999 samples of i.i.d Bernoulli(α) variables and calculate the

above test statistic for each sample,hence giving us a sequence {L̂Ruc(i)}999
i=1.The

simulated P-value is the given by

p− value =
1

1000

[
1 +

999∑
t=1

1{L̂Ruc(i) > LRuc}

]
(3.41)

where 1{∆} is an indicator function which is equal to one if the L̂Ruc(i) > LRuc

is true, and zero otherwise. If the simulated p-Value is too small then the null

hypothesis is rejected indicating that the coverage rate of the model is correct.

3.19.3 Independence Test

In this section independent test Christo�ersen (2003) is used to check if the VaR

violations are independent of each other or if they come in clusters or not. If the

VaR violations are not independent then the model does not adapt su�ciently
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and quickly enough to large losses. This may possibly create a risk of bankruptcy

within short period since losses are piling on. If the VaR violations are not

independent, then we have the probability that violations happen tomorrow given

it has happened today is greater than α. Christo�ersen (2003) provided a method

on how to test for independence of the VaR violations. Assume that the hit

sequence (It)
T
t=1 is dependent, and that it can be described by a discrete-time

Markov chain with transition probability matrix

Θ1 =

 Φ00 Φ01

Φ10 Φ11

 =

 1− Φ01 Φ01

1− Φ11 Φ11

 (3.42)

where Φi,j(i, j ∈ {0, 1}) is the probability that It+1 = j conditional on It = i.

Here Φ11 is the probability that a VaR violations occurs tomorrow given that one

occurred today. Under this method , only the outcome for today matters for the

outcome tomorrow, with T observations. The maximum likelihood estimates for

these probabilities are then given by

L(Θ1) = (1− Φ01)T00 ΦT01
01 (1− Φ11)T10 ΦT11

11 (3.43)

where Ti,j is the number of days for which a j followed an i in the hit sequence,

with i, j ∈ {0, 1}. Then we maximum likelihood estimates for the probabilities

as:
Φ̂01 =

T01

T00 + T01

=⇒ Φ̂00 = 1− Φ̂01 (3.44)

Φ̂11 =
T11

T10 + T11

=⇒ Φ̂01 = 1− Φ̂11 (3.45)

Hence the matrix of estimated transition probabilities is as follows

Θ̂1 =

 Φ̂00 Φ̂01

Φ̂10 Φ̂11

 =

 T00
T00+T01

T01
T00+T01

T10
T10+T11

T11
T10+T11

 (3.46)

Now, if the hit sequence is dependent, then Φ00 6= Φ11, otherwise Φ00 = Φ11 = Φ,

implying independent. Since the concerned is mostly about positive dependence

that is Φ00 > Φ11, Φ is estimated by Φ̂ = T1
T
. Thus, under independence we get

a transition probability matrix
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Θ̂ =

 1− Φ̂ Φ̂

1− Φ̂ Φ̂

 (3.47)

This have a likelihood function L(Φ̂) as that of the Unconditional coverage test.

We then test the independence hypothesis Φ01 = Φ11. The likelihood ratio test

statistic is given by
LRcc = −2

L(α)

L(Θ̂1)
(3.48)

This test statistic is asymptotically distributed as a χ2 random variable with one

degree of freedom. Christo�ersen (2003) again recommended the use of Monte

Carlo simulation to obtain an accurate p-value instead of using quantiles from

the χ2(1) distribution when testing the independence hypothesis. This is done in

the same way as for the unconditional coverage test.

3.19.4 Conditional Coverage Test

Finally, in order to perform the conditional coverage test,unconditional and inde-

pendent test are combined to jointly test for correct coverage and independence.

Since LRuc and LRind are each χ2(1)-distributed (asymptotically), their sum

should be χ2(2)-distributed, and we have the test statistic as

LRcc = LRuc + LRind = −2
L(α)

L(Φ̂)
(3.49)

We again use Monte Carlos simulations to get a more accurate p-value.

3.19.5 Bootstrap Test for the Expected Shortfall

To backtest the ES estimates, the di�erence between the next day return Yt+1

and the estimate of the expected shortfall at time t, ESt+1
q , conditional on Yt+1

exceeding the estimate of the q quantile of Yt+1, i.e. V aR
t+1
q is looked at. We

introduce the notation Yt q := V aRt+1
q , so that ytq = V aRt+1

q . As per the based

model for losses and its assumptions, i.e that losses Yt under all our models can

be written in the form Yt = µt +σtZt, where the Zt i.i.d with mean zero and unit

variance and come from a location-scale family
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Rt+1 =
Yt+1 − ESt+1

q

σt+1

=
µt+1 + σt+1Z1+1 − (µt+1 + σt+1ES

t+1
q (Z))

σt+1

= Zt+1 − Et(Z|Z > zq

conditional on Yt+1 > ytq or equivalently Zt+1 > zq, being the q − quantile of Z.

The R,
ts are then i.i.d under the model and furthermore have an expected value

of zero. Based on the data and the estimates of expected shortfall, residuals

are constructed on day when Yt+1 > ŷtq i.e on days when VaR violation occur.

Following McNeil and Frey (2000) these exceedance are call exceedance residuals,

denoted by
r = {rt+1; for t such that yt+1 > ŷtq}, where (3.50)

rt+1 =
yt+1 − ÊS

t+1

q

σ̂t+1

(3.51)

and |r| = m, where m is the number of VaR violation from our model. Here the

is that the estimates µt+1, σt+1, and the expected shortfall are correct and these

residuals are i.i.d with mean zero. With alternative hypothesis as the residuals

have a mean greater than zero, i.e. hence the expected shortfall is systematically

underestimated, which as McNeil and Frey (2000) remarks is the more likely

direction of failure. Underestimating ES is very dangerous to business since it

leads to losses(as opposed to missing out on pro�t). The downside however, is that

the test will tend to favor models that overestimate the expected shortfall, which

is undesirable in the long-run. This test is done by a non-parametric bootstrap

which is outlined by Efron and Tibshirani (1993). Here the null hypothesis that

original residuals r, which are distributed according to some distribution function

F, have mean µ0 = 0 tested. The test statistic is given by

T = t(r) =
r̂ − µ0

σ/
√

(m)
(3.52)

where

r̂ =
1

m

m∑
i=1

ri (3.53)
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and

σ̂ =
1

m− 1

m∑
i=1

(ri − r̂)2 (3.54)

Here the empirical distribution function is translated so that it has the desired

mean µ0, by forming the shifted residuals

r̂i = ri − r̂ + µ0 i = 1, 2, ...,m (3.55)

From these, sampling r̂1, r̂2, ..., r̂m with replacement, and for each such bootstrap

sample j (Nr of them in total) we compute the statistics

T ∗ = t(r̂∗) =
r̂∗ − µ0

σ/
√

(m)
(3.56)

Hence computing the p-value for our null hypothesis as

p− value =
1 +

∑Nr
i=1 1T ∗

j >T

1 +Nr

(3.57)

where 1{∆} denotes the indicator function, which is 1 if T ∗j > T is true and 0

otherwise. One is added to both numerator and denominator to avoid a p-value

of 0. Models are chosen base on their p-value, high p-value speak in favor of a

model, while low p-value speak against a model. we will take Nr = 10000.

3.19.6 V-test for the Expected Shortfall

Embrechts et al. (2005) introduced a couple of methods for evaluating the per-

formance of di�erent ES estimates based on the relative size of the test statistics.

The �rst statistic V1 simply takes the average of the di�erence between the actual

return and the fore casted expected shortfall for days where the actual return ex-

ceeded the VaR estimate. This should lead to a value close to zero of V1 if the

model is good, since if the model is correct the expected value of this statistic is

zero. For a chosen probability q, V1 is thus given by

V1 =

∑T
t=1

(
yt+1 − ÊS

t+1

q

)
1yt+1>ytq

1yt+1>ŷtq

(3.58)

where T is the total number of estimates of in the data set. According to Em-

brechts et al. (2005) the weakness of this measure is that it depends strongly on
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the VaR estimates. With the unconditional expected Shortfall, the average size

of a one in 1
1−q case is calculated. A measure which looks at these types of events

is the measure V2 de�ned by

V2 =

∑T
t=1

(
yt+1 − ÊS

t+1

q

)
1Dt>Dq

1Dt>Dq
(3.59)

where Dt =
(
yt+1 − ÊS

t+1

q

)
and Dq is the empirical q-quantile of {Dt, t =

1, 2, ..., T}. Dt is expected to be negative in less than one in 1
1−q cases. A good

estimator for ES would thus hopefully give an estimate close to zero. V1 andV2

can be combined into a third measure that strikes a balance between the theory-

reliant V1 measure and the more practically oriented V2 measure. This third

measure is de�ned as
V =

|V1|+ |V2|
2

(3.60)

and should again be closed to zero if it is good
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Chapter 4

EMPIRICAL ANALYSIS AND DISCUSSIONS

4.1 Estimation of Volatility

4.1.1 Data Exploration

The daily Nairobi 20 share index were plotted to see the behavior of the data.

The plot shows the daily �uctuations of the series. It shows that the daily NES

20 share index exhibit has a very high volatility since the graph has almost no

smooth area. The plot reveals trends with high uncertainty in the NSE 20 share

index.

Figure 4.1: The daily price series of NSE 20 Share index

Figure 4.1 shows a general trend of uncertainty in the NES 20 share index with

extreme �uctuations especially half way of the diagram which corresponds to

2007-2008. These extreme �uctuations at that time period may be attributed to

the post election violence or the world �nancial crisis during this period. The

daily NES 20 share index has a signi�cant di�erence between the minimum and

maximum. It has a positive mean showing that the share prices are generally

moving upwards. The negative skewness -0.3233 in Table 4.1 and excess kurtosis

of -1.04891 clearly indicate the non-normality of the distribution. The large

standard deviation shows a high variability in the data. Its standard deviation
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of 1305.3 which is high indicating high variability in the data.

Table 4.1: Summary Statistics of Spot price

Statistics mean Max Min St. Dev Kurtosis Skewness

Value 3562 6161 1005 1305.742 -1.05039 -0.32269

4.1.2 Daily Returns

Most of the �nancial time series are decomposed into exponentially growing trend.

It is important to transform our data using logarithm which gives us the log-

returns. According Strong (1992) there are both theoretical and empirical reasons

for preferring logarithmic returns. Theoretically, logarithmic returns are analyt-

ically more tractable when linking together sub-period returns to form returns

over long intervals. Empirically, logarithmic returns are more likely to be nor-

mally distributed and so conform to the assumptions of the standard statistical

techniques. Using the logarithmic returns in the study will help to test whether

the daily returns were normally distributed or not. It also have good properties

such as; it is very simple to aggregate the log-returns over time. In order to

estimate the volatility in the daily returns we have used logarithm returns. The

log-returns plots show that the data appear to be stationary in mean. This plot

also reveal that the returns exhibit dependence structure where period of high

returns are followed by high returns and periods of low returns followed by low

returns. This is the evidence by volatility clustering in the data (short range de-

pendence), which show that the data is not i.i.d. The clustering of the log-returns

data indicates the presence of stochastic volatility. Figure 4.2 shows the existence

of extreme losses.
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Figure 4.2: Graph of the daily log-Returns

The summary statistics of the log returns are given in table 4.2. The log-returns

have mean of 0.000139.The Kurtosis of the log-returns is 83.62801 which is far

greater than 3 for the normal distribution. This indicates that the underlying

distribution of the returns have a tail which is heavier than normal. The data

exhibits negative skewness indicating frequent small gains and few extreme losses.

Since the skewness which is 0.1159 is di�erent from the zero for normal, the

distribution of the returns is skewed towards the left.

Table 4.2: Summary Statistics of daily Returns

Statistics mean Max Min St. Dev Ex. Kurtosis Skewness

Value 1.4e−4 0.2103 -0.2103 0.0115 83.61 0.1159

4.1.3 Test for Stationarity and Normality

Augmented Dickey Fuller test has been applied to test for the stationary of the

data. The result from Table 4.3 revealed that null hypothesis which is the series

are not stationary has been rejected since the p-value 2.2× 10−16 is less than 5%

level of con�dence. The Jargue Bera test for normality rejects the null hypothesis

that the distribution is normal,since the p-value is far less than 5%.
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Table 4.3: Jargue Bera Test and ADF statistics

Jargue Bera Test Augmented Dickey Fuller Test

JB (p-value) Sig level ADF Statistic ADF(P-value) Sig level

2.2e−16 5% -14.552 0.01 5%

4.1.4 GARCH Models Selection

The Autocorrelation function and Partial Autocorrelation where applied to obtain

the lags in the GARCH(p,q) model. ACF and PACF helps to know which of our

past series values are most useful in predicting future values. The ACF helps to

determine the length of our past conditional variance. It indicates the number of

GARCH terms. The PACF determines the length of the past square innovation

(q) where the lags which PACF cuts o� is the indicated number of ARCH terms

(p) .

Figure 4.3: ACF and PACF of Log Returns

Figure 4.4: ACF and PACF of Log Returns Squares
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According Figures 4.3 and 4.4, the most appropriate model is GARCH(1,1). The

Akaike Information Criterion and Bayesian information criterion were used to

select the best model for the data. The best model is the model with smallest

AIC or BIC, Akiake (1973) and Schwarz (1978). Here the best model is Garch(1,1)

which have all its parameters with p-values as 0.000 which is signi�cant at 05%

except the mean which has it p-value as 0.o6 which is signi�cant at 10% . All

orders above Garch(1,1) have some of their parameters not signi�cant at 10%.

Table 4.4: GARCH Model Selection (with student-t distribution innovation)

GARCH(1,1) GARCH(1,2) GARCH(2,1)

Parameter Value P-Value Value P-Value Value P-Value

δ1 0.556518 0.0000 0.556272 0.0000 0.563300 0.0000

δ2 0.015512 0.1301

β1 0.298328 0.0000 0.299223 0.0000 0.269438 0.0000

β2 0.020697 0.20134

ω 0.000019 .06120 0.000445 0.00000 0.000323 0.40316

AIC -7.1023 -7.1016 -7.1017

BIC -7.0944 -7.0922 -7.0923

4.2 Conditional Volatility Estimation

Next, the parameters of the selected model are estimated using Quasi maximum

likelihood procedure by �tting the model in our daily returns. Table 4.5 gives the

estimate of the parameters of the GARCH(1,1)

Table 4.5: GARCH(1,1) (with student-t innovation )

δ1 β1 ω δ1 + β1 Observation

0.556518 0.298328 0.000019 0.854844 Low Persistent
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Table 4.5 shows that the sum of ARCH and GARCH is less than one ,indicating

that conditional variance is less persistent to shocks, Bollerslev 1996).The coef-

�cients of both the ARCH and GARCH terms are all positive. The log returns

show the existence of volatility clustering in the data. ACF and PACF con�rmed

existence of autocorrelation like the Dickey Fuller test did.

Table 4.6: JB and LM statistics for Residuals (with student-t innovation )

Jargue Bera test Augmented Dickey Fuller Test

JB-stat. JB (p-value) Sig. level ADF Statistics ADF (p-Value) Sig. Level

1171240.184 <2.2e−16 5% -14.552 5% 5%

Figure 4.5: Daily Volatility NSE 20 Share index (with student-t distribution

innovation)

Figure 4.5 gives the daily volatility of NSE 20 Share index. It shows that there

are situations in with extreme high uncertainty in the Nairobi 20 Share index.

4.3 Estimation of Extreme Quantile

The aim of this section is to estimate the extreme quantiles in the daily returns

using the extreme Value theory (EVT). The randomness in the model comes

through the random variable et, which are called innovations of noise of the

process and it is assumed to be independent and identically distributed with

unknown distribution F(e). Before estimating the extreme qauntile the residuals

have to standardize �rst i.e êt = ŷt
σ̂t

where yt is the returns series, and σ̂t is the
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estimated volatility from the returns. The ACF and PACF are plotted to show

that the residuals are not auto correlated.

Figure 4.6: ACF and PACT of Square Residuals(GARCH with Student-t Distri-

bution innovation)

Table 4.7: Jargue Bera and LM test for the Standardized Residuals(GARCH with

Student-t distribution innovation)

Jargue Bera test Arch Test (LM

JB-Stat. p-value χ2 Statistic P-Value

5732223.251 <2.2e−16 1681.5 2.2e−16

From Figure 4.6, it can seen that the square residuals are approximately iid since

all the lags are inside the con�dent interval. This implies that GARCH(1,1) model

used is an appropriate �lter for the data. From Table 4.7 it can be seen that the

standardized residuals are non-stationary and have a signi�cant LM p-value.

4.3.1 Threshold selections

1. Quantile- Quantile Plot:

The QQ-plot is used for two reasons: �rst it con�rms the Jargue Bera (JB)

result on test for normality. This means that JB shows that residuals are

not normal while the QQ-plot shows that the standardized residuals are

heavy tail, which is the basis for the application of EVT. Secondly it can be
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used to check if the data satis�es GPD. According to Picklands (1975) and

Balkema (1974) if the empirical plots seem to follow a reasonable straight

line with a positive slope above a certain threshold, then the data follows

GPD. Hence according to Figure 4.7 the data follows a GPD with a scale

parameter and shape parameter. Here the threshold chosen where the graph

approximately linear in shape. According to the QQ-Plot of the residuals

against the normal distribution,the standardized residuals are heavy tail,

since the plot is convex on the left and concave on the right. Hence we

cannot conclude that the data is conditional normal.

Figure 4.7: Q-Q plot of the data against the Normal plot

2. Mean Residuals life Plot:

Figure 4.8 is the Mean Residuals life plot of the negative returns. It is

observe that the mean excess plot in Figure 4.8 shows an upward trend for

the data, which indicates heavy tail behaviour. Since the graph seems to

follow a straight line with positive slop above a certain threshold, this is

evidence that the data follow a GPD. From Figure 4.8the thresholds can be

chosen as 0.997 for the right tail based on the criterion of linearity in the

MEP plots.
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Figure 4.8: Mean Excess plot of data

3. Hill Plot: The plot of the shape parameter against the exceedances in the

Figure 4.9 is helpful in threshold selection. The threshold is chosen where

the line graph seems to be horizontal. If low threshold is selected which

includes data from the center then the estimates become bias whereas for

a very high threshold, the estimates become highly volatile.

Figure 4.9: Hill Plot of data

From Figure 4.9 the threshold can be selected in the region from 0.85 to 1.2. This

is a place on the graph were it is relative linear.

4.3.2 Estimation of GPD parameters

After the selection of threshold for the returns using any of the graphical thresh-

old selection above, the number of exceedances over the threshold are used to

determined the GPD parameter i.e the shape and scale parameters. The result

of these estimates is presented in Table 4.8 below
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Table 4.8: Estimates of GPD parameter (For GARCH with student-t distribution

innovation)

ε̂ β̂ No. of exceedance Threshold

0.3623955 0.4641953 458 0.997

In the Table 4.8 ε̂ represents the shape parameter. It determines the type of

distribution for our data. Since it is positive, this indicates that the data belongs

to maximum domain of attraction of Frechet distribution which is a heavy tail

distribution. β̂ represents the scale parameter of the distribution.

4.3.3 The estimation of Extreme quantile

Using the GPD shape parameter and scale parameter estimated above, the quan-

tile at extreme probability values can be calculated from the standardized resid-

uals. Let êq denote the quantiles estimate of the innovation at probability q.

Typically, the probability q is such that 0.99 ≤ q < 1. The quantile estimate is

given by

êq = u+
β̂u
ε̂

((
n (1− q)

k

)−ε
− 1

)
(4.1)

where β̂u and ε̂ represent the estimates of the βu and ε scale and shape parame-

ters respectively. k represents the number of observation above the threshold u

whereas n is the total number of observation. Table 4.9 gives the results with

q = 0.95, 0.99and 0.995 for normal innovations and student-t innovation. It can

be seen that the estimates GARCH with student-t innovation are greater than

those of GARCH with normal innovation which was expected.
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Table 4.9: VaR and ES estimates (GARCH- with student-t distribution innova-

tion)

ê0.95 ê0.99 ê0.995 ÊS0.95 ÊS0.99 ÊS0.995

POT (t) 1.4672 2.8423 3.6876 3.1978 5.2109 6.4448

Table 4.9 give the values for VaR and ES. The VaR value gives the maximum

that NSE 20 can lose under normal market conditions at a given con�dent level.

Whereas the ES values gives the expected losses given that VaR violations have

occurred. It shows that the model with student-t distribution innovations esti-

mates VaR and CES better.

4.3.4 Estimates of Conditional VaR and Conditional Ex-

pected Shortfall

In Table 4.9 the estimates of the unconditional extreme quantiles for both GARCH-

EVT with normal and student-t distribution innovation are shown. To obtain the

conditional VaR the unconditional quantile etq is combine with the conditional

volatility estimates. Figures 4.10 and 4.11 give the plots of conditional VaR for

both distributions

Figure 4.10: Conditional V aR0.99 ( GARCH model with normal distribution in-

novation)
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Figure 4.11: Conditional V aR0.99 (GARCH model with Student-t distribution

innovation)

Graphs 4.10 and 4.11 give the CVaR estimates at probability level q = 0.99 for

both GARCH with normal and student-t innovations respectively. According

both the conditional VaR graphs smoothly trace the graph of lost distribution.

This implies that the estimates using GARCH-EVT are all reliable but the one

from GARCH-EVT with student-t distribution innovation is better since it ap-

pears that it has less places where the lost distribution crosses the graph of the

CVaR. Expected Shortfall is a more desirable risk measure according its more

attractive theoretical properties. It overcomes the limitations of VaR. The esti-

mation of CES under extreme condition requires estimation of volatility σt and

using appropriate extreme value distribution to obtain the quantile. Hence the

CES for both GARCH -EVT with normal innovation and student-t innovation

respectively are given by

ˆCES
t+!

q = µt+1 + σ̂t+1

(
ˆV aRq

1− ε̂
+
β̂u + ε̂u

1− ε̂

)
(4.2)

where ˆV aRq is the unconditional VaR which can be computed as êq. The CES for

both GARCH -EVT with normal innovation and student-t distribution innovation

respectively are given in Figures 4.12 and 4.13
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Figure 4.12: Conditional ES0.99 (GARCH model with Student-t distribution in-

novation)

Figure 4.13: Conditional ES0.99 (GARCH model with Student-t distribution in-

novation)

Figures 4.12 and 4.13 illustrate the average of all losses which are greater than

or equal VaR at each point for both GARCH-EVT with normal and student-t

distribution innovation. Expected Shortfall is de�ned as the average of all losses

which are greater or equal than VaR, i.e the average loss in the worst (1 − q)%

cases, where q is the con�dence level. It gives the expected value of an investment

in the worst p% of the cases. Again we have in both Figure 4.12and Figure 4.13,

the CES graph tracing the graph of the lost distribution but the one with student-

t distribution innovation have fewer points of intersections of the two graphs. This

implies the estimates under student-t innovation are better than that of normal

innovation.
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4.4 Backtesting VaR and ES
A window of a length of 1000 days is used in the backtesting with a degree of

freedom of 4 for the t-distribution and bootstrap samples of 10,000 are used.

4.4.1 Test for VaR Estimates
Table 4.10 below gives the VaR-violations at di�erent coverage levels. The VaR-

violations are obtained by comparing the actual loss and forcasted VaR for each

day. It shows that both models have lower Violations at lower con�dence level

than higher con�dence level but the estimates with t-distribution distribution

innovation perform better than the model with normal innovation all levels except

at 99.5% where they produce the same number of violations.

Table 4.10: VaR Violations for Normal distribution innovation and student-t

distribution innovation

POT (t) (No.of Violations) POT (n) (No.of Violations)

q=0.95 187 198

q=0.99 29 32

q=0.995 17 17

Unconditional Coverage

Here the unconditional coverage test is conducted described in Chapter 3. From

Table 4.11 both the model with student-t distribution innovation and normal

innovation have large P-value at a lower con�dence levels. This implies that the

models are producing the correct number of violation. At a higher con�dent level

the model with normal innovation have a small p-value. This implies that the

null hypothesis that the model with normal innovation have the correct coverage

rate is rejected.
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Independent Test

From Table 4.11 gives the results for independent test on both models. Here again

at a lower con�dence level it shows that violation produce by both models are

independent since they all have large P-value. Whereas, at a higher con�dence

levels the model with normal with normal innovation is rejected.

Conditional Coverage

From Table 4.11 gives results for the conditional coverage test. Here again it

shows that the model with student-t innovation perform better than the model

with normal innovation.

Table 4.11: Results for Backtesting VaR (for both normal and student-t innova-

tions)

POT (t)(P-value) POT (n)(P-value)

q=0.95

Unconditional Coverage Test 0.349 0.515

Independent test 0.993 0.575

Conditional Coverage Test 0.641 0.543

q=0.99

Unconditional Coverage Test 0.331 0.001

Independent test 0.883 0.015

Conditional Coverage Test 0.417 0.001

q=0.995

Unconditional Coverage Test 0.936 0.001

Independent test 0.991 0.340

Conditional Coverage Test 0.564 0.001
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4.4.2 Backtesting ES (for both normal and student-t inno-

vations)

Bootstrap

Table 4.12 gives the results for testing ES using the bootstrapping method. Both

the model with student-t distribution innovation and normal innovation per-

formed satisfactorily at a lower con�dence level. But at a higher con�dence

the model with student t-distribution innovation performed better.

Table 4.12: Result on backtesting ES (for both normal and student-t innovations)

POT (t) POT (n)

(P-value) (P-value)

q=0.95 0.9916008 0.993001

q=0.99 0.9923008 0.4158584

q=0.995 0.4039586 0.01269873

V-Test for Expected Shortfall(for both normal and student-t distribu-

tions innovations)

Table 4.13 gives the results for the V-test at di�erent con�dent levels. The value

of V-test is better the more it is closer to zero. From the V-test it is clear

that the model with student-t distribution innovation performed better than the

model with normal distribution innovation. In all con�dence levels the model

with student-t distribution have its values closer to zero, implying it gives a

better estimate of the conditional expected Shortfall than the model with normal

innovation.
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Table 4.13: Result on V-test for backtesting ES (for both normal and student-t

innovations)

POT (t) POT (n)

q=0.95

V1 -0.00548136 -0.008737709

V2 -0.00470920 -0.007054860

V3 0.00509528 0.007896285

q=0.99

V1 0.00521026 0.005536892

V2 -0.001727765 -0.0020207837

V3 0.011246335 0.0103807630

q=0.995

V1 0.01140205 0.06901005

V2 -0.02458258 -0.0028334456

V3 0.01799232 0.017617730

60



Chapter 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

In this work conditional VaR and Conditional ES of Nairobi 20 shared index

with normal and student-t innovations is estimated and the estimates backtested.

These estimates are obtained by combining the GARCH model in the estimation

of the volatility and extreme value theory. The Quasi-maximum likelihood pro-

cedure is used in estimating the GARCH parameters. These estimates are found

to be consistent and asymptotically normal. The data exploration reveal that

the data is not normally distributed but fat-tail. The distribution of the NSE

20 index is skewed to the left meaning investor can have frequent gain and few

extreme losses.

The GPD was �tted to to the standardized residuals for both innovations and then

the estimated distribution inverted to obtain extreme quantiles at 95% , 99% and 99.5%

con�dent level. The MLE of the parameters are found to be consistent and asymp-

totically normal.

The VaR estimates are backtested using both the conditional and unconditional

coverage. The model with normal innovation have high number of VaR violation

at lower con�dent level than that of the student-t innovation. According to the

unconditional coverage test both the model with normal and student-t innova-

tion have high p-values at lower con�dence level implying that they all produced

the correct number of violations. But at a higher con�dent level the model with

normal innovation is rejected. Producing the correct number of violations alone

is not enough to justify whether a model is good or not. Hence it is vital to

test if the violations produced are independent. Because if the violations are

not independent, it means that the model do not adapt su�ciently and quickly
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enough to large losses and may possibly create a risk of bankruptcy in a very

short time as losses pile on. According to the p-value of the independent test the

violations produce by the models are independent. Combining the unconditional

and independent to give conditional coverage test. According to the conditional

coverage test the model with student-t innovation out performed the model with

normal innovation at higher con�dent level.

Two methods where used to backtest the conditional expected shortfall estimates

i.e bootstrap method by McNeil and Fery (2000) and the V-test by Embrechts

et. al (2005). According to the bootstrap result all the model perform better

at a low con�dent level while the model with normal innovation fails at a higher

con�dent level. All the V-test values revealed the model with student-t innova-

tion performs better than the model with normal innovations since it have all its

values closer to zero.

Being able to Estimate risk (VaR and ES) and backtest the estimates is very

important since it allows policy makers and risk manager to be able to make

good decisions about direction of portfolios. Backtesting the estimates is crucial

in risk management because it helps to know whether the model used is given

correct estimates.

5.2 Recommendation

1. Instead of using the symmetric GARCH the study recommends use of asym-

metric GARCH models to see whether the method will predict CVaR and

CES better.

2. Since it is a know fact the selection of a threshold is a trade o� between

bias estimator or high variance (Cole 2001). Hence the use of non-graphical
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method in estimate the optimal threshold is also recommended.

3. Finally on backtesting Expected shortfall the study recommends the use of

any of the models or both the models developed by Carlos et. al (2014) to

see whether result arrived at will change.
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APPENDIX

Appendix 1: GARCH(1,1) with Parameters with normal distribution innova-

tions Parameters δ1 β1 ω

Values 0.062162 0.930566 0.000132

P-value 0.0000 0.0000 0.0724

Appendix 2: GPD estimates for GARCH-EVT (with normal distribution inno-

vations)

Parameter u k β ξ

Values 0.848 602 0.467156 0.3140057

Appendix 3: ACF and PACF (GARCH model with Student normal distribution

innovation)

Appendix 4: Conditional CV aR0.95 (GARCH model with Student normal dis-

tribution innovation)
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Appendix 5: Conditional ES0.95 (GARCH model with Student-t distribution

innovation)

Appendix 6: Conditional CV aR0.995 (GARCH model with Student-normal dis-

tribution innovation)

Appendix 7: Conditional ES0.995 (GARCH model with Student-t distribution

innovation)
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