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ABSTRACT

This study builds a reduced form of the three factor commodity derivative valuation model by
explicitly taking into account the unobservable character of the convenience yield and extends
the existing literature on commodity derivative by introducing a new feature, which is Vasicek
interest rate model is replaced by CIR interest rate process to prevent the interest rate from
going to negative. The spot price process, the instantaneous convenience yield and CIR interest
rate process are taken in the reduced form of the three factor commodity derivative valuation
model. We study the reduced form of the three factor commodity derivative valuation model
based on discretization schemes. We simulate the reduced form the three factor commodity
derivative valuation model by using the two known discretization schemes, i.e, Milstein and
Euler discretization schemes. We study the performance of Milstein and Euler discretization
schemes theoretically and empirically in reduced form the three factor commodity derivative
valuation model. The Milstein discretization scheme has better approximation than Euler
discretization scheme in reduced form the three factor commodity derivative valuation model.
As the time of maturity, T, is less and the time interval decreases the result obtained from
the simulation of reduced form the three factor commodity derivative valuation model for
spot price process, convenience yield and interest rate process has better approximation. In
addition, the data used to test reduced form of the three factor commodity derivative valuation
model involves futures contracts from commodity market.

viii



Chapter 1

Introduction

1.1 Background of the study

The study of commodity derivative prices is very important in many application areas in math-
ematical �nance. There have been many commodity derivative models proposed to imitate the
stochastic behaviors of commodity derivative prices. This study focuses on the reduced form
of the three factor commodity derivative valuation model as proposed in incomplete informa-
tion model(Ann Ngoc and Constantin Mellios(2015)). Unlike incomplete information model
reduced form of the three factor commodity derivative valuation model used CIR interest rate
process which has no closed form solution unlike Vasicek interest rate process. Due to this we
mainly focus on �nding numerical solution rather than �nding closed form solution for reduced
form of the three factor commodity derivative valuation model using discretization schemes.
We present and compare the two common discretization schemes, namely Euler discretization
scheme and Milstein discretization scheme. The Milstein discretization scheme is shown to be
computationally and theoretically e�cient for simulating the stochastic process for reduced
form of the three factor commodity derivative valuation model when the discretization time
interval and maturity are chosen to be very small. It is clear that many researchers have been
explained CIR interest rate process does not have a closed form solution and proposed to use
discretization schemes to solve the process numerically by taking smaller time interval ∆t.
Commodity derivative valuation models are identifying the relevant state variables or factors.
A growing number of empirical studies return predictability pointed out the important role of
the convenience yield. The spot price and the convenience yield are the two commodity used
state variables in pricing commodity derivative valuation models.

A commodity is a physical substance, such as food, grains and metals, which is interchange-
able with another product of the same type, and which investors buy or sell, usually through
futures contracts. A commodity can be produced, consumed, transported or stored. The price
of a commodity is subject to supply and demand of the market. More generally, a commodity
is a product which trades on a commodity exchange; this would also include foreign curren-
cies and �nancial instruments and indexes(as de�ned in Investorwords dictionary). There are
many types of commodity. For example,

• Energy: crude oil, gasoline, natural gas, electricity, etc.
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• Metals: copper, silver, gold, aluminum, zinc, etc.

• Agriculture: co�ee, rice, wheat, salt, beans, etc.

A Commodity exchange is an exchange where various commodities are traded. Most com-
modity markets across the world trade in agricultural products and other raw materials (like
sugar, milk, wheat, co�ee, oil, metals, etc.) and contracts based on them. These contracts can
include legal details regarding spot prices, forwards, futures and options on futures. Commod-
ity exchanges usually trade futures contracts on commodities, basically trading contracts to
receive an amount of the commodity in a certain date in the future(as de�ned in investopedia
dictionary).

A derivative is �nancial instrument whose characteristics and value depend upon the charac-
teristics and value of an underlier, typically a commodity, bond, equity or currency. Examples
of derivatives include futures and options. Advanced investors sometimes purchase or sell
derivatives to manage the risk associated with the underlying security, to protect against �uc-
tuations in value, or to pro�t from periods of inactivity or decline. These techniques can be
quite complicated and quite risky(as de�ned in investorwords dictionary).

1.2 Statement of the problem

Current studies showed that there are a problem while �nding analytical solution of a given
stochastic di�erential equations(Anqi Shao(2012), Akinbo B.J, Faniran T and Ayoola E.O
(2015), Aurélien Alfonsi(2005), especially for CIR model since the process has no closed form
solution. Hence the researchers are forced to study the process numerically using discretization
techniques in order to get best approximation solution for a give process.

1.3 Objectives of the study

1.3.1 General Objective

To construct a suitable reduced form of the three factor commodity derivative valuation model.

1.3.2 Speci�c Objectives

1. To �nd a numerical solution of the three factor valuation model due to Milstein and Euler
discretization scheme.
2. To study the performance of Milstein and Euler discretization schemes using the found
solution in (1).
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1.4 Signi�cance of the study

The study develops a reduced form of the three factor commodity derivative valuation model
and �nds numerical solution for the proposed joint stochastic di�erential equations using the
two known discretization scheme, Euler and Milstein schemes and now useful in many areas like
�nance to have a good approximation for a joint three factor stochastic di�erential equations.
The study also be an initiation for further studies in this area.

1.5 Scope of the study

This study is basically based on �nding numerical solution for three factor valuation model
and attempted to �nd analytical solution like Schwartz(1997) three factor model but unlike
Schwartz(1997) model this study used explicitly unsolvable CIR interest rate model hence the
proposed valuation model does not solved analytically.

1.6 Limitation of the study

There are many methods which can allow us to �nd numerical solution for continuous time
processes but this study used only Euler and Milstein discretization schemes because of their
convergence to the true result. The study limits itself to �nd analytical solution for the joint
stochastic di�erential equations.

1.7 Outline of the thesis

The thesis has �ve chapters. In the �rst chapter the background, signi�cance, the scope
and limitation of the study have been done. In the second chapter, review of the related
literatures are presented as well. The proposed three factor valuation model and it's over all
properties have been presented in chapter three. The empirical study, simulation results of the
discretizations have been presented in fourth chapter. In the �fth chapter over all conclusion
and recommendation for further studies have been discussed.
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Chapter 2

Literature Review

Many researches are attempting to �nd analytical solution of joint stochastic di�erential equa-
tion. Some of them are able to �nd analytical solution for a given joint stochastic di�erential
equation(Anh and Mellios(2015), Edwardo S. Schwartz(1997)) and while others are �nding
numerical solution depends on the continuous time process(Anqi Shao(2012)). In our reduced
form three factor valuation model we found numerical solution for the proposed joint stochas-
tic di�erential equations. Since there is no closed form solution for reduced form three factor
valuation model we �nd numerical solution for proposed model using the two known numer-
ical methods, Milstein and Euler discretization methods(Akinbo B.J, Faniran T. and Ayoola
E.O(2015)).

2.1 CIR Model

The Cox-Ingersoll-Ross(CIR) model is a di�usion process suitable for modeling the term struc-
ture of interest rate(Anqi Shao(2012)). The dynamics for CIR model is given by,1

dXt = κ(θ −Xt)dt+ σ
√
XtdWt (2.1)

For κ > 0, θ > 0, σ > 0 and Wiener process W. This process has some appealing properties
from an practical point of view(Aurérien Alfonsi(2005)) i.e, the interest rate remains positive
and the CIR process is mean reverting in nature(Cox, et al.(1981)). The condition 2κθ > σ2

would ensure that the origin is inaccessible to the process so that we can grant that the pro-
cess Xt stays non-negative. One of our challenge, when we are simulating CIR model was
explained by Anqi Shao, in his article. One drawback for simulation of CIR model is the
process is not explicitly solvable(Aurérien Alfonsi(2005)). Due to this drawback we need to
look further and proceed to �nd the method used to �nd numerical solution of the process to
tackle this problem. The problem can be solved by using Diop A. and Deelstra and Delbaen's
approaches i.e,

Diop A. approach

Xt+1 = |Xt +
T

n
(a− κXt) + σ

√
Xt(Wt+1 −Wt)| (2.2)

1refer J.C. Cox, J.E. Ingersoll and S.A. Ross(1981)
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Deelstra and Delbaen approach

Xt+1 = Xt +
T

n
(a− κXt) + σ

√
Xt > 0(Wt+1 −Wt) (2.3)

2.2 Discretization Scheme

Euler and Milstein schemes can be used to approximate the paths of the interest rate process on
discrete time interval and they can also be applicable for continuous time processes(Aurérien
Alfonsi(2005)) like spot price process and convenience yield in our case.

2.3 Theoretical results of Euler and Milstein schemes

Consider the i-th component of a general n-dimensional stochastic di�erential equation, with
m-dimensional Wiener process as follows,

dX i
t = ai(t,Xt)dt+

m∑
j=1

bi,j(t,Xt)dW
j
t (2.4)

Where ai(t,Xt) and bi,j(t,Xt) are the drift and the volatility coe�cient of the process X re-
spectively. The convergence of Euler and Milstein schemes are discussed in P. E. Kloeden and
E. Platen(1999) with theorem as the follows,

2.4 Theorem 1- Convergence of Euler scheme

Let X0 be the initial state of the true process, ∆ be the time interval and Y ∆
0 be the initial

state of the simulation process generated by Euler scheme. Suppose that

E[|X0|2] <∞ (2.5)

E[|X0 − Y ∆
0 |2]

1
2 ≤ K1∆

1
2 (2.6)

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ K2|x− y| (2.7)

|a(t, x)|+ |b(t, x)| ≤ K3(1 + |x|) (2.8)

|a(s, x)− a(t, x)|+ |b(s, x)− b(t, x)| ≤ K4(1 + |x|)|s− t|
1
2 (2.9)

∀s, t ∈ [0, T ] and x, y ∈ <d, where the constants K1, ..., K4 do not depend on the time step
∆. Then, for the Euler approximation Y∆, the estimate
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E

[
|XT − Y ∆(T )|

]
≤ K5∆

1
2 satis�es, where the constant does not depend on ∆

Illustration of the above conditions,
The �rst condition (2.5) of theorem 1 implies that the initial state of the true process X must
be �nite in the mean square sense. The condition (2.6) indicates that the initial state of the
simulation Y ∆ must be chosen such that the square root of the mean square error between
X0 and Y ∆

0 is bounded by K1∆
1
2 , means we must choose the initial state of the simulation

such that the di�erence between it and the initial true state is small enough and bounded
by a given ∆. Condition (2.7)(Lipschitz condition) implies that the drift and the di�usion
are di�erentiable everywhere in <d for any s, t ∈ [0, T ] means that the condition guarantees
the continuity of the drift and the di�usion coe�cients in terms of their second component.
Condition (2.8)(linear growth condition) implies that the growths of the drift a(t,Xt) and the
di�usion b(t,Xt) must be bounded by the linear growth of K3(1 + |x|). From the conditions
(2.5), (2.6) and (2.7) we can conclude about the existence and uniqueness of the strong solution
for the stochastic di�erential equation (2.4).2. Condition (2.9)(Hölder condition3 of order 1

2
)

guarantees the continuity and di�erentiability of the drift and di�usion in terms of their �rst
component.

2.5 Theorem 2- Convergence of Milstein scheme

Let X0 be the initial state of the true process, ∆ be the time interval and Y ∆
0 be the initial

state of the simulation process generated by Milstein scheme. Suppose that

E[|X0|2] <∞ (2.10)

E[|X0 − Y ∆
0 |2]

1
2 ≤ K1∆

1
2 (2.11)

|ā(t, x)− ā(t, y)| ≤ K2|x− y| (2.12)

|bj1(t, x)− bj1(t, y)| ≤ K2|x− y| (2.13)

|Lj1bj2(t, x)− L̄j1bj2(t, y)| ≤ K2|x− y| (2.14)

|ā(t, x)|+ |L̄j ā(t, x)| ≤ K3(1 + |x|) (2.15)

|bj1(t, x)|+ |L̄j ā(t, x)| ≤ K3(1 + |x|) (2.16)

|L̄jL̄j1bj2(t, x)| ≤ K3(1 + |x|) (2.17)

2see F.C. Klebaner,2005
3every Hölder continuous function is uniformly continuous.
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|ā(s, x)− ā(t, x)| ≤ K4(1 + |x|)|s− t|
1
2 (2.18)

|bj1(s, x)− bj1(t, x)| ≤ K4(1 + |x|)|s− t|
1
2 (2.19)

|L̄j1bj2(s, x)− L̄j1bj2(t, x)| ≤ K4(1 + |x|)|s− t|
1
2 (2.20)

Where,
ā = a− 1

2
bb
′
and L̄j =

∑d
k=1 b

k,j ∂
∂xk

∀s, t ∈ [0, T ] and x, y ∈ <d, j = 0, ...,m, j1, j2 = 1, ...,m where the constants K1, ..., K4 do not
depend on ∆. Then, for Milstein approximation Y ∆, the estimate

E

[
|XT − Y ∆(T )|

]
≤ K5∆

satis�es, where the constant K5 does not depend on ∆.
Illustration of the above conditions
The conditions4 (2.10) and (2.12)-(2.17) are to guarantee the existence and uniqueness of
the solution for the stochastic di�erential equation (2.4). The condition (2.11) indicates that
the initial state of the simulation Y ∆ must be chosen such that the square root of the mean
square error between X0 and Y

∆
0 is bounded by K1∆

1
2 . The Lipschitz conditions (2.12)-(2.14)

imply that the drift and the di�usion are di�erentiable everywhere in <d for any s, t ∈ [0, T ].
The linear growth conditions (2.15)-(2.17) imply that the growths of the drift a(t, x) and the
di�usion b(t, x) must be bounded by a linear growth of K3(1 + |x|). The Hölder conditions
(2.18)-(2.20) guarantee the continuity and di�erentiability of the drift and di�usion coe�cients
in terms of their �rst component.
Remarks
1. From theorem 1 one may bound the discretization error between the true process at time
T and the discretization as a function of a constant and the discretization interval. Hence
one can get as accurate solution as required by a reduction of ∆ only and no transform of the
process required.
2. Like theorem 1 from theorem 2 one may bound the discretization error and the discretization
at maturity T as a function of a constant and the discretization interval. Therefore one can
achieve as accurate solution as required by a reduction of the time interval ∆ only.

2.6 Theoretical comparison between Euler and Milstein

The Milstein scheme is an extension of the Euler scheme by simply adding one more term.
As a time interval gets smaller and smaller and if we want to improve the accuracy of the
simulation, then we must reduce the time discretization step ∆ to less than 100× for Euler
scheme and we only need to reduce it to 10× for Milstein scheme. Simply this tells us the
solution by the Milstein scheme converges to the truth faster than the Euler scheme as ∆ < 1.

4refer F.C. Klebaner(2005)
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2.7 Euler-Maruyama discretization scheme

One of the simplest example of discretization is Euler-Maruyama discretization scheme(Akinbo
B.J, Faniran T. and Ayoola E.O(2015)).
We assume stochastic di�erential equation,

dXt = µXtdt+ σXtdWt (2.21)

Discretizing the above process by Euler scheme on 0 ≤ t ≤ T for a given discretization,
0 ≤ t1 < t2 < ... < tn ≤ T of �nal time interval [0,T] is given as follows,

Xt = Xt−1 + µXt−1∆t+ σXt−1

√
∆tnX,t−1

Where,
∆t = τt − τt−1 is the length of the time discretization subinterval [τt−1, τt] and
nX,t−1 is a standard normal random variable.
Euler-Maruyama scheme is a method used to approximate numerical solution of a continuous
time processes. In practice, many stochastic di�erential equations are not explicitly solvable
like CIR model therefore we can not get an analytical solution to a given continuous time
process(Anqi Shao(2012)).

2.8 Milstein discretization scheme

Like Euler-Maruyama discretization scheme Milstein scheme also used to �nd the numerical
solution of a given stochastic di�erential equations. For the above stochastic di�erential equa-
tion (2.21) we have,

Xt = Xt−1 + µXt−1∆t+ σXt−1

√
∆tnX,t−1 + 1

2
σ2Xt−1(∆t2nX,t−1 −∆t)

Where, ∆t and nX,t−1 are as de�ned above.

2.9 Strong Convergence Analysis

Milstein scheme has strong order of convergence one and Milstein will converges to the correct
stochastic solution process faster than Euler-Maruyama as the step size ∆t goes to zero(Akinbo
B.J, Faniran T. and Ayoola E.O(2015)). Due to the property of it's strong convergency,
Milstein discretization scheme give better approximation for a given continuous time processes.
In our simulation result for reduced form valuation model we get the same result for Euler and
Milstein discretization scheme. Since the di�usion coe�cients for spot price process and CIR
interest rate process are not constant we can easily distinguish the di�erence between the two
schemes in contrast since the di�usion coe�cient for convenience yield process is constant we
may not get the real di�erence between Euler and Milstein scheme. In our Euler and Milstein
simulation we take small interval since if the time interval is su�ciently small, the simulation
almost does not distinguish with the truth.

8



2.10 Valuation model

Anh Ngoc Lai, Constantin Mellios(2015) extends the existing literature by pricing derivatives
under incomplete information and derived simple closed-form solutions for their valuation
model. Unlike our model they used Vasicek interest rate model for their three factor model.
Eduardo S. Schwartz(1997) also gets analytical solution by �rst assuming the commodity spot
price follows the stochastic process, and applying Itó's lemma and derives Ornstein-Uhlenbeck
stochastic process. The conditional distribution of the logarithm of the spot price at time T
under the equivalent martingale measure is log-normally distributed with some parameters.
Kristian R. Miltersen and Eduardo S. Schwartz(1998) develops a model for value options on
commodity futures in the presence of stochastic interest rates as well as stochastic convenience
yields. Eduardo S. Schwartz(1998) presents the long-term model and a two-factor model and
how to implement the long-term model using the parameters estimated for the two-factor
model in Eduardo S. Schwartz(1997). Julio J. Lucia and Eduardo S. Schwartz(2001) spot
electricity prices discussed brie�y in this study. This study used the one and two factor
Schwartz model to derive future, forward and spot prices of the commodity.
In Eduardo S. Schwartz(1997) article the proposed model has three parts. On the �rst
place,valuation model is presented in one factor model, which is the spot price process. Here
the instantaneous convenience yield and interest rate are both assumed to constant. Since
the interest rate is constant in this model the futures price and forward price are equal. The
model which presented here in one factor model is;

dS = κ(µ− lnS)Sdt+ σSdz (2.22)

By de�ning X = ln s and applying Ito's lemma, we will have

dX = κ(α−X)dt+ σdz (2.23)

Where, α = µ − σ2

2κ
κ > 0 measures the degree of mean reversion to the long run mean log

price, α. σ is the volatility of the process, dz is standard Brownian motion. Here we can
easily observe that, since X = lnS, the spot price of the commodity at time T is log-normally
distributed under a constant interest rate. The futures price is then given by;

F (S, T ) = exp

[
e−κT lnS + (1− e−κT )α∗ +

σ2

4κ
(1− e−2κT )

]
(2.24)

Or

lnF (S, T ) = e−κTS + (1− e−κT )α∗ +
σ2

4κ
(1− e−2κT ) (2.25)

Where, α∗ = α− λ and λ is the market price of risk associated with spot price.
On the second place we found two factor model, spot price process and instantaneous conve-
nience yield process. Here like one factor model the interest rate is also constant. The two
factor model is given by;

dS = (µ− δ)Sdt+ σ1Sdz1 (2.26)

dδ = κ(α− δ)dt+ σ2dz2 (2.27)
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where, dz1dz2 = ρdt, ρ is correlation coe�cient. By de�ning X = lnS and applying Ito's
lemma, the process for the log price can be written as;

dX = (µ− δ − 1

2
σ2

1)dt+ σ1dz1 (2.28)

Under equivalent martingale measure the stochastic process for the two factor model can be
expressed as;

dS = (r − δ)Sdt+ σ1Sdz
∗
1 (2.29)

dδ =

[
κ(α− δ)− λ

]
dt+ σ2dz

∗
2 (2.30)

dz∗1dz
∗
2 = ρdt, λ is the market price risk associated with convenience yield. The futures price

for the two factor model is given by;

F (S, δ, T ) = S exp

[
−δ1− e−κT

κ
+(r−α̂+

1

2

σ2
2

κ
−σ1σ2ρ

κ
)T+

1

4
σ2

2

1− e−2κT

κ3
+(α̂κ+σ1σ2ρ−

σ2
2

κ
)
1− e−κT

κ2

]
(2.31)

Where, α̂ = α− λ
κ

The last model proposed in Eduardo S. Schwartz(1997) is the three factor valuation model,
spot price process, instantaneous convenience yield process and interest rate process.

dS(t)

S(t)
= (r(t)− δ(t))dt+ σsdZ

∗
s (t) (2.32)

dδ(t) = κ(α̂− δ(t))dt+ σδdZ
∗
δ (t) (2.33)

dr(t) = a(m∗ − r(t))dt+ σrdZ
∗
r (t) (2.34)

With initial conditions S(0) ≡ S0, δ(0) ≡ δ0 and r(0) ≡ r0.
Where, α̂ = α− λ

κ
, three correlated standard Brownian motions, dZ∗sdZ

∗
δ = ρ1dt, dZ

∗
δ dz

∗
r = ρ2dt

and dZ∗sdZ
∗
r = ρ3dt. a is the speed of adjustment, m∗ the risk adjusted mean short rate of

the interest rate and σr is the constant, strictly positive, instantaneous standard deviation of
interest rate, r(t).
From this three factor model we can see that unlike the reduced form of three factor valuation
model, the interest rate is based on Vasicek interest rate process. Naturally, from Vasicek
interest rate process we know that their is no guarantee that the process is always positive. In
the reduced form of the three factor valuation model the interest rate is based on CIR process.
It's known that CIR process is always positive. The futures price given in this three factor
model is expressed as;
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F (S, δ, r, T ) = S exp

[
δ(1−e−κT )

κ
+ r(1−e−aT )

a
+ (κα̂+ρ1σsσδ)((1−e−κT )−κT )

κ2 − σ2
δ (4(1−e−κT )−(1−e−2κT )−2κT )

4κ3

− (am∗+ρ3σsσr)((1−e−aT )−aT )
a2 − σ2

r(4(1−e−aT )−(1−e−2aT )−2aT )
4a3 +ρ2σδσr

(
(1−e−κT )+(1−e−aT )−(1−e−(κ+a)T )

κa(κ+a)

)
+ κ2(1−e−aT )+a2(1−e−κT )−κa2T−aκ2T

κ2a2(κ+a)

]
After having futures price's expression for each model, now it's straight forward to put the
proposed models in state space formulation using Kalman �ltering technique5. In our pro-
posed reduced form of three factor commodity derivative valuation model, unlike Eduardo S.
Schwartz(1997) one of the di�culties arises when their is no a closed form solution for proposed
three factor valuation model. This is the only reason why we prefer �nding numerical solution
for reduced form of the three factor valuation model using the two basic known discretization
schemes, i.e, Milstein discretization and Euler discretization schemes.

2.11 Financial market under incomplete information

Ann Ngoc Lai and Constantin Mellios(2015) also discussed on �nding futures price of three
factor valuation model under incomplete information.
Let (Ω,F ,P) be a complete probability space with a standard �ltration F = {F(t) : t ∈
[0, T ]}, a �nite time period [0, T ] and three correlated standard Brownian motion Z∗s (t), Z∗δ (t)
and Z∗r (t), de�ned on (Ω,F) such that, dZ∗s (t)dZ∗δ (t) = ρsδdt, dZ

∗
s (t)dZ∗r (t) = ρsrdt and

dZ∗r (t)dZ∗δ (t) = ρrδdt where,
ρij represents correlation coe�cient and σij = ρijσiσj, for i, j = S(t), δ(t), r(t) with i 6= j

represents the covariances between dS(t)
S(t)

, dδ(t) and dr(t).

F s,r is the �ltration generated by S(t) and r(t), and F s,r ≡ σ(S(s), r(s) : 0 ≤ s ≤ t), the
σ-algebra, represents the information available by observing the processes S(t) and r(t) up to
time t, such that F s,r(t) ⊂ F(t).
The spot price of the commodity, S(t), satis�es the stochastic di�erential equation(SDE),

dS(t)

S(t)
= (µs(t)− δ(t))dt+ σsdZ

∗
s (t) (2.35)

with initial condition S(0) ≡ S. Here, µs(t) = r(t) +λsσs is the instantaneous expected rate of
return of the spot price, σs is the constant strictly positive, instantaneous standard deviation of
the spot price and λs is the constant market price of risk associated with the spot price process.
r(t) is the instantaneous riskless interest rate and δ(t) is the instantaneous convenience yield.

5see Appendix 4
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Interest rates have an impact on spot commodity prices and on convenience yields. The SDE
of the short rate follows a mean-reverting process;

dr(t) = α(β̂ − r(t))dt+ σrdZ
∗
r (t) (2.36)

with initial condition r(0) ≡ r. Here, α and β̂ are constants, and σr is the constant, strictly
positive, instantaneous standard deviation of r(t). The short rate has a tendency to revert to
a constant long-run interest rate level, β̂, with a speed of mean reversion α.
SDE for convenience yield is given by as follows,

dδ(t) = k(
ˆ̂
δ − δ(t))dt+ σδdZ

∗
δ (t) (2.37)

with initial condition δ(0) ≡ δ. Here, k and
ˆ̂
δ are constant positive scalars, σδ is the constant,

strictly positive, instantaneous standard deviation of δ(t).
If the correlation coe�cient between the spot commodity price and the convenience yield is
positive, then a weak mean-reverting e�ect is induced by the stochastic behavior of the con-
venience yield(Anh Ngoc Lai and Constantin Mellios(2015)).

2.12 Valuation of Commodity derivatives

The investor does not observe the convenience yield but draws inferences about it from her
(his) observations of the spot price of the commodity and the interest rate(Anh Ngoc Lai and
Constantin Mellios(2015)). Here, it is clear that the investor views the prior distribution of δ(0)
as Gaussian distribution with given mean m(0) and variance γ(0). The conditional mean and
the estimation error are de�ned as, m(t) = E[δ(t)|F s,r(t)] and γ(t) = E[(δ(t)−m(t))2|F s,r(t)]
respectively.
SDE for conditional mean, m(t), and estimation error, γ(t), derived as follows by using
Kalman-Bucy �ltering technique.

dm(t) = k

ˆ̂
δ−m(t)

dt+σδρs1− γ(t)

σs(1− ρ2
sr)

dzs(t)+

σδρr+
ρsrγ(t)

σs(1− ρ2
sr)

dZr(t) (2.38)

dγ(t) =

σ2
δ (1− ρ2

rδ)− σ2
δρ

2
s1

(1− ρ2
sr)− 2

k − σδρs1
σs

γ(t)− γ(t)2

σ2
s(1−ρ2

sr)

dt
γ(t) = σ2

s(1− ρ2
sr)

√∆− θ + 2
√

∆
Γe−2

√
∆t

1− Γe−2
√

∆t

 (2.39)

With initial conditions m(0) ≡ m and γ(0) ≡ γ. Where,

ρs1 = (ρsδ−ρsrρrδ)
1−ρ2

sr
, ρr = (ρrδ−ρsrρsδ)

1−ρ2
sr

, θ = k − σδρs1
σs

, ∆ = k2 +
σ2
δ (1−ρ2

rδ)

σ2
s(1−ρ2

sr)
− 2k

σδρs1
σs

,

Γ = γ−γ∞
γ+σ2

s(1−ρ2
sr)(
√

∆+θ)
.

γ∞ = σ2
s(1− ρ2

sr)(
√

∆− θ), dZs(t) = 1
σs

dS
S
− (µs −m(t))dt

 = dZ∗s + m(t)−δ(t)
σs

dt and

dZr(t) = 1
σr

(dr(t)− α(β − r(t))dt) = dZ∗r (t).
Here, zs(t) and Zr(t) are Wiener processes relative to the �ltration F s,r.
Here, as time passes, the estimation error converges to a stable steady state. i.e,
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γ(∞) ≡ γ∞ = σ2
s(1− ρ2

sr)(
√

∆− θ), as t → ∞. We can observe that, even for a long period,
the investor can not accurately estimate the convenience yield. When the convenience yield
is deterministic, i.e. σδ = 0, then γ∞ = 0.

2.13 Commodity Futures Prices

By using the general framework above, we can price commodity futures and options on com-
modity futures contracts. Since the futures contract is assumed to be marked to market
continuously and then to have always zero-value, the futures price, under the risk-neutral
probability measures, Q, is a martingale. At maturity date T, the futures price is equal to
the underlying spot price.
In arbitrage free, the price of a futures contract at date 0, H(S, r,m, 0, T ) ≡ H(T ), of maturity
date T written on a commodity is equal to: H(T ) = EQ[S(T )], whose solution is given by,

H(T ) = Sexp

{[
β − δ̄ +

σ2
r

2α2
+
σsr
α
− σrδ
αK

+
σ2
δ

2K2
− σsδ

K

]
T

−
[
β − r +

σ2
r

2α2
+
σsr
α
− σrδ
α(α +K)

]
Dα(T )−

[
m− δ̄ +

σ2
δ

2K2
− σsδ

K
− σrδ
K(α +K)

]
Dk(T )

− σrδ
α + k

Dα(T )Dk(T )− σ2
r

4α
D2
α(T )− 1

2

[
σ2
δ

2K
− γ
]
D2
k(T )

−σs(λs − ρsrλr)
K

[
ln

(
1− Γe−2

√
∆T

1− Γ

)
− 2
√

∆

K
eKT

∞∑
n=1

ΓnD2n
√

∆−K(T )

]}
,

(2.40)

Where, β = β̄ − λrσr
α

The system of stochastic deferential equations(SDEs) (2.35), (2.36) and (2.37), in partially
observable economy, is equivalent, in the fully observable economy, to the following equations:

dS(t)

S(t)
= (r(t) + λsσs −m(t))dt+ σsdZs(t), (2.41)

dr(t) = α(β̄ − r(t))dt+ σrdZr(t), (2.42)

dm(t) = k

(
¯̄δ−m(t)

)
dt+

(
σδρs1−

γ(t)

σs(1− ρ2
sr)

)
dZs(t)+

(
σδρr +

ρsrγ(t)

σs(1− ρ2
sr)

)
dZr(t). (2.43)

With initial conditions, S(0) = S, r(0) = r and m(0) = m respectively. By applying Ito's
lemma to equation (2.41) gives:

S(T ) = Sexp

{∫ T

0

(r(u)−m(u))du+

λsσs − 1

2
σ2
s

T + σsZs(T )

}
(2.44)

With initial condition S(0) = S. From equation (2.42) above we have,
r(t) = re−αt + αβ̄Dα(t) + σre

−αt ∫ t
0
eαudZr(u), with initial condition r(0) = r.
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∫ T
0
r(v)dv = β̄T + (r − β̄)Dα(T ) + σr

∫ T
0

∫ V
0
e−α(v−u)dZr(u)dv.

By applying Fubini's theorem6, to above equation we have,∫ T

0

r(v)dv = β̄T + (r − β̄)Dα(T ) + σr

∫ T

0

Dα(u, T )dZr(u) (2.45)

By the same procedure, applying Ito's lemma to equation (2.43) yields,

m(t) = me−kt + k ¯̄δDk(t) + e−kt
∫ t

0
eku
σδρs1 − γ(u)

σs(1−ρ2
sr)

dZs(u) + e−kt
∫ t

0
eku
σδρr +

ρsrγ(u)
σs(1−ρ2

sr)

dZr(u),with initial condition m(0) = m.∫ T
0
m(v)dv = ¯̄δT + (m− ¯̄δ)Dk(t) +

∫ T
0

∫ v
0
e−k(v−u)

σδρs1 − γ(u)
σs(1−ρ2

sr)

dZs(u)dv

+
∫ T

0

∫ v
0
e−k(v−u)

σδρr + ρsrγ(u)
σs(1−ρ2

sr)

dZrdv.
Applying Fubini's theorem gives,∫ T

0

m(v)dv = ¯̄δT + (m− ¯̄δ)Dk(T ) +

∫ T

0

Dk(u, T )

(
σδρs1 −

γ(u)

σs(1− ρ2
sr)

)
dZs(u)

+

∫ T

0

Dk(u, T )

(
σδρr +

ρsrγ(u)

σs(1− ρ2
sr)

)
dZr(u)

(2.46)

Inserting equations (2.45) and (2.46) into equation (2.44) implies

S(T ) = Sexp

{(
β̄ − ¯̄δ + λsσs − 1

2
σ2
s

)
T + (r − β̄)Dα(T )− (m− ¯̄δ)Dk(T )

+
∫ T

0

(
σs−Dk(u, T )

(
σδρs1−

γ(u)
σs(1−ρ2

sr)

))
dZs(u)+

∫ T
0

(
σrDα(u, T )−Dk(u, T )

(
σδρr+

ρsrγ(u)
σs(1−ρ2

sr)

))
dZr(u)

}
Under martingale, Q, by substituting equation (2.39) to the above equation, we have,

S(T ) = Sexp

{(
β− δ̄− 1

2
σ2
s

)
T + (r−β)Dα(T )− (m− δ̄)Dk(T )− σs(λs−λrρsr)

k

[
ln

(
1−Γe−2

√
∆T

1−Γ

)
− 2

√
∆
k
e−kT

∑∞
n=1 ΓnD2n

√
∆−k(T )

]
+
∫ T

0

(
σs −Dk(u, T )

(
σδρs1 −

γ(u)
σs(1−ρ2

sr)

))
dZ̃s(u)

+
∫ T

0

(
σrDα(u, T )−Dk(u, T )

(
σδρr + ρsrγ(u)

σs(1−ρ2
sr)

))
dZ̃r(u)

}
,

S(T ) = SexpX(T )

where, δ̄ = ¯̄δ + 1
k

[
σs(λs − ρsrλr)(

√
∆− k)− λrσδρrδ

]
and β = β̄ − λrσr

α

The future price in free of arbitrage is given by: H(T ) = EQ[S(T )]. Since X(T ) is normally
distributed, then:

H(T ) = EQ[S(T )] = exp

{
SEQ[X(T )] + 1

2
V ar[X(T )]

}
where, EQ[X(T )] is the expectation of

the stochastic variable X(T ) under Q and V ar[X(T )] is the variance of the stochastic variable
X(T ) under Q.

6Fubini's theorem:
∫ b

0

∫ y

0
f(x, y)dxdy =

∫ b

0

∫ b

x
f(x, y)dydx
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EQ[X(T )] =

(
β − δ̄ − 1

2
σ2
s

)
T + (r − β)Dα(T )− (m− δ̄)Dk(T )

−σs(λs − λrρsr)
k

[
ln

(
1− Γe−2

√
∆T

1− Γ

)
− 2
√

∆

k
e−kT

∞∑
n=1

ΓnD2n
√

∆−k(T )

] (2.47)

V ar[X(T )] =
∫ T

0

[(
σs −Dk(u, T )

(
σδρs1 −

γ(u)
σs(1−ρ2

sr)

))2

+

(
σrDα(u, T )−Dk(u, T )

(
σδρr + ρsrγ(u)

σs(1−ρsr)2

))2

+ 2ρsr

(
σs −Dk(u, T )

(
σδρs1 −

γ(u)
σs(1−ρ2

sr)

))(
σrDα(u, T )−Dk(u, T )

(
σδρr + ρsrγ(u)

σs(1−ρ2
sr)

))]
du

=
∫ T

0

[
σ2
s + σ2

rDα(u, T )2 + σ2
δ

(
ρ2
s1

+ ρ2
r + 2ρsrρs1ρr

)
Dk(u, T )2 − 2σsσδ

(
ρs1 + ρsrρr

)
Dk(u, T )

+ 2σsrDα(u, T )− 2σδσr(ρsrρs1 + ρr)Dα(u, T )Dk(u, T ) + 2γ(u)Dk(u, T )− 2σδρs1γ(u)

σs
Dk(u, T )2

+ γ(u)2

σ2
s(1−ρ2

sr)
Dk(u, T )2

]
du

=
∫ T

0

[
σ2
s + σ2

rDα(u, T )2 + σ2
δ (ρ

2
s1

+ ρ2
r + 2ρsrρs1ρr)Dk(u, T )2 − 2σsσδ(ρs1 + ρsrρr)Dk(u, T )

+ 2σsrDα(u, T )− 2σδσr(ρsrρs1 + ρr)Dα(u, T )Dk(u, T ) + 2γ(u)Dk(u, T )

− 2σδρs1γ(u)

σs
Dk(u, T )2 + γ(u)2

σ2
s(1−ρ2

sr)
Dk(u, T )2

]
du

Here, the following expressions can be established

ρ2
s1

+ρ2
r +2ρsrρs1ρr = ρ2

rδ +ρ2
s1

(1−ρ2
sr), σsσδ(ρs1 +ρsrρr) = σsσ and σδσr(ρr +ρsrρs1) = σrδ.

V ar[X(T )] =
∫ T

0

[
σ2
s+σ

2
rDα(u, T )2+2σsrDα(u, T )−2σsδDk(u, T )+σ2

δ (ρ
2
rδ+ρ

2
s1

(1−ρ2
sr))Dk(u, T )2

− 2σrδDα(u, T )Dk(u, T ) + 2γ(u)Dk(u, T )− 2σδρs1γ(u)

σs
Dk(u, T )2 + γ(u)2

σ2
s(1−ρ2

sr)
Dk(u, T )2

]
du

By substituting equation (2.39) into above equation, we have

V ar[X(T )] =
∫ T

0

[
σ2
s +σ2

rDα(u, T )2 +2σsrDα(u, T )−2σsδDk(u, T )−2σrδDα(u, T )Dk(u, T )

+ σ2
δ (ρ

2
rδ + ρ2

s1
(1− ρ2

sr))Dk(u, T )2

]
du+ σ2

s(1− ρ2
sr)
∫ T

0

[
(∆−Θ2)Dk(u, T )2

+ 2(
√

∆−Θ)e−k(T−u)Dk(u, T )

]
du− 4σ2

s(1−ρ2
sr)∆

k2

∫ T
0

[
Γe−2

√
∆u

(1−Γe−2
√

∆u)2

]
du

− 4σ2
s(1−ρ2

sr)
√

∆
k2

∫ T
0

[
(2
√

∆− k) Γe−2
√

∆u

1−Γe−2
√

∆u
e−k(T−u) − (

√
∆− k) Γe−2

√
∆u

1−Γe−2
√

∆u
e−2k(T−u)

+ 2
√

∆

(
Γe−2

√
∆u

1−Γe−2
√

∆u

)2

e−k(T−u) −
√

∆

(
Γe−2

√
∆u

1−Γe−2
√

∆u

)2

e−2k(T−u)

]
du

The computation of the integrals in the above equation, involving hypergeometric functions,7,
gives:

7Has a series expansion: H(a, b, c, d) = 1 + ab
1!cd+ a(a+1)b(b+1)

2!c(c+1) d2 + ...
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∫ T
0

Γe−2
√

∆u

1−Γe−2
√

∆u
e−k(T−u)du = 1

k

(
e−kTH

(
1, k

2
√

∆
, k+2

√
∆

2
√

∆
, 1

Γ

)
−H

(
1, k

2
√

∆
, k+2

√
∆

2
√

∆
, e

2
√

∆T

Γ

))
,

∫ T
0

Γe−2
√

∆u

1−Γe−2
√

∆u
e−2k(T−u)du = 1

2
√

∆

(
e−2kTH

(
1, k√

∆
, k+

√
∆√

∆
, 1

Γ

)
−H

(
1, k√

∆
, k+

√
∆√

∆
, e

2
√

∆T

Γ

))
,

∫ T
0

(
Γe−2

√
∆u

1−Γe−2
√

∆u

)2

e−k(T−u)du = 1
2
√

∆

(
Γe−kT

1−Γ
− Γe−2

√
∆T

1−Γe−2
√

∆T

)
− (2

√
∆−k)

2k
√

∆

(
e−kTH

(
1, k

2
√

∆
, k+2

√
∆

2
√

∆
, 1

Γ

)
−H

(
1, k

2
√

∆
, k+2

√
∆

2
√

∆
, e

2
√

∆T

Γ

))
,

∫ T
0

(
Γe−2

√
∆u

1−Γe−2
√

∆u

)2

e−2k(T−u)du = 1
2
√

∆

(
Γe−2kT

1−Γ
− Γe−2

√
∆T

1−Γe−2
√

∆T

)
− (
√

∆−k)

2k
√

∆

(
e−2kTH

(
1, k√

∆
, k+

√
∆√

∆
, 1

Γ

)
−H

(
1, k√

∆
, k+

√
∆√

∆
, e

2
√

∆T

Γ

))
,

Moreover:
4σ2
s(1−ρ2

sr)∆
k2

∫ T
0

[
Γe−2

√
∆u

(1−Γe−2
√

∆u)2

]
du = 2σ2

s(1−ρ2
sr)
√

∆
k2

(
Γ

1−Γ
− Γe−2

√
∆T

1−Γe−2
√

∆T

)
.

By inserting the above hypergeometric functions and the last integral above into V ar[X(T )]
, then we have:

V ar[X(T )] =

[
σ2
s +

σ2
r

α2
+

2σsr
α
− 2σrδ

αk
+
σ2
δ

k2
− 2σsδ

k

]
T

−
[
σ2
r

α2
+

2σsr
α
− 2σrδ
α(α + k)

]
Dα(T )−

[
σ2
δ

k2
− 2σsδ

k
− 2σrδ
k(α + k)

]
Dk(T )

+
2σrδ
α + k

Dα(T )Dk(T )− σ2
r

2α
D2
α(T )−

[
σ2
δ

2k
− γ
]
D2
k(T )

(2.48)

But we have:

H(T ) = EQ[S(T )] = exp

{
SEQ[X(T )] +

1

2
V ar[X(T )]

}
(2.49)

where, EQ[X(T )] is the expectation of the stochastic variable X(T ) under Q.
By inserting (2.47) and (2.48) into (2.49), we have:

H(T ) = Sexp

{[
β − δ̄ + σ2

r

2α2 + σsr
α
− σrδ

αK
+

σ2
δ

2K2 − σsδ
K

]
T

−
[
β − r + σ2

r

2α2 + σsr
α
− σrδ

α(α+K)

]
Dα(T )−

[
m− δ̄ +

σ2
δ

2K2 − σsδ
K
− σrδ

K(α+K)

]
Dk(T )

− σrδ
α+k

Dα(T )Dk(T )− σ2
r

4α
D2
α(T )− 1

2

[
σ2
δ

2K
− γ
]
D2
k(T )

− σs(λs−ρsrλr)
K

[
ln

(
1−Γe−2

√
∆T

1−Γ

)
− 2

√
∆

K
eKT

∑∞
n=1 ΓnD2n

√
∆−K(T )

]}
Where, β = β̄ − λrσr

α
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The model, i.e incomplete information model, provides an analytical solution for commodity
futures prices in a partially observable economy. Under incomplete information, the futures
prices are functions of the price of risk associated with the spot price and the short rate, λs and
λr respectively. The expectation of S(T ) depends on the initial estimate of the convenience
yield. The uncertainty, γ, about the initial value of the convenience yield in�uences both
the expectation and the variance of S(T ). The expectation of S(T ) may rise or fall as a
consequence of the e�ect of γ and λs. We can easily observe from equation (2.40), γ in�uences

the variance of S(T ) through the term, −
[
σ2
δ

2k
−γ
]
. Indeed, from expression −

[
σ2
δ

2k
−γ
]
we can

easily conclude that for reasonable and su�ciently low value of γ, the market sector(investor)

is more con�dent about his/her initial estimator which implies that the di�erence −
[
σ2
δ

2k
− γ
]

is negative, and vice versa. If λs > 0, γ has an opposite impact on the expectation(positive
covariance) and on the variance terms.
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Chapter 3

MODEL DISCRETIZATION

3.1 Introduction

In this study, our contributions to the existing literature are three folds: First, we extend the
Eduardo S. Schwartz(1997) three factor model by adding new feature, which is Vasicek interest
rate process in Eduardo S. Schwartz(1997) model is replaced by mean reverting Cox-Ingersoll-
Ross(CIR) process as described by Cox et al.(1985). This new feature prevents negative
interest rate. Second, we provide numerical solution for reduced form three factor commodity
derivative valuation model by using two known discretization techniques, i.e, Euler-Maruyama
and Milstein discretization techniques. Third, we study the strong convergence between Euler-
Maruyama and Milstein discretization methods.

3.2 Financial Market

Assume we have (Ω, F, P ) complete probability space with a standard �ltration F = {F(t) :
t ∈ [0, T ]}, a �nite time period [0, T ]. Assume we have three stochastic processes i.e, the spot
price process of the underlying commodity, S, the instantaneous convenience yield process, δ,
and the instantaneous interest rate process, r as presented in Eduardo S. Schwartz(1997). First
we discuss joint stochastic process for the two state variables i.e, the spot price process and
the instantaneous convenience yield under the equivalent martingale measure can be expressed
as:1

dS(t)

S(t)
= (µ− δ(t))dt+ σsdZs(t) (3.1)

dδ(t) = κ(α− δ(t))dt+ σδdZδ(t) (3.2)

with initial conditions S(0) ≡ S0 and δ(0) ≡ δ0. Two correlated standard Brownian motions
Zs and Zδ such that, dZsdZδ = ρdt, here ρ2 stands for correlation coe�cient between the
two Brownian motions. κ > 0 is the magnitude of the speed of adjustment of the long run

1see Eduardo S. Schwartz(1997)
2Positive correlation between spot price and convenience yield is induced by the level of commodities: when

inventories of the commodity decreases the spot price should increase since the commodity is scare and the
convenience yield should also increase since futures prices will not increase as much as the spot price, and vice
versa(Carmona and Ludkovski(1991))

18



mean α, σs and σδ represents, respectively, constant, strictly positive, instantaneous standard
deviation of the spot price and convenience yield.

Letting X = lnS3 and applying Ito's lemma to equation (3.1) gives:

dX = (µ− δ − 1

2
σ2
s)dt+ σsdZs(t) (3.3)

The stochastic deferential equations for the state variables spot price and convenience yield
under equivalent martingale measure can be expressed as:4

dS(t)

S(t)
= (r(t)− δ(t))dt+ σsdZ

∗
s (t) (3.4)

dδ(t) =

[
κ(α− δ(t))− λ

]
dt+ σδdZ

∗
δ (t) (3.5)

dZ∗sdZ
∗
δ = ρdt, λ is constant market price risk associated with convenience yield.

Interest rates have an impact on spot commodity prices and on convenience yields.5 The
reduced form three factor valuation model can be expressed as follows by using equation (3.4),
equation (3.5) and the CIR interest rate process:

dS(t)

S(t)
= (r(t)− δ(t))dt+ σsdZ

∗
s (t) (3.6)

dδ(t) = κ(α̂− δ(t))dt+ σδdZ
∗
δ (t) (3.7)

dr(t) = a(m∗ − r(t))dt+ σr
√
r(t)dZ∗r (t) (3.8)

With initial conditions S(0) ≡ S0, δ(0) ≡ δ0 and r(0) ≡ r0.
Where, α̂ = α− λ

κ
, three correlated standard Brownian motions, dZ∗sdZ

∗
δ = ρ1dt, dZ

∗
δ dz

∗
r = ρ2dt

and dZ∗sdZ
∗
r = ρ3dt. a is the speed of adjustment, m∗ the risk adjusted mean short rate of

the interest rate and σr is the constant, strictly positive, instantaneous standard deviation of
interest rate, r(t).
The SDE of the short rate follows a mean-reverting process as Cox-Ingersoll-Ross(CIR).6

If 2am∗ > σ2
r , the CIR process is strictly positive, otherwise non-negative. Hence, the CIR

interest rate model depicts the actual condition of the market where interest rate is non-
negative unlike Vasicek interest rate model. The CIR model is mean reverting in nature. If
the process deviates from the stationary mean level m∗, it is brought back to m∗ at the rate
of a.
Let Xt = lnSt, then from Ito's Lemma , we obtain the dynamics of the process X as follows:

dXt = (rt − δt −
1

2
σ2
s)dt+ σsdZ

∗
s (3.9)

3It is convenient to introduce a special notation for logarithm of the spot price X = lnS. Indeed, the model
(3.1) is linear in the state vector [X, δ](Carmona and Ludkovski(1991))

4 Eduardo S. Schwartz(1997) used this expression.
5Equilibrium models of commodity contingent claims assume that interest rates are zero or constant and

do not study the relation between convenience yields and interest rates(Anh Ngoc Lai and Constantin Mel-
lios(2015))

6see John C. Cox, Jonathan E. Ingersoll, Jr. and Stephen A. Ross(1985)
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Let the futures price at time t with maturity T is F (t, T ). Then we have:

F (t, T ) = E[ST |St] = E[eXT |Xt]
Where, E is the expectation take with respect to the risk neutral process.
To compute the expectation, the natural way is to �nd the transition density, P(XT , δT , rT , T |Xt, δt, rt, t),
and applying Kolmogorov backward equation gives the expression for transition density as:

∂P(XT , δT , rT , T |Xt, δt, rt, t)

∂t
+

{
r − δ − 1

2
σ2
s

}
∂P(XT , δT , rT , T |Xt, δt, rt, t)

∂X

+κ(α̂− δ)∂P(XT , δT , rT , T |Xt, δt, rt, t)

∂δ

+a(m∗ − r)∂P(XT , δT , rT , T |Xt, δt, rt, t)

∂r
+

1

2
σ2
s

∂2P(XT , δT , rT , T |Xt, δt, rt, t)

∂X2

+
1

2
σ2
δ

∂2P(XT , δT , rT , T |Xt, δt, rt, t)

∂δ2
+

1

2
σ2
rr
∂2P(XT , δT , rT , T |Xt, δt, rt, t)

∂r2

+ρ1σsσδ
∂2P(XT , δT , rT , T |Xt, δt, rt, t)

∂X∂δ
+ ρ2σδσr

√
r
∂2P(XT , δT , rT , T |Xt, δt, rt, t)

∂δ∂r

+ρ3σsσr
√
r
∂2P(XT , δT , rT , T |Xt, δt, rt, t)

∂X∂r
= 0

(3.10)

With terminal boundary condition:

P(XT , δT , T |Xt, δt, t = T ) = δ̂(XT −Xt, δT − δt, 0) (3.11)

To get futures price's expression7, we multiply both sides by eXt and integrating with respect
to Xt gives:

∂F (t, T )

∂t
+

{
r − δ − 1

2
σ2
s

}
∂F (t, T )

∂X
+ κ(α̂− δ)∂F (t, T )

∂δ
+ a(m∗ − r)∂F (t, T )

∂r
+

1

2
σ2
s

∂2F (t, T )

∂X2

+
1

2
σ2
δ

∂2F (t, T )

∂δ2
+

1

2
σ2
rr
∂2F (t, T )

∂r2
+ ρ1σsσδ

∂2F (t, T )

∂X∂δ

+ρ2σδσr
√
r
∂2F (t, T )

∂δ∂r
+ ρ3σsσr

√
r
∂2F (t, T )

∂X∂r
= 0

(3.12)

Subject to boundary condition F (t = T, T ) = eXT

Assuming the solution of the above Kolmogorov backward equation has an exponential a�ne
form:

F (t, T ) = eA0(t)+A1(t)Xt+A2(t)δt+A3(t)rt (3.13)

Since F (t = T, T ) = eXT , then we have:
A0(T ) = 0, A1(T ) = 1, A2(T ) = 0 and A3(T ) = 0

7see appendix 3
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Di�erentiating equation (5.22) with respect to t, Xt, δt and rt gives:

∂F (t,T )
∂t

=

(
dA0(t)
dt

+Xt
dA1(t)
dt

+ δt
dA2(t)
dt

+ rt
dA3(t)
dt

)
F (t, T )

∂F (t,T )
∂X

= A1(t)F (t, T )

∂2F (t,T )
∂X2 = (A1(t))2F (t, T )

∂F (t,T )
∂δ

= A2(t)F (t, T )

∂2F (t,T )
∂δ2 = (A2(t))2F (t, T )

∂F (t,T )
∂r

= A3(t)F (t, T )

∂2F (t,T )
∂r2 = (A3(t))2F (t, T )

∂2F (t,T )
∂X∂δ

= A1(t)A2(t)F (t, T )

∂2F (t,T )
∂X∂r

= A1(t)A3(t)F (t, T )

∂2F (t,T )
∂δ∂r

= A2(t)A3(t)F (t, T )
Equation (5.21) becomes:(
dA0(t)
dt

+Xt
dA1(t)
dt

+ δt
dA2(t)
dt

+ rt
dA3(t)
dt

)
F (t, T ) +

{
r − δ − 1

2
σ2
s

}
A1(t)F (t, T )

+ κ(α̂− δ)A2(t)F (t, T ) + a(m∗ − r)A3(t)F (t, T ) + 1
2
σ2
s(A1(t))2F (t, T )

+ 1
2
σ2
δ (A2(t))2F (t, T ) + 1

2
σ2
rr(A3(t))2F (t, T )

+ ρ1σsσδA1(t)A2(t)F (t, T ) + ρ2σδσr
√
rA2(t)A3(t)F (t, T ) + ρ3σsσr

√
rA1(t)A3(t)F (t, T ) = 0

Dividing both sides by F (t, T ) gives:

dA0(t)
dt

+Xt
dA1(t)
dt

+ δt
dA2(t)
dt

+ rt
dA3(t)
dt

+

{
r− δ− 1

2
σ2
s

}
A1(t) +κ(α̂− δ)A2(t) +a(m∗− r)A3(t)

+ 1
2
σ2
s(A1(t))2 + 1

2
σ2
δ (A2(t))2 + 1

2
σ2
rr(A3(t))2

+ ρ1σsσδA1(t)A2(t) + ρ2σδσr
√
rA2(t)A3(t) + ρ3σsσr

√
rA1(t)A3(t) = 0

=⇒


dA1(t)
dt

= 0
dA2(t)
dt
− A1(t)− κA2(t) = 0

dA3(t)
dt

+ A1(t)− aA3(t) = 0
dA0(t)
dt
− 1

2
σ2
sA1(t) + κα̂A2(t) + am∗A3(t) + 1

2
σ2
s(A1(t))2 + 1

2
σ2
δ (A2(t))2 + 1

2
σ2
rr(A3(t))2

+ ρ1σsσδA1(t)A2(t) + ρ2σδσr
√
rA2(t)A3(t) + ρ3σsσr

√
rA1(t)A3(t) = 0
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Since A1(T ) = 1 then we have A1(t) = 1

=⇒


A1(t) = 1
dA2(t)
dt
− 1− κA2(t) = 0

dA3(t)
dt

+ 1− aA3(t) = 0
dA0(t)
dt
− 1

2
σ2
s + κα̂A2(t) + am∗A3(t) + 1

2
σ2
s + 1

2
σ2
δ (A2(t))2 + 1

2
σ2
rr(A3(t))2

+ ρ1σsσδA2(t) + ρ2σδσr
√
rA2(t)A3(t) + ρ3σsσr

√
rA3(t) = 0

=⇒


A1(t) = 1
dA2(t)
dt

= 1 + κA2(t)
dA3(t)
dt

= −1 + aA3(t)
dA0(t)
dt

= 1
2
σ2
s − κα̂A2(t)− am∗A3(t)− 1

2
σ2
s − 1

2
σ2
δ (A2(t))2 − 1

2
σ2
rr(A3(t))2

− ρ1σsσδA2(t)− ρ2σδσr
√
rA2(t)A3(t)− ρ3σsσr

√
rA3(t)

=⇒


A1(t) = 1

A2(t) = eκ(t−T )−1
κ

A3(t) = 1−ea(t−T )

a

After substituting and straightforward calculations we have:

dA0(t)
dt

= ρ2σδσr
√
r

κa
e(κ+a)(t−T )− σ2

δ

2κ2 e
2κ(t−T )− σ2

rr
2a2 e

2a(t−T ) +

(
σ2
δ

κ2 − α̂− ρ1σsσδ
κ
− ρ2σδσr

√
r

κa

)
eκ(t−T )

+

(
m∗ + σ2

rr
a2 − ρ2σδσr

√
r

κa
− ρ3σsσr

√
r

a

)
ea(t−T ) + α̂−m∗ − σ2

δ

2κ2 −
σ2
δ

2κ2 − σ2
rr

2a2 + ρ2σδσr
√
r

κa
− ρ3σsσr

√
r

a

From above expression of dA0(t)
dt

we can simply observe that the expression is dependent of
the process r hence we can say that unlike Eduardo S. Schwartz(1997) three factor model
there is no closed form solution for reduced form three factor valuation model or the model is
not explicitly solvable. This happens because unlike Eduardo S. Schwartz(1997) three factor
model in our model the interest rate process is CIR process and in nature CIR process does
not have closed form solution8 and the spot price process, S, in reduced form three factor
valuation model, is related with explicitly unsolvable CIR interest rate, r, process. Due to
this reason we use numerical solution methods for our model. By choosing a su�ciently small
length of time interval, ∆t, Milstein and Euler discretization scheme can be used to generate
discrete observations of a continuous-time system.

8The CIR process is not explicitly solvable, hence the tractability of the CIR model is not as good as the
Vasicek model in this regard, Anqi Shao(2012)
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3.3 Discretization of reduced form of the three factor

commodity derivative valuation model

3.3.1 Euler discretization scheme

Using an Euler discretization to simulate CIR process gives rise to the problem that while the
process itself is guaranteed to be non negative, the discretization is not. General schemes, such
as the Euler scheme or the Milstein scheme are in general not well de�ned because they can
lead to negative values for which the square root is not de�ned(Anoi Shao(2012)). To tackle
this problem in our simulation we use Diop's9 approach which is 're�ection scheme' taking the
norm of the discretization10. Therefore the straightforward11 Euler discretization scheme for
valuation model is given by,

St = St−1 + (µ− δt−1)St−1∆t+ σsSt−1

√
∆tnS,t−1 (3.14)

δt = δt−1 + κ(α− δt−1)∆t+ σδρ1

√
∆tnS,t−1 + σδ

√
1− ρ2

1

√
∆tnδ,t−1 (3.15)

rt = rt−1 + a(m− rt−1)∆t+ σrρ3
√
rt−1

√
∆tnS,t−1 + σr

√
rt−1

√
1− ρ2

3

√
∆tnr,t−1 (3.16)

Where nS,t−1, nδ,t−1 and nr,t−1 are independent and identically distributed standard normal
random variables.

3.3.2 Milstein discretization scheme

Milstein discretization12 scheme is given by,

St = St−1 + (µ− δt−1)St−1∆t+ σsSt−1

√
∆tnS,t−1 +

1

2
σ2
sSt−1(∆t2nS,t−1 −∆t) (3.17)

δt = δt−1 + κ(α− δt−1)∆t+ σδρ1

√
∆tnS,t−1 + σδ

√
1− ρ2

1

√
∆tnδ,t−1 (3.18)

rt = rt−1 + a(m− rt−1)∆t+ σrρ3
√
rt−1

√
∆tnS,t−1 + σr

√
rt−1

√
1− ρ2

3

√
∆tnr,t−1 (3.19)

Where nS,t−1, nδ,t−1 and nr,t−1 are as stated above.

9refer Berkaoui A., Bossy M. and Diop A.(2008)
10refer Aurélien Alfonsi(2005)
11see Appendix 1
12refer Ola Elerian(1998)
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3.4 Simulation of valuation model

Simulation of valuation model in the context of option pricing refers to a set of techniques
to generate underlying values typically stock prices, convenience yield or interest rate over
time. The dynamics of these stock price, convenience yield and interest rate are assumed to
be driven by a continuous-time stochastic process. Simulation, however, is done at discrete
time steps. Hence, the �rst step in any simulation scheme is to �nd a way to discretized a
continuous-time process into a discrete time process.
To simulate reduced form of three factor valuation model we use Euler and Milstein dis-
cretization representations listed above of the model with di�erent time intervals. For both
discretization techniques, we use the same �nal time interval [0,1]. For each discretization
schemes13, we choose ∆t = 10−3 and use 103 simulation paths and we choose ∆t = 10−1 and
use 102 paths.

13The discretization alternatives with either the �rst-order Euler's approximation or the Milstein's approxi-
mation formats introduce discretization errors into the simulation and have higher computational cost because
need small ∆t.
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Chapter 4

Empirical studies of the reduced form of

the three factor commodity derivative

valuation model

4.1 Simulation of valuation model

4.1.1 Milstein discretization simulation for T=1

We choose the following parameters to generate the trajectories in Milstein discretization
scheme for valuation model.

Table 4.1: Parameters of valuation model for Milstein and Euler discretization scheme

σs σδ σr ρ1 ρ2 ρ3 κ α̂ a m∗

0.25 0.15 0.1 0.24 0.3 0.08 0.3 1 0.18 0.76

Figure 4.1: Milstein discretization simulation for reduced form three factor valuation model
with ∆t = 10−3 and 103 simulation paths
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Figure 4.2: Milstein discretization simulation for reduced form three factor valuation model
with ∆t = 10−1 and 102 simulation paths

4.1.2 Euler discretization simulation for T=1

We choose the same parameters as Milstein discretization scheme listed above.

Figure 4.3: Euler discretization simulation for reduced form three factor valuation model with
∆t = 10−3 and 103 simulation paths
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Figure 4.4: Euler discretization simulation for reduced form three factor valuation model with
∆t = 10−1 and 102 simulation paths

For above �gures (4.1), (4.2), (4.3) and (4.4) lines indicated by blue represents the simulation
paths and the line indicated by black represents the true mean of the factors spot price, S,
convenience yield, δ and interest rate, r.
We can easily noted that the mean of 103 simulation paths using small ∆t = 0.001 is appears
to be closer to the true mean than the mean of 102 simulation paths using large ∆t = 0.01
for Milstein and Euler discretization scheme. We can conclude that as the time interval(∆t)
decreases and as we use more simulation paths the simulation result for both Milstein and
Euler schemes achieves better approximation.
Since in our model the di�usion coe�cients in the spot price process, S, and interest rate
process, r, unlike Eduardo S. Schwartz(1997) three factor model, are not constant(they include
process S and r respectively), the Milstein scheme and Euler scheme generates di�erent results
for spot price and interest rate so that we can easily distinguish Milstein and Euler scheme
discretization.

4.1.3 Simulation results for both Milstein and Euler schemes as
maturity expands
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Euler discretization simulation for T=5

Figure 4.5: Euler discretization simulation for reduced form three factor valuation model with
∆t = 10−3 and 103 simulation paths

Figure 4.6: Euler discretization simulation for reduced form three factor valuation model with
∆t = 10−1 and 102 simulation paths
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Milstein discretization simulation for T=5

Figure 4.7: Milstein discretization simulation for reduced form three factor valuation model
with ∆t = 10−3 and 103 simulation paths

Figure 4.8: Milstein discretization simulation for reduced form three factor valuation model
with ∆t = 10−1 and 102 simulation paths
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Simulations for maturity, T=25

Figure 4.9: Simulation for reduced form three factor valuation model with ∆t = 0.025 and
104 simulation paths

Figure 4.10: Simulation for reduced form three factor valuation model with ∆t = 0.25 and
103 simulation paths
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From above simulation results i.e from �gure (4.5) to �gure (4.10), we can observe that as
maturity, T, increases, there appear more uncertainty in both Euler and Milstein schemes
simulation results. These leads to a less accuracy in the simulations obtained by both Milstein
and Euler schemes. So to get accurate results from both Milstein and Euler simulations one
needs to have smaller maturity and also have smaller discrete time interval. When we observe
above simulations for interest rate we can guarantee that the interest rate is always positive
this happened due to unlike Eduardo S. Schwartz(1997) three factor model the reduced form
of the three factor commodity derivative valuation model used CIR process. From numerical
results listed in tables below we can conclude that Milstein scheme has better approximation
than Euler scheme for reduced form of the three factor commodity derivative valuation model
as discrete time interval and maturity get smaller.
The �rst ten numerical results of the simulation is listed in table below.

Table 4.2: Simulation results of Milstein scheme for the �rst ten simulation paths for ∆t = 10−5

and T=1

t S δ r True mean of STrue mean of δTrue mean of rAb. error in S Ab. error in δ Ab. error in r

0 2.658897758-0.265611268 0.69674544 2.658897758 -0.265611268 0.69674544 0 0 0

1× 10−52.659807581-0.2657248020.696868195 2.658971699 -0.26563021 0.696763447 0.000835882 0.063735992530 0.000104748

2× 10−52.659391766-0.2659761290.697051102 2.659104144 -0.265618158 0.696735733 0.000287622 0.000357971 0.000315369

3× 10−52.659731848-0.2661814550.697104729 2.658997712 -0.265607887 0.696738081 0.000734135 0.000573568 0.000366649

4× 10−52.658860786-0.2661427170.697045966 2.658904728 -0.265602877 0.696747529 0.02960781932 0.00053984 0.000298438

5× 10−52.654995665-0.2663670260.697017383 2.658974969 -0.265628119 0.696749456 0.003979304 0.000738907 0.000267927

6× 10−52.652938128-0.2668722810.696629212 2.659107973 -0.265578497 0.696762256 0.006169845 0.001293784 0.000133044

7× 10−52.655396543-0.2668289030.697016206 2.659141004 -0.265584732 0.696760074 0.00374446 0.001244171 0.000256132

8× 10−52.653494379-0.2666168270.697019088 2.658894072 -0.265621916 0.696759831 0.005399692 0.000994912 0.000259256

9× 10−52.651565607-0.2667198490.697117397 2.658925909 -0.265581912 0.696783244 0.007360302 0.001137937 0.000334153

Table 4.3: Simulation results of Milstein scheme for the �rst ten simulation paths for ∆t = 0.1
and T=25

t S δ r True mean of S True mean of δ True mean of r Ab. error in S Ab. error in δ Ab. error in r

0 2.658897758 -0.265611268 0.69674544 2.658897758 -0.265611268 0.69674544 0 9.99201× 10−16 3.9968× 10−15

0.1 2.8764687 -0.209982172 0.694430604 2.91942026 -0.229401124 0.696887722 0.04295156 0.019418952 0.002457119

0.2 3.032216596 -0.226570142 0.711084713 3.181260525 -0.196434354 0.698539136 0.149043929 0.030135788 0.012545576

0.3 3.330546662 -0.279468072 0.677933193 3.480092229 -0.158283892 0.701295389 0.149545567 0.12118418 0.023362196

0.4 3.562232922 -0.189911653 0.68833876 3.763128822 -0.124788895 0.702809739 0.2008959 0.065122758 0.014470979

0.5 4.647714807 -0.1607325 0.730843446 4.079599242 -0.090808489 0.702431296 0.568115565 0.069924012 0.02841215

0.6 5.686869322 -0.029122165 0.759842598 4.4167477 -0.058013842 0.703391898 1.270121622 0.028891676 0.0564507

0.7 5.926514706 0.032340895 0.703273418 4.80783989 -0.026132385 0.702349253 1.118674817 0.05847328 0.000924165

0.8 6.504869172 0.133565821 0.720889024 5.183422184 0.007771102 0.706396021 1.321446988 0.125794719 0.014493003

0.9 7.031248273 0.125421182 0.745278398 5.568159396 0.039803189 0.70564094 1.463088877 0.085617993 0.039637458
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Table 4.4: Simulation results of Euler scheme for the �rst ten simulation paths for ∆t = 10−5

and T=1

t S δ r True mean of STrue mean of δTrue mean of rAb. error in S Ab. error in δ Ab. error in r

0 2.658897758-0.265611268 0.69674544 2.658897758 -0.265611268 0.69674544 0 9.99201× 10−163.9968× 10−15

1× 10−52.659808265-0.2657248020.696868195 2.658971694 -0.26563021 0.696763447 0.000836571 9.45926× 10−5 0.000104748

2× 10−52.659393244-0.2659761290.697051102 2.659104076 -0.265618158 0.696735733 0.000289168 0.000357971 0.000315369

3× 10−52.659734138-0.2661814550.697104729 2.658997676 -0.265607887 0.696738081 0.000736462 0.000573568 0.000366649

4× 10−52.658863756-0.2661427170.697045966 2.658904687 -0.265602877 0.696747529 4.0931× 10−5 0.00053984 0.000298438

5× 10−52.654996613-0.2663670260.697017383 2.658974905 -0.265628119 0.696749456 0.003978293 0.000738907 0.000267927

6× 10−52.652939087-0.2668722810.696629212 2.659107939 -0.265578497 0.696762256 0.006168852 0.001293784 0.000133044

7× 10−52.655397217-0.2668289030.697016206 2.659141004 -0.265584732 0.696760074 0.003743787 0.001244171 0.000256132

8× 10−52.653495183-0.2666168270.697019088 2.658894077 -0.265621916 0.696759831 0.005398894 0.000994912 0.000259256

9× 10−52.651566519-0.2667198490.697117397 2.658925931 -0.265581912 0.696783244 0.007359411 0.001137937 0.000334153

Table 4.5: Simulation results of Euler scheme for the �rst ten simulation paths for ∆t = 0.1
and T=25

t S δ r True mean of S True mean of δ True mean of r Ab. error in S Ab. error in δ Ab. error in r

0 2.658897758 -0.265611268 0.69674544 2.658897758 -0.265611268 0.69674544 0 9.99201× 10−16 3.9968× 10−15

0.1 2.884606566 -0.209982172 0.694430604 2.919148458 -0.229401124 0.696887722 0.034541893 0.019418952 0.002457119

0.2 3.048167591 -0.226570142 0.711084713 3.181450973 -0.196434354 0.698539136 0.133283382 0.030135788 0.012545576

0.3 3.357501797 -0.279468072 0.677933193 3.479675777 -0.158283892 0.701295389 0.12217398 0.12118418 0.023362196

0.4 3.600642175 -0.189911653 0.68833876 3.763370411 -0.124788895 0.702809739 0.162728236 0.065122758 0.014470979

0.5 4.637055586 -0.1607325 0.730843446 4.079502817 -0.090808489 0.702431296 0.557552769 0.069924012 0.02841215

0.6 5.649612639 -0.029122165 0.759842598 4.417450614 -0.058013842 0.703391898 1.232162025 0.028891676 0.0564507

0.7 5.902035818 0.032340895 0.703273418 4.808412366 -0.026132385 0.702349253 1.093623452 0.05847328 0.000924165

0.8 6.49321752 0.133565821 0.720889024 5.184825199 0.007771102 0.706396021 1.308392321 0.125794719 0.014493003

0.9 7.036915783 0.125421182 0.745278398 5.569230982 0.039803189 0.70564094 1.467684801 0.085617993 0.039637458

To observe the di�erence between Milstein and Euler discretization schemes we can easily ob-
serve the equations given for both discretization schemes(i.e, equations from (3.14) to (3.19)).
Milstein discretization adds additional terms in discretization of spot price process1. There-
fore, we can observe very slight di�erence in simulation results of both discrtization schemes.
To observe this di�erence it's enough to see above tables(table (4.2) to table (4.5)).

1see equations (3.14) and (3.17)
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4.1.4 Simulation results for spot price, convenience yield and
interest rate

Figure 4.11: Simulation of spot price for ∆t = 10−5 and 103 simulation paths, T=1

Figure 4.12: Simulation of spot price for ∆t = 0.1 and 103 simulation paths, T=25

Figure 4.13: Simulation of convenience yield for ∆t = 10−5 and 103 simulation paths, T=1
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Figure 4.14: Simulation of convenience yield for ∆t = 0.1 and 103 simulation paths, T=25

Figure 4.15: Simulation of interest rate for ∆t = 10−5 and 103 simulation paths, T=1

Figure 4.16: Simulation of interest rate for ∆t = 0.1 and 103 simulation paths, T=25
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In general, from table (4.2) to table (4.5) and from �gure (4.11) to �gure (4.16), for spot price,
convenience yield and interest rate, we can easily observe that as time of maturity, T, expands
and the time interval, ∆t also increases, the results in simulation leads to uncertainty. Hence
the accuracy of the simulation will be less. To get the best approximation for spot price,
convenience yield and interest rate in reduced form three factor valuation model one can use
less time of maturity, less time interval and more simulation paths for both Milstein and Euler
dscretization schemes.
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Chapter 5

Discussions, Conclusions and

Recommendations

5.1 Discussions

From the beginning, this study was proposed to �nd analytical solution for the reduced form
of three factor valuation model like Eduardo S.Schwartz(1997) three factor commodity deriva-
tive model. But, unlike Eduardo S. Schwartz(1997) three factor commodity derivative model
we used CIR interest rate process as third factor and according to the nature of CIR interest
rate process, CIR interest rate process has no closed form solution(see SDE (3.8)). Hence, due
to the in�uence of CIR interest rate process to reduced form of the three factor commodity
derivative valuation model, the proposed reduced form of three factor commodity derivative
valuation model has no closed form solution. Due to this reason we focused on simulating
the proposed model to �nd numerical solution for the joint stochastic di�erential equations1

by using the two most known techniques, Milstein and Euler discretization techniques to
�nd accurate approximation for reduced form of the three factor commodity derivative valu-
ation model. According to our simulation results for both Euler and Milstein discretization
schemes we used di�erent maturity, T(T=1, 5 and 25) and di�erent discrete time interval,
∆t(∆ = 10−1, 10−3, 10−5 and 0.25). From �gure (4.1) to �gure (4.4) we used the same ma-
turity, T=1 but di�erent discrete time interval, ∆t(∆t = 10−1 and 10−3) to observe the best
approximation results while decreasing discrete time interval for both discretization schemes.
From �gure (4.5) to �gure (4.8) we used the same maturity, T=5 and di�erent discrete time
interval, ∆t(∆t = 10−1 and ∆t = 10−3). Hence from those simulation results we �nd as
maturity, T, and discrete time interval, ∆t decreases the simulation result shows best approx-
imation in both discretization schemes. As we can easily observe from table (4.2) to table
(4.5) we �nd Milstein discretization technique in reduced form of the three factor commodity
derivative valuation model has the best approximation than Euler discretization technique.
As maturity, T, and discrete time interval, ∆t, get bigger and bigger we �nd uncertainty in
all simulation results.
The main objective of this study was to build a suitable reduced form of three factor valuation
model like Eduardo S. Schwartz(1997) three factor model by adding a new feature , which is
Vasicek interest rate process in Eduardo S. Schwartz(1997) model was replaced by CIR interest

1see SDEs (3.6), (3.7) and (3.8)
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rate process to keep the interest rate always positive. After developing reduced form of three
factor valuation model we simulated the proposed model according to the two discretization
schemes to �nd numerical solution(see from �gure (4.1) to �gure (4.4)).
The second objective was to study the performance of both Milstein and Euler discretization
schemes in reduced form of three factor valuation model. We examined the Milstein and Eu-
ler schemes in terms of their performance to the true process. To understand the di�erence
between the two discretizatioin schemes, we might observe at the results given by each dis-
retization schemes as time interval gets smaller. If we want to improve the accuracy of the
simulation for both Milstein and Euler schemes, then we must reduce the time discretization
step and use more simulation paths for the proposed three factor model. It's seen that from
equations given in both discretization schemes, Milstein scheme is an extension of Euler by
simply adding one term to spot price process, the Milstein scheme has more accurate approxi-
mation than Euler scheme, to understand this more it's better to observe the numerical results
given in table (4.2) to table (4.5).

5.2 Conclusions

From the �nancial market point of view, it can be concluded that the proposed reduced form
of three factor valuation model is better than the one proposed in Eduardo S. Schwartz(1997)
model, Since Vasicek interest rate process in Eduardo S. Schewartz(1997) model has no guar-
antee from being negative unlike CIR interest rate process in valuation model. In addition
to this, from simulation results of Milstein and Euler discretization schemes, we can conclude
that Milstein scheme has better approximation than Euler scheme in reduced form of three
factor valuation model.

5.3 Recommendations

From this study it would be recommended that to compare the two basic known discretiza-
tion schemes i.e, Milstein and Euler, one can use di�erent approaches like strong and weak
convergence approaches or average mean square error approach. In average mean square error
approach the standard deviation might be taken to judge the accuracy of the Milstein and
Euler schemes using reduced form of three factor valuation model.
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Appendix 1

Euler discretization scheme
The simplest way to discretize continuous time process is the use of Euler discretization
scheme(Akinbo B.J, Faniran T and Ayoola E.O, 2015).

Recall,
Assume we have stock price process St

2

dSt = µ(St, t)dt+ σ(St, t)dWt (5.1)

To simulate St over the �nal time interval, [0,T] one can discretize a �nal time interval [0,T]
into N subintervals, i.e,

0 = t1 < t2 < ... < tn = T . n= 0, 1,...,N
Setting the discrete time interval, ∆t = T

N
,

Integrating the above process from t to t+ dt gives,

St+dt = St +

∫ t+dt

t

µ(Su, u)du+

∫ t+dt

t

σ(Su, u)dWu (5.2)

To �nd the value of St+dt at t+dt knowing the value of St at t the Euler discretization scheme
can be applied to equation (5.2) and gives general form of Euler scheme as follows,

St+dt = St + µ(St, t)dt+ σ(St, t)
√
dtZ where Z is standard normal random variable.

Now we can use Euler scheme above to discretize valuation model as follows,
Recasting valuation model with respect to independent wiener processes dzs, dzδ and dzr like
above gives,

dSt = (µ− δt)Stdt+ σsStdzs (5.3)

dδt = κ(α− δt)dt+ σδ(ρ2dzs +
√

1− ρ2
1dzδ) (5.4)

drt = a(m− rt)dt+ σr
√
rt(ρ3dzs +

√
1− ρ2

3dzr) (5.5)

Then from above equation we can have Euler discretization for valuation model.

St = St−1 + (µ− δt−1)St−1∆t+ σsSt−1

√
∆tnS,t−1 (5.6)

2refer Akinbo B.J, Faniran T and Ayoola E.O, 2015
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δt = δt−1 + κ(α− δt−1)∆t+ σδρ1

√
∆tnS,t−1 + σδ

√
1− ρ2

1

√
∆tnδ,t−1 (5.7)

rt = rt−1 + a(m− rt−1)∆t+ σrρ3
√
rt−1

√
∆tnS,t−1 + σr

√
rt−1

√
1− ρ2

3

√
∆tnr,t−1 (5.8)

Where nS,t−1, nδ,t−1 and nr,t−1 are independent and identically distributed standard normal
random variables.
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Appendix 2

Milstein discretization scheme
Recasting three factor valuation model with respect to independent wiener processes dzs, dzδ
and dzr like above gives,

dSt = (µ− δt)Stdt+ σsStdzs (5.9)

dδt = κ(α− δt)dt+ σδ(ρ2dzs +
√

1− ρ2
1dzδ) (5.10)

drt = a(m− rt)dt+ σr
√
rt(ρ3dzs +

√
1− ρ2

3dzr) (5.11)

Then from above equation we can have Milstein discretization for valuation model.

St = St−1 + (µ− δt−1)St−1∆t+ σsSt−1

√
∆tnS,t−1 +

1

2
σ2
sSt−1(∆t2nS.t−1 −∆t) (5.12)

δt = δt−1 + κ(α− δt−1)∆t+ σδρ1

√
∆tnS,t−1 + σδ

√
1− ρ2

1

√
∆tnδ,t−1 (5.13)

rt = rt−1 + a(m− rt−1)∆t+ σrρ3
√
rt−1

√
∆tnS,t−1 + σr

√
rt−1

√
1− ρ2

3

√
∆tnr,t−1 (5.14)

Where nS,t−1, nδ,t−1 and nr,t−1 are independent and identically distributed standard normal
random variables.
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Appendix 3

Schwartz(1997)3 three factor model is given by,

dS(t)

S(t)
= (r(t)− δ(t))dt+ σsdZ

∗
s (t) (5.15)

dδ(t) = κ(α̂− δ(t))dt+ σδdZ
∗
δ (t) (5.16)

dr(t) = a(m∗ − r(t))dt+ σrdZ
∗
r (t) (5.17)

With initial conditions S(0) ≡ S0, δ(0) ≡ δ0 and r(0) ≡ r0.
Where, α̂ = α− λ

κ
, three correlated standard Brownian motions, dZ∗sdZ

∗
δ = ρ1dt, dZ

∗
δ dz

∗
r = ρ2dt

and dZ∗sdZ
∗
r = ρ3dt. a is the speed of adjustment, m∗ the risk adjusted mean short rate of

the interest rate and σr is the constant, strictly positive, instantaneous standard deviation of
interest rate, r(t).
To �nd futures price of the three factor model, let Xt = lnSt, then from Ito's Lemma , we
obtain the dynamics of the process X as follows:

dXt = (rt − δt −
1

2
σ2
s)dt+ σsdZ

∗
s (5.18)

Let the futures price at time t with maturity T is F (t, T ). Then we have:

F (t, T ) = E[ST |St] = E[eXT |Xt]

Where, E is the expectation take with respect to the risk neutral process.
To compute the expectation, the natural way is to �nd the transition density, P(XT , δT , rT , T |Xt, δt, rt, t),
and applying Kolmogorov backward equation gives the expression for transition density as:

3refer Schwartz(1997)
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∂P(XT , δT , rT , T |Xt, δt, rt, t)

∂t
+

{
r − δ − 1

2
σ2
s

}
∂P(XT , δT , rT , T |Xt, δt, rt, t)

∂X

+κ(α̂− δ)∂P(XT , δT , rT , T |Xt, δt, rt, t)

∂δ

+a(m∗ − r)∂P(XT , δT , rT , T |Xt, δt, rt, t)

∂r
+

1

2
σ2
s

∂2P(XT , δT , rT , T |Xt, δt, rt, t)

∂X2

+
1

2
σ2
δ

∂2P(XT , δT , rT , T |Xt, δt, rt, t)

∂δ2
+

1

2
σ2
r

∂2P(XT , δT , rT , T |Xt, δt, rt, t)

∂r2

+ρ1σsσδ
∂2P(XT , δT , rT , T |Xt, δt, rt, t)

∂X∂δ
+ ρ2σδσr

∂2P(XT , δT , rT , T |Xt, δt, rt, t)

∂δ∂r

+ρ3σsσr
∂2P(XT , δT , rT , T |Xt, δt, rt, t)

∂X∂r
= 0

(5.19)

With terminal boundary condition:

P(XT , δT , T |Xt, δt, t = T ) = δ̂(XT −Xt, δT − δt, 0) (5.20)

To get futures price's expression, we multiply both sides by eXt and integrating with respect
to Xt gives:

∂F (t, T )

∂t
+

{
r − δ − 1

2
σ2
s

}
∂F (t, T )

∂X
+ κ(α̂− δ)∂F (t, T )

∂δ
+ a(m∗ − r)∂F (t, T )

∂r
+

1

2
σ2
s

∂2F (t, T )

∂X2

+
1

2
σ2
δ

∂2F (t, T )

∂δ2
+

1

2
σ2
r

∂2F (t, T )

∂r2
+ ρ1σsσδ

∂2F (t, T )

∂X∂δ

+ρ2σδσr
∂2F (t, T )

∂δ∂r
+ ρ3σsσr

∂2F (t, T )

∂X∂r
= 0

(5.21)

Subject to boundary condition F (t = T, T ) = eXT

Assuming the solution of the above Kolmogorov backward equation has an exponential a�ne
form:

F (t, T ) = eA0(t)+A1(t)Xt+A2(t)δt+A3(t)rt (5.22)

Since F (t = T, T ) = eXT , then we have:
A0(T ) = 0, A1(T ) = 1, A2(T ) = 0 and A3(T ) = 0
Di�erentiating equation (5.22) with respect to t, Xt, δt and rt gives:

∂F (t,T )
∂t

=

(
dA0(t)
dt

+Xt
dA1(t)
dt

+ δt
dA2(t)
dt

+ rt
dA3(t)
dt

)
F (t, T )

∂F (t,T )
∂X

= A1(t)F (t, T )

∂2F (t,T )
∂X2 = (A1(t))2F (t, T )
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∂F (t,T )
∂δ

= A2(t)F (t, T )

∂2F (t,T )
∂δ2 = (A2(t))2F (t, T )

∂F (t,T )
∂r

= A3(t)F (t, T )

∂2F (t,T )
∂r2 = (A3(t))2F (t, T )

∂2F (t,T )
∂X∂δ

= A1(t)A2(t)F (t, T )

∂2F (t,T )
∂X∂r

= A1(t)A3(t)F (t, T )

∂2F (t,T )
∂δ∂r

= A2(t)A3(t)F (t, T )
Equation (5.21) becomes:(

dA0(t)
dt

+Xt
dA1(t)
dt

+ δt
dA2(t)
dt

+ rt
dA3(t)
dt

)
F (t, T ) +

{
r − δ − 1

2
σ2
s

}
A1(t)F (t, T )

+ κ(α̂− δ)A2(t)F (t, T ) + a(m∗ − r)A3(t)F (t, T ) + 1
2
σ2
s(A1(t))2F (t, T )

+ 1
2
σ2
δ (A2(t))2F (t, T ) + 1

2
σ2
r(A3(t))2F (t, T )

+ ρ1σsσδA1(t)A2(t)F (t, T ) + ρ2σδσrA2(t)A3(t)F (t, T ) + ρ3σsσrA1(t)A3(t)F (t, T ) = 0

Dividing both sides by F (t, T ) gives:

dA0(t)
dt

+Xt
dA1(t)
dt

+ δt
dA2(t)
dt

+ rt
dA3(t)
dt

+

{
r− δ− 1

2
σ2
s

}
A1(t) +κ(α̂− δ)A2(t) +a(m∗− r)A3(t)

+ 1
2
σ2
s(A1(t))2 + 1

2
σ2
δ (A2(t))2 + 1

2
σ2
r(A3(t))2

+ ρ1σsσδA1(t)A2(t) + ρ2σδσrA2(t)A3(t) + ρ3σsσrA1(t)A3(t) = 0

=⇒


dA1(t)
dt

= 0
dA2(t)
dt
− A1(t)− κA2(t) = 0

dA3(t)
dt

+ A1(t)− aA3(t) = 0
and

dA0(t)
dt
− 1

2
σ2
sA1(t) + κα̂A2(t) + am∗A3(t) + 1

2
σ2
s(A1(t))2 + 1

2
σ2
δ (A2(t))2 + 1

2
σ2
r(A3(t))2

+ ρ1σsσδA1(t)A2(t) + ρ2σδσrA2(t)A3(t) + ρ3σsσrA1(t)A3(t) = 0

Since A1(T ) = 1 then we have A1(t) = 1

=⇒


A1(t) = 1
dA2(t)
dt
− 1− κA2(t) = 0

dA3(t)
dt

+ 1− aA3(t) = 0
dA0(t)
dt
− 1

2
σ2
s + κα̂A2(t) + am∗A3(t) + 1

2
σ2
s + 1

2
σ2
δ (A2(t))2 + 1

2
σ2
r(A3(t))2

+ ρ1σsσδA2(t) + ρ2σδσrA2(t)A3(t) + ρ3σsσrA3(t) = 0
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=⇒


A1(t) = 1
dA2(t)
dt

= 1 + κA2(t)
dA3(t)
dt

= −1 + aA3(t)
dA0(t)
dt

= 1
2
σ2
s − κα̂A2(t)− am∗A3(t)− 1

2
σ2
s − 1

2
σ2
δ (A2(t))2 − 1

2
σ2
r(A3(t))2

− ρ1σsσδA2(t)− ρ2σδσrA2(t)A3(t)− ρ3σsσrA3(t)

=⇒


A1(t) = 1

A2(t) = eκ(t−T )−1
κ

A3(t) = 1−ea(t−T )

a

After some substitutions and straightforward calculations we will have the expression for fu-
tures prices for the above Schwartz(1997) three factor valuation model as:

F (S, δ, r, T ) = S exp

[
δ(1−e−κT )

κ
+ r(1−e−aT )

a
+ (κα̂+ρ1σsσδ)((1−e−κT )−κT )

κ2 −σ2
δ (4(1−e−κT )−(1−e−2κT )−2κT )

4κ3

− (am∗+ρ3σsσr)((1−e−aT )−aT )
a2 − σ2

r(4(1−e−aT )−(1−e−2aT )−2aT )
4a3 +ρ2σδσr

(
(1−e−κT )+(1−e−aT )−(1−e−(κ+a)T )

κa(κ+a)

)
+ κ2(1−e−aT )+a2(1−e−κT )−κa2T−aκ2T

κ2a2(κ+a)

]
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Appendix 4

State space formulation of Schwartz(1997) one factor model

The measurement equation of one factor valuation model can be expressed using equation
(2.25),

Zt = Wtxt + dt + εt (5.23)

t = 1, ..., NT
Where,

Zt = [lnFT1 , ..., lnFTN ] is a N × 1 vector of observed(log) futures prices with maturities
T1, ..., TN ;

dt =

[
(1− e−κT1)a∗ + σ2

4κ
(1− e−2κT1), ..., (1− e−κTN )a∗ + σ2

4κ
(1− e−2κTN )

]
N × 1 vector;

Wt = [e−κT1 , ..., e−κTN ] is a N × 1 matrix; and
εt is a N × 1 vector of serially uncorrelated, normally distributed disturbances(this vector is
introduced to account for actual errors in the data) with:

E[εt] = 0 and

cov[εt] = Ht (Ht here is the covariance matrix)

The transition equation of Schwartz(1997) one factor model can be expressed using equa-
tion (2.23),

xt = Ttxt−1 + ct +Rtηt (5.24)

t = 1, ..., NT
Where;

xt = [Xt] is a 1× 1 vector of the state variable;

Tt = [1− κ∆t] is a 1× 1 matrix;

ct = [κα∆t] is a 1× 1 vector;
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Rt is a 1× 1 identity matrix;

ηt is a 1× 1 vector of serially uncorrelated, normally distributed disturbances with;

E[ηt] = 0 and

var[ηt] = Qt = var[Xt] = [σ2∆t]

Now, we can observe that the observations and state equation matrices, Wt, dt, Ht, Tt, ct and
Qt only depend on unknown parameters of the given model.
Kalman �lter
One of the important aim of the Kalman �lter implementation is to attain estimates for un-
known parameters. This can be done by maximizing the quasi likelihood function with respect
to the unknown parameters through an optimization activity. Once a model is put in a state
space form which is speci�ed by equations (5.23) and (5.24), the Kalman �lter emerges as an
e�cient tool for computing the optimal estimator of the state vector at time t, based on the
observations up to and including time t. When the disturbances and the initial state vector
are normally distributed, the Kalman �lter enables the likelihood function to be measured
through the prediction error decomposition, and then this allows the estimation of any un-
known parameters in the model.

Derivation of Kalman �lter for valuation model

Let at−1 denote the mean of xt−1 conditional on the observations up to and including time
t− 1, i.e

at−1 = E[xt−1|z1:t−1]. The initial state vector, x0, has a multivariate normal distribution
with mean a0 and covariance matrix P0. The disturbances εt and ηt also have multivariate
normal distribution for t = 1, ..., T and are distributed independently of each other and of x0.
The state vector at time t = 1 is given by;

x1 = T1x0 + c1 +R1η1 (5.25)

Here, we can see from above expression, x is a linear combination of two vectors of random
variables, x0 and η1 both with multivariate normal distributions, and a vector of constants,
c1. Hence, x1 is itself multivariate normal with
a mean of;

a1|0 = T1a0 + c1 (5.26)

and a covariance matrix

P1|0 = T1P0T
′

1 +R1Q1R
′

1 (5.27)

a1|0 stands for the mean of the distribution of x1 conditional on the information at time t = 0.
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To obtain the distribution of x1 conditional on z1,

x1 = a1|0 + (x1 − a1|0) (5.28)

z1 = W1a1|0 + d1 +W1(x1 − a1|0) + εt (5.29)

We can easily see that the vector [x
′
1 z

′
1]
′
has a multivariate normal distribution with a mean of;[

a
′
1|0 (W1a1|0 + d1)

′
]′

and a covariance matrix

cov[x
′

1 z
′

1]
′
=

[
P1|0 P1|0W

′
1

W1P1|0 W1P1|0W
′
1 +H1

]
Now the distribution of x1, conditional on a speci�c value of z1, is multivariate normal with
mean;

a1 = a1|0 + P1|0W
′

1F
−1
1 (z1 −W1a1|0 − d1) (5.30)

and the covariance matrix;

P1 = P1|0 − P1|0W
′

1F
−1
1 W1P1|0 (5.31)

Where; F1 = W1P1|0W
′
1 +H1, we assume the inverse of F exists.

Repeating the procedure discussed above for k = 2, ..., T , we will get the prediction and up-
dating recursions for the Kalman �lter.
For general form of Kalman �lter, we consider two recursions of Kalman �lter, namely, pre-
diction and updating.
The two prediction equations are;

at|t−1 = Ttat−1 + ct (5.32)

Pt|t−1 = TtPt−1T
′

t +RtQtR
′

t (5.33)

Where; at|t−1 is the mean of the distribution of xt conditional on the information up to time
t− 1, and Pt|t−1 is the covariance matrix of the estimation error.
Whenever the new observation, zt, is available, the estimator of xt which is at|t−1, can be
updated.
Hence the two updating equations are therefore;

at = at|t−1 + Pt|t−1W
′

tF
−1
t (zt −Wtat|t−1 − dt) (5.34)

Pt = Pt|t−1 − Pt|t−1W
′

tF
−1
t WtPt|t−1 (5.35)

Where Ft = WtPt|t−1W
′
t +Ht

Taking equations (5.32), (5.33), (5.34) and (5.35) together forms the Kalman �lter.
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The initial values for the Kalman �lter may be speci�ed in terms of a0 and P0, or a1|0 and P1|0.
Having these initial conditions, the Kalman �lter then gives the optimal estimator of the state
vector once the new observation becomes available. Peculiarly, when all T observations have
processed, the Kalman �lter then generates the optimal estimator of the current state vector,
based on the full information we have. This estimator contains all information required to
make optimal predictions of future values of both the state and the observations.
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