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Abstract

In real life situations, the values of the response variable, which is the count data is

mostly under-reported. In this work, we develop a model to cater for under-reporting

in count data. In particular, we allow under-reporting to vary spatially by regions and

it is captured by a binomial probability. Poisson distribution is used in modeling the

count response under the assumption that over-dispersion does not exist. In the case of

under-reporting, it was made to also vary spatially from one unit to the other through

a probability captured by a binomial distribution.

The spatial variations of the disease were divided into correlated and uncorrelated

parts. When a Poisson Regression analysis was used, both the correlated and un-

correlated parts were all found to share a significant relationship with the relative risk

for each region with more contribution coming from the uncorrelated part. The model

obtained was applied to diabetes data in Ghana. Disease maps for the diseases are

also developed for Ghana at administrative (district) level. These maps are critical and

informative to policy makers. These maps allow them to target policies and use the

already meagre resources well.
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Chapter 1

Introduction

1.1 Background of study

Spatial disease mapping is a technique used to display the distribution and prevalence

of some named disease in a given geographical area. This has long been a part of pub-

lic health, epidemiology and the study of disease in human populations (Koch, 2005).

This allows epidemiologists to better understand the interaction between humans and

the environment. Many scientists have utilized this scientific approach in proposing

realized solution of some of the world’s epidemiological problems; one of such people

is Dr. John Snow who, in 1854, identified the residence locations of cholera deaths

during the London epidemic and connected a certain public water pump to the accu-

mulation of cholera cases which eventually led to the closing of the pump in question.

Before this, epidemiologists were only interested in mapping the locations of disease

cases and rate until the advent of improved scientific technologies like Geographic

Information Systems (GISs) (Moore et al., 1999).

Disease mapping has seen a tremendous metamorphosis after the invention of the mod-

ern computing and (GISs) (Moore et al., 1999). GIS allows the capture, manipulation,

analysis and the graphical display of all kinds of spatial or geographically referenced
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data transcending beyond the traditional statistical method of scatter plot which in-

volves the displaying of the degree of relationship between multiple respondent and

response variables (Moore et al., 1999). Another key element in spatial data captured

by the introduction of new technology is clustering or disease clustering.

Diseases tend to cluster because the movement of humans within a given locality can

not be likened to a random case. Clustering come in two forms, either local (the interest

lies more in the characteristics of the clusters which comes in the form of size, location

and intensity) or global (where clustering is studied in relation to disease in the whole

geographical area under study) (Tango, 2010). Based on the idea of clustering, spatial

patterns are identified in the disease risk of the population (Wartenberg, 1999). This

was also confirmed by (Almani et al., 2008), who reported that changes in etiological

factors (environmental variables) have direct impact on diseases. Studying clustering

in data gives an upper hand to epidemiologists because there is some relationship be-

tween spatial pattern and the demographic and environmental variables (Besag and

Newell, 1991a). Although there are so many methods of testing for global clustering,

Moran Index is the most widely used (Moran, 1950). Scientists based on this idea

of clustering to identify traces of spatial patterns induced by some of these variables.

However, there are other significant factors such as the nature of the population at risk.

Again, transmission processes induce spatial patterns in data, especially for infectious

diseases where the mode of transmission is by contact. For the case of non-infectious

diseases (cardiovascular and diabetes cases), spatial variation in disease outcomes is

induced by spatial variation in the demographic structure leading to higher rates in

areas with individuals at high risk (Moore et al., 1999). Contextual variables such as

poverty indices and administrative approaches also contribute to disease occurrence in

regions.

Most importantly, the nature of data collection impacts on the spatial effect underlying

the observed spatial patterns of the disease (Moore et al., 1999). Normally, i.e. in
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real situations, there is under-reporting of cases on disease due to variability of case

reporting at the local level thereby creating some filter in the true underlying pattern

of the disease. Places with efficient reporting programs appear up in the observed

program; this is not the case of most places in the world and it worsens as one travels

down Africa (Moore et al., 1999). Under-reporting in the public health may be as a

result of fear of stigmatization, inadequate funds to seek medical expertise, inadequate

knowledge on the disease, lack of confidence in the existing health institution, failure

of successive medication, to mention but a few. These anomalies have devastating

effects, some of which are, it produces biased estimations for count models (Ye and

Lord, 2011).

In cases where under-reporting occurs, it is difficult to estimate the true state of some

diseases based on the reported cases. Estimation is more complicated and complex

when the factor responsible for under-reporting is immeasurable. For instance, when it

comes to drinking habbits of respondents, men are more likely to respond than women.

In this example, incidence rate is likely to be biased if the gender variable is deliber-

ately or indeliberately ignored.

In order to account for the above problems, we combined a well developed model-

based approach and an efficient method of estimation called the Bayesian method of

estimation. Bayesian method will be the most efficient especially in our case where

data on covariates are not available. The unavailability of influencing covariates will

create an escape window where the missing covariates will be treated as latents. The

model devloped will be validated using diabetes data from Ghana.

Diabetes is a major public health issues in terms of both morbidity and mortality. Di-

abetes is currently at the epidemic level with 70 percent of those infected living in

low and middle income economies (WHO, 2014). About 87 million people have di-

abetes in the world and more than 22 million people in the Africa Region; by 2035

this figure will almost double (IDF, 2014). Prevalence of diabetes in Africa as at 2007
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was nearing the 10.4 million mark (WHO, 2014). Ghana is one of the 32 countries

of the IDFAFR region. Ghana has its fair share of diabetes mellitus at monumental

score of 450,000 cases of diabetes in 2014 and cost per person with diabetes stands at

148.8USD (IDF, 2014).

Several studies have been done on the subject, however, a nationwide comprehensive

work is yet to be done considering cases of diabetes. Most importantly, a statistical

model is yet to be developed in the field of disease modeling with under-reporting

captured by binomial probability and varying spatially for all units under consideration.

This adds to the uniqueness of the work. The purpose of this study is to develop a

spatial model with significant consideration of under-reporting for diabetes cases in

Ghana. The model will be used in plotting disease map using available diabetes data.

1.2 Statement of problem

Any process which operates in space creates patterns (Ripley, 1977). This means that

virtually all human activities have the tendency to create patterns. However, these pat-

terns can not be seen or observed with the human eye thereby necessitating the need

for a special scientific method called spatial pattern analysis. Spatial pattern analysis

is aimed at identifying, understanding and describing the process of spatial patterns.

Many models have been drawn to model this property in count data. However, a dom-

inant flaw in such models is as a result of the assumption that the values of response

variable is correctly reported which is not the case in real life situations. Most of

the times we are faced with the case of under-reporting of count data which nega-

tively affects the correct modeling of real data. Under-reporting comes about when

reported cases are less than the true state of cases in the given geographical area. This

phenomenon subjects policy makers to difficulty when investing in areas affected. In

this work, an interest in the modeling of count data lagged with under-reporting is
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considered. We assume that under-reported cases vary spatially through a probability

captured by the binomial distribution and also under the assumption that each individ-

ual event is reported. Also, a more reliable method of estimation will be employed

other than the usual Maximum Likelihood Estimator method. In this case, the iden-

tified parameters will be identified and then estimated using the Bayesian method of

estimation. Bayesian method has an advantage over the frequentist due to the inclusion

of prior knowledge aside information from data. Real data on diabetes cases is used to

complement the prior distribution in computing the posterior distributions. A Poisson

distribution is then used in the over all modeling of the count data. The approach will

be compared to existing ones so as to conclude on the more efficient one.

1.3 Objectives

1.3.1 Main objective

To develop a spatial model for disease counts in the presence of under-reporting using

Bayesian estimation.

1.3.2 Specific Objectives

1. Develop a spatial model to cater for varied under-reporting in the spatial units

(districts).

2. To apply the model above to estimate relative risk of diabetes in Ghana (using

data from the districts) by a method of Bayesian estimation.

3. Develop disease maps for diabetes cases for all districts in Ghana.
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1.4 Significance of the study

Africa is lagging behind in infrastructure and basic social amenities in the face of

scarce resources. There is therefore the need for policy makers to make meaningful and

pragmatic decisions in the way of spending tax payers’ money. In Ghana, government

is most times at a loss as to which particular area of health needs more and urgent at-

tention, especially when most cases of non-infectious diseases are not reported instead

traditional solutions are sought, which brings about the problem of under-reporting.

Disease mapping can be used to answer such pressing questions and also identify in-

dicators that directly or indirectly fuel disease transmission. Specifically, this study

will acknowledge a better method of estimating the parameters associated with spatial

analysis by the application of Baye’s theory, opening new doors for research in the

area.

1.5 The Scope of the study

The aim of this study is to develop a spatial model for count data lagged with under-

reporting, determine and map the relative risk of contracting diabetes in Ghana by a

method termed disease mapping. Data describing diabetes cases were retrieved from

the Ghana Health Service, for all districts of Ghana. Current issue of the data,i.e.

all entries for data for 2015 was not available except for former years. Also, it was

not easy to acquire these data in covariates. Using this available data, the developed

models will be validated and compared to other existing models. Also, disease map

will be produced for all districts in the country.

1.6 Outline of the thesis

The thesis contains five chapters. The first chapter which introduces the subject mat-

ter like spatial statistics, disease mapping and also scope of diabetes cases in Africa.
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Chapter two talks about the some literature on the field of spatial statistics, Bayesian

method, Generalized Linear Models and disease mapping. In chapter three, a theory

that justifies the choice of Poisson distribution over others is proved. This is then ex-

tended into the methodology where the Besag, York and Mollie model was extended

and further on, a Bayesian method of estimation was used in the parameter estimation.

Chapter four begins with the explanation of of the data used. Also, results are dis-

played in tables and disease maps. The thesis is then ended with the last chapter which

is mainly on conclusion and recommendation for further research works.
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Chapter 2

Literature Review

2.1 Introduction

The degree of inconvenience as a result of diabetes has attracted the attention of not

only policy makers, but also peasant farmers in the remotest of communities. Quite a

number of interventions have been used in addressing these problems which include

but not limited to the health sector response, priority interventions for prevention (Ex-

ercising), treatment and care in the health sector, operationalizing the priority interven-

tions – strengthening health systems, investing in strategic information etc. To boost

the effectiveness of these interventions, there is the need to locate areas where these

diseases thrive and persist the most, so that policy makers can know where to invest

resources. One of the methods used in this identification is called spatial disease map-

ping, which aims to identify the risk of contracting some named diseases in a given

geographical area. There has been quite a number of application of this procedure

(disease mapping); notable among them are (Zayeri et al., 2011) who presented the ge-

ographical map of malaria by identifying some of the important environmental factors

of the disease in Sistan and Baluchistan province, Iran. In their paper, the registered

malaria data was used in the computation of the Standard Incidence Rates (SIR). A
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geographical mapping of malaria incidence rates were mapped with subsequent en-

vironmental factors. In their work, except for rainfall humidity, elevation, average

minimum temperature and average maximum temperature had a postivie relationship

with malaria SIRs in this entire province. Also, (Moraga and Lawson, 2012) used an

alternative model i.e. the Gaussian Component Mixture (GCM) model instead of the

proper or improper Conditional Autoregressive (CAR) in disease mapping. In their

paper, a review of CAR and GCM models are investigated in the univariate sense.

Also, an addition of spatial effects as random effects are investigated. The method

of estimation was the Bayesian method. Although the above literature elaborates on

efficient estimation and disease mapping methods, one dominant mistake is the as-

sumption that observed data is a true reflection of the reality. Gibbons et al., 2014

investigated and identified the advantages of using efficient, reliable surveillance and

notification systems associated vital factors for monitoring public health and disease

outbreaks. The mose recent work in this area is (Neubauer et al., 2016) who confirmed

that in the presence of under-reporting, parameter estimation fails. They corrected this

anomaly by extending the binomial model i.e. the use of mixied models in model-

ing the under-reported phenomenon although they employed a frequentist method of

parameter estimation which is disadvantaged when compared to the Bayesian method.

In this part of the world, especially in developing countries, not all disease cases are

reported. This brings up a gap in the number of cases called under-reporting in count

data making it difficult for policy makers to tackle the problem. Also, developing coun-

tries are faced with inadequate resources in the collection and colation of health data

subkecting data analysis to the mercy of latent variables. These among other reasons

necessitated a more efficient method of estimating the disease incidence in a given ge-

ographical area. One of the recent works on under-reporting is Gamado et al., 2014

who worked on modeling under-reporting in epidemics by considering the stochastic

Markov SIR epidemic in which various reporting processes are incorporated. In their
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work, they were able to show that, excluding under-reporting breeds a case of under

estimating the infectious rate. They also incorporated under-reporting and developed

suitable models by allowing a reporting probability which depended on time. Bayesian

method of estimation was then used owing to the fact that data reported was incom-

plete.

In this paper, we reconsider the work of Gamado et al. (2014). Especially allowing

under-reporting to vary through a probability, except that under-reporting was made to

vary from one region to the other through a probability captured by a binomial distri-

bution. This is in addition to the fact that the incidence rate in the Poisson distribution

is also allowed to vary spatially making this work unique.

2.2 Generalized Linear Model (GLM)

One very important aspect of epidemiology is being able to separate determining vari-

ables (independent variables or covariates) from the response variable (dependent vari-

ables) in a regression analysis. Normally, a regression model is used in drawing this

relationship when the error term follows a normal distribution. Otherwise, a more flex-

ible or extended case of regression model called Generalized Linear Model is used.

The above-mentioned methods only explore the first order effects of the contributing

covariates on the mean of the disease outcome leaving out small-scale but very signifi-

cant variations that could be as a result of interactions between boundary-sharing-units,

i.e. spatial auto-correlation. The assumption normally used is that, any spatial traces

lined in the data is accounted for by the spatial properties in the covariates. It suffices

to say that, in the case whereby a particular covariate, varying spatially, deliberately

or indeliberately omitted, then there will be bias in the estimation of the covariates in

question (Draper and Smith, 1998). The cumulative effect of this will be a spatial auto-

correlation in the residual process, thereby underestimating the standard error of the

covariates resulting in overestimating of the statistical significance of the test (Cressie,
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1993).

In our case, it is without ambiguity that our random variable or indepenent variables are

the spatial effects and the response variable becomes the number of cases in diabetes.

Our main objective is involves the estimation of under-reporting in our count data. In

effect, a robust model that accommodates this phenomenon is highly recommended.

Also changes in our respondents X does not trigger linear changes in our response, Y ,

as such we introduce a link f unction (arbitrary function) to correct this. In our case

we employ Poisson regression analysis, a type of GLM, to model the count data and

predict the incidence rates.

In the problem statement, the case of under-reporting was clearly identified. Winkel-

mann (1996) proposed a Poisson regression model where the spatial effect is cap-

tured using a binomial distribution of varying spatial probabilities for each region.

A logarithm or a our link function whereby the response variable assumes a Poisson

distribution is employed to connect the incidence rate and the independent variables

(spatial effects). This can be written mathematically by supposing that, x ∈ Rn is a

vector of independent variables, then the model takes the form logE(Y | x)) = α +β ′x

where α ∈ R and β ′ ∈ Rn (Feller, 1968). Sometimes this is written more compactly

as,

µ=E(Y | x) = eθ
′x , (2.2.1)

where θ is simply α combined to β ′, x is a n+ 1 dimensional vector. The Bayesian

method will be used in estimating θ because, this method has an advantage of correct-

ing confounding problems that are not incorporated in data . Here, β is taken to be a

a vector of coefficients of some covariates, x. Some of the known methods of estimat-

ing β are the Maximum Likelihood Estimation and the iterative Least Squares (Feller,

1968) given as,

∑
{

y∗i − exp
(
x′iβ
)}

x′i. (2.2.2)
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The mean and variance in Poisson distribution may bring about the problem of over

dispersion in certain cases.

2.3 Review of the Besag, York and Mollie Model

The Besag,York and Mollie were the pioneers when it comes to modeling spatial ef-

fects in count data. To model the spatial effects in count data, it is supposed that, λi

represents the relative risk for region i with respect to a standard population, also let

yi and Ei denote the observed counts of the disease and the expected count in region i

respectively. The count data can be modeled by the Poisson distribution below;

yi ∼ Poisson(Eiλi); (2.3.1)

Based on the assumption that the log of relative risk of disease can be broken down into

a spatially structured component ui and a spatially unstructured component vi which

can be written mathematically as;

log(λi) = ui + vi. (2.3.2)

Besag and Newell (1991a) noted that in most cases, one of the random effects usually

dominates the other. If ui is stronger than vi, then the estimated risk will show spatial

structure and if vi is stronger than ui then the consequence will be to shrink the esti-

mated means towards the overall mean. Besag and Newell, 1991a assumed that u and

v were independent with the following priors:

p(v | τ) ∝ τ
− n

2 exp

{
− 1

2τ

n

∑
i=1

v2
i

}
(2.3.3)

and

p(u | k) ∝ k−
n
2 exp

{
−1

2∑
i

∑
j∈N(i)

(
ui−u j

)2

}
. (2.3.4)

v ∼WN (0,τ) and u follows Gaussian Markov Random Field (GMRF) process with

variance k and n being the number of districts under study and N(i) is the set of neigh-

bors of region i. Based on the regions of shared border (which sometimes taken to be
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the actual distance between locations or centroids of locations ), (Besag and Newell,

1991b; Ngesa et al., 2014a) modeled the conditional distributions of each ui as;

p(ui | u−i)∼ N
(

∑ j∈N(i) u j

di
,d−1

i k
)
, (2.3.5)

with,

E(ui | u−i) =
∑ j∈N(i) u j

di
, (2.3.6)

and

Var (ui | u−i) =
k
di
, (2.3.7)

where di is the number of neighborhoods of region i.

This conditional distribution for u is called the Intrinsic Conditional Auto-regressive

(ICAR) prior distribution (Besag and Newell, 1991a; Ngesa et al., 2014a).

2.4 Bayesian analysis.

This is the method of statistical estimation based on Bayes theorem, whereby posterior

distribution about an unknown parameter is borne based on prior information and data

(Walsh, 2002). Bayesian method is preferred to frequentist method due to its reliance

on Markov chain Monte Carlo methods, (MCMC). This method, that is the MCMC

method, used to be computationally exhausting when it was initially proposed. The

MCMC method decomposes complicated estimation problems into simpler problems

that rely on conditional distributions for each parameter in the model (Gelfand and

Smith, 1990).

Here, the unknown (fixed) parameters are identified and some inference in the form of

their distribution of domain of existence, is identified (Berger, 2013). This is then com-

plimented by the likelihood function which is mostly computed out of data generated

by some random variable (Starkweather, 2011). The likelihood function is derived by

the popular Maximum Likelihood Estimation method. From these two information,

13



the posterior distribution is calculated using the Bayes theorem (Walsh, 2002; Berger,

2013). According to this theorem, the posterior is said to be proportional to the product

of the likelihood function and the prior with the constant of proportionality being an

inverse of the normalizing constant.

Another interesting way of doing this is to assume that, the uncertainty about the

true parameter follows some probability distribution termed prior. Suppose θ fol-

lows a prior probability distribution function (pdf),p(θ). Now for a given θ , the pdf

of X can be written as p(x,θ). The joint distribution of (θ ,X) can be written as

p(θ)p(x | θ)(Berger, 2013) . After seeing the data, the belief about θ can be updated

by calculating the conditional distribution of θ given X = x. In that case, our posterior

can be given as;

p(θ | x) = p(θ)p(x | θ)
m(x)

, (2.4.1)

where,

m(x) =
ˆ

p(θ)p(x | θ)dθ , (2.4.2)

is the marginal distribution of X . By Bayes theorem, the posterior distribution is pro-

portional to the product of the prior and the likelihood. Simulations are then generated

out of which empirical distributions are derived for the true parameters then topped up

with the generation of summary of the empirical simulates using basic statistics.

Confounding effects of latent parameters are eliminated leading to a better estimate of

the posterior distribution of the unknown parameter unlike classical statistics. Given

a specified multivariate distribution, a sequence of observations can be generated by a

sampling method that employs Markov chain Monte Carlo algorithm, especially when

direct sampling fails. Two of such methods are Gibbs sampling and Metropolis Hast-

ings algorithm. A typical example of software that employs this algorithm is Win-

BUGS (Ntzoufras, 2011).

Some Bayesian analysts find the fact that the posterior, p(θ | X) inference depends on
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the prior, p(θ), a great disadvantage. Different researchers might have different argu-

ments about the uncertainty surrounding the prior and this normally leads to different

conclusions. A good way of solving this is by sticking to standard priors for the un-

known parameters (Berger, 2013). Normally, these prior distributions are chosen to be

non informative so that the domain of existence gives room for large dispersion. Non

informative priors are also chosen so that all the information about the posterior comes

from the data and not the prior. Also, hyper parameters are set in such a way that,

the precision is at its maximum best. Gamma distribution is normally chosen as the

distribution for the precision as variance only appear as non negative numbers (Walsh,

2002; Smith and LeSage, 2004; Berger, 2013; Ngesa et al., 2014a).

It is always advised that the prior distribution (whether weak or strong) is chosen with

caution suiting the situation at hand. The type of prior depends on the strength of be-

lief we have in it. Weak prior arises when we don’t have enough information on the

prior and scientists reacts to this by extending the range of existence of the true pa-

rameter (Walsh (2002); Ntzoufras (2011)). This increases the level of influence of the

likelihood on the posterior distribution. Otherwise, the strong prior is recommended,

meaning that we have strong evidence about the property of the prior distribution and

confine our domain of existence to be small. When this happens, the posterior is highly

influenced by the prior(Walsh (2002); Ntzoufras (2011)). This scenario normally ends

up in the cases of conjugate priors.

2.5 Gibbs sampling

Gibbs sampling or sampler is a type of Monte carlo Markov Chain (MCMC) simula-

tion which can be used to obtain a sequence of observed values. A histogram is then

plootted out of these values to arrive at a desired distribution.

The sequence of observed values can be used to approximate the joint, marginal distri-
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bution of some subset variable distribution by way of a histogram and also to determine

the expected values of the variables. When some of the values of variables are known,

they are treated as latent parameters and hence do not need to be sampled (Walsh

(2002)). Gibbs sampling, by virtue of being a Markov chain, generates samples which

correlates with neighbor samples. To penalize this effect, thinning the generated chain

of samples by considering specified nth value. In addition, the initial generated samples

of the chain (the burn-in period) may not accurately represent the desired distribution.

In that case we apply the burn -in period by ignoring the first jth values. Below are the

steps for the algorithm.

Suppose we want to obtain k samples, X=(x1, . . . ,xn) from a joint distribution p(x1,··· ,xn).

Denote the ith sample by X(i) = (x(i)1 , . . . ,x(i)n ).

Let X(0) to be our initial values.

To get the (i+1)th, we pick each component variable, which is the (i+1)th value given

the
(
ith
)

value written compctly as,
(

x(i+1)
j | x(i+1)

j−

)
. From the distribution of that

variable conditioned on all other variables, making use of the most recent values and

updating the variable with its new value as soon as it has been sampled. This requires

updating each of the component variables in turn. If we are up to the jth component we

update it according to the distribution specified by p(x j|x(i+1)
1 , . . . ,x(i+1)

j−1 ,x(i)j+1, . . . ,x
(i)
n ).

Note that we use the value that the ( j+1)th component had in the ith sample not the

(i+1)th .

Repeat the above step k times.

2.6 Metropolis-Hastings algorithm

This is also a type of Markov chain Monte Carlo (MCMC) method used in generat-

ing a sequence of random samples from a probability distribution from which direct
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sampling is difficult. From the generated samples, histograms can be constructed rep-

resenting the distributions of the unknown parameters. Below is the illustration of the

algorithm.

Construct Markov Chain Y (t)with stationary distribution f (y).

At time t, generate next value Y (t+1) by going through the following steps;

Proposed step: Sample Y from the proposed distribution;

Z ∼ q
(

z | Y (T )
)

Acceptance: With Probabilities :

α

(
Y (t),Z

)
= min

1,
f (z)
f (zt)

q
(

Y (t) | Z
)

q(Z)Y (t)


Set;

Y (t+1) = Z, for the acceptance. Otherwise,

Y (t+1) = Y t , f or the rejection.

2.7 Deviance information criterion (DIC)

The introduction of Markov chain Monte Carlo (MCMC) has revolutionized the way

we fit models to real world data or complex data (Gilks, 2005 ). Our ability to fit

models provides us with answers to the numerous behavior of collected data such as;

whether the addition of random effect will go a long way to cater for over-dispersion.

Normally, model comparison begins from defining a model of fit statistics (deviance)

and complexity as a result of the number of unknown parameters in the model. Models

are compared based on these two quantities of maximum likelihood since complex-

ity is accompanied by best fit, Akaike’s information criterion or either of the above

mentioned (Aitkin, 1991). Other Bayesian model comparison which uses Bayes fac-

tor approximation also requires the specification of the number of parameters in each
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model Spiegelhalter et al. (1998).

Deviance is one of the methods of goodness-of-fit statistics for models based on the

generalization of the idea behind the sum of squares of residuals in ordinary least

squares. This helps in model-fitting achieved by maximum likelihood. Many authors

suggested different statistics to be used as a measure of fit but (Dempster (1997)) sug-

gested plotting the posterior distribution with the deviance under each model. Here

f it is identified as the posterior mean of the deviance and complexity, pD, is the dif-

ference between the posterior mean of the deviance and the deviance based on the

posterior means of the parameters. These results are easily computed by MCMC anal-

ysis. The DIC is then computed by adding the complexity to the fit which is used for

the model comparison as suggested by (Spiegelhalter et al. (1998)). The best fitting

model is the one with the smallest DIC value (Ngesa et al. (2014b)). In cases where

the difference in DIC between the models is not above 5, we select the simplest model,

that is, model with both few parameters and random effects (Spiegelhalter et al. (1998);

Ngesa et al. (2014b)). WinBugs version 1.4 can easily generate DIC values and can

run into negatives.
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Chapter 3

Methodology

3.1 Proposed model

Count data, a term used in statistics, arises when one is faced with an observation that

only comes in the form of positive integers and also as a result of counting. To model

such data when observations are taken as count values, one has a choice of choos-

ing from one of the following; Poisson, Binomial and Negative Binomial distribution.

There is therefore the need to justify the choice of a particular distribution when faced

with modeling count data. In this thesis, we choose the theoretical approach over the

graphical representation because of its advantages. The theoretical approach presents

one with a general perspective whiles the graphical approach only focuses on some

given data.

We achieve this by assuming a fixed time period, t and let y∗i represent the total number

of events that occurred in unit i. Also, we assume that y∗i conditioned on the covariates

is Poisson distributed with mean given in Equation (2.2.1), i ∈ N. In order to correctly

model this phenomenon of under-reporting, it is imperative to note that, the reported

cases, y does not represent the true state of count data in the unit. As such, y only

represents a fraction of y∗ and it is under-reported.
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We suppose that,

p(yi|y∗i ,λi)∼ Bin(y∗,λi) , (3.1.1)

which can also be writen as;

p(yi|y∗i ,λi) =

 y∗

y

λ
yi
i (1−λi)

y∗i−yi . (3.1.2)

The probability of an individual reporting an event is λi. It is also supported by the

following assumptions; that the process of an individual reporting an event is memory-

less and assumed constant. Winkelmann and Zimmermann (1993) then noted that y

can be deduced in many ways. One is, the number of reported cases can be assumed

to represent the true number of cases in the unit, yi = y∗i . Another way is when yi =

y∗i −n where n < y∗i to be any number of non-reported cases. This makes the marginal

distribution of the number of reported cases, yi, to be computed as;

p(Yi = y) =
∞

∑
y∗≥y

Ey∗e−E

y∗!
y∗!

(y∗− y)!y!
λ

y (1−λ )y∗−y , (3.1.3)

p(Yi = y)=
∞

∑
y∗≥0

Ey∗ (1−λ )y∗ (λE)y e−E

y!
. (3.1.4)

The Left Hand Side of Equation (3.1.3) can be equated to;

p(Yi = y) =
{[

1+E (1−λ )+(E (1−λ ))2 +(E (1−λ ))3 + · · ·
](eE (λE)y

y!

)}
,

(3.1.5)

with,
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(
1

E (1−λ )−1

)
> 0, where 0 < λ < 1

E (1−λ )> 1


p(Yi = y) =

(
1

E (1−λ )−1

)(
e−E (λE)y

y!

)
, . (3.1.6)

p(Yi = y) =

(
e−λE (λE)y

y!

)
, y≥ 0. (3.1.7)

Hence Equation (3.1.7) confirms that the observed counts follow a Poisson distribution

with mean λE. Normally, an assumption of independence can be attached to the pro-

cess of λ . However, in the case where this assumption is relaxed, λ can be expressed

to depend on some covariates and it is treated as a random effect (Winkelmann and

Zimmermann (1993)). The new model then takes a form of a Poisson model and can

be treated as one with an unobserved heterogeneity. This suffices that, the mean of the

Poisson distribution can be given as;

logE(Y |Xi,λi) = X ′β + lnλi, where λi ∈ [0,1] . (3.1.8)

In Equation (3.1.8), lnλi is strictly negative and its effect is additive making the marginal

expectation of Yi to be computed as;

E(Yi|xi) = E [E(λi)] = µE. (3.1.9)

The Variance of Yi in Equation (3.1.8) can be written as;

Var (Yi|xi) = E(Var (Yi|xi,λi))+Var (E(Yi|xi,λi))

Var (Yi|xi) = E(Yi|xi)+E2Var (λi)
(3.1.10)

Var (Yi|xi) = µ +E2Var (λi) . (3.1.11)
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Since Var (Yi|xi) > E(Yi|xi), we conclude that under-reporting just like unobserved

heterogeneity leads to over-dispersion. Over-dispersion means that there was a higher

variation in the data than predicted.

Again, ignoring the presence of over-dispersion and with reference from Equation

(3.1.7), the count data is modeled by supposing that, if Y=(y1,y2, · · · ,yn) are the num-

ber of counts in each region of some disease in Ghana and Ei is the expected number

of counts in unit i, then the following distributional assumption can be made in the

Poisson model. Suppose that the under-reporting varying spatially through the prob-

ability πi,
(
πi 6= π j for i 6=j

)
,i = 1,2, . . . ,n, captured by the binomial distribution and

under the assumption that each individual event is reported. Then the proposed spatial

Poisson regression model for count data can be written as;

P(Y = yi) =
n

∏
i=1

µ
yi
i exp(−µi)

yi!
,yi = 0,1,2, . . . (3.1.12)

µi = φiπi, (3.1.13)

φi = Eiλi, (3.1.14)

With reference to Equations (3.1.13 and 3.1.14), Equation (3.1.12) will transform into;

L(µ;y1,y2, · · · ,yn) =
n

∏
i=1

(λiEiπi)
yi exp(−λiEiπi)

yi!
,yi = 0,1,2, . . . (3.1.15)

∝

(
n

∏
i=1

(λiπi)
yi

yi!

)
exp

(
−

n

∑
i=1

λiEiπi

)
,yi = 0,1,2, . . . (3.1.16)

and,

`(µ;y1,y2, · · · ,yn) = ln(µ;y1,y2, · · · ,yn) =

n

∑
i=1

{
yi ln(λiEiπi)−∑(λiEiπi)− ln(yi!)

}
,

(3.1.17)

log(λiEiπi) = logλi + logEi + logπi, (3.1.18)
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where,

logλi = u1i + v1i +X ′β , (3.1.19)

In Equation (3.1.19), u1i and v1i are the structured and unstructured spatial effects

respectively in the count data.

logit (πi) = u2i + v2i, (3.1.20)

In Equation (3.1.19), u2i and v2i are the structured and unstructured spatial effects

respectively in the under-reported cases, πi is the probability of under-reporting in

region i and it is different for each region.

Also, λi is the relative risk in unit i. In equation 3.1.18, the effect of the predictors on

the count data is multiplicative

, not additive (Rodrıguez (2007)). The mean count of region i can be represented by

and the prior distribution of the correlated parts of the spatial effects can be given as;

p(u1i | u−1i)∼ N
(

∑ j∈N(1i) u1 j

d1i
,d−1

1i k1i

)
, (3.1.21)

p(u2i | u−2i)∼ N
(

∑ j∈N(2i) u2 j

d2i
,d−1

2i k2i

)
. (3.1.22)

In Equations (3.1.21 and 3.1.22), d1i,d2i are the number of neighboring units, N (1i)

and N (2i) are the set of neighbors of 1i and 2i respectively and k1i,k2i are unknown

and they will have to be determined by choosing appropriate hyper parameters when

using Bayesian method. To achieve these, the unknown parameters are assigned non-

informative prior. In most cases, the Gamma distribution is used to model precision

parameters (inverse of variance parameters) with known hyper parameters αi and δi

with expectation αi
δi

and variance αi
δ 2

i
. WinBugs performs its analysis based on inverse

gamma distribution for the variance (Ntzoufras (2011)). The prior distributions for the

uncorrelated parts of the spatial effect can be given as;

v1i ∼WN
(
0,σ2

1i
)

(3.1.23)
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v2i ∼WN
(
0,σ2

2i
)
. (3.1.24)

The σ2
1i,σ

2
2i in Equtions (3.1.23) and (3.1.23) represent fixed variances.

It is also imperative for us to determine the log-likelihood of the coefficients of the

covariates by considering µi to be dependent on solely Xβ for the reason that, the rest

of the variables will be omitted when the derivatives are applied. We also omit lnyi!

for the same reason; we arrive at,

lnL(β ) =
n

∑
i=1

{
yi
(
u1i + v1i +u1i + v2i +X ′β

)
− exp

(
u1i + v1i +u2i + v2i +X ′β

)}
= 0,

(3.1.25)

=

n

∑
i=1

{
yi
(
u1i + v1i +u1i + v2i +X ′β

)
− exp

(
u1i + v1i +u1i + v2i +X ′β

)}
= 0.

(3.1.26)

When the derivatives with respect to the β ′s are worked out for Equation (3.1.26), we

arrive at;

X ′y = X ′µ̂. (3.1.27)

In the equation above, X is a matrix containing rows of observations and columns

of predictors. Also, y is a vector of response variables whiles µ̂ represents vector

of estimated β ′s estimated using the known MLE. This information is then combined

with priors to compute the posteriors in a method called Bayesian method of parameter

estimation. This is discussed extensively below.

With reference to Equations (3.1.19 and 3.1.20), the candidate models are developed,

which increase in complexity with addition of models some random effects and pa-

rameters.

Model 1 : log µi = logEi +α0 +u1i + v1i, (3.1.28)
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Model 2 : log µi = logEi +α0 +u1i + v1i +u2i, (3.1.29)

Model 3 : log µi = logEi +α0 +u1i + v1i + v2i, (3.1.30)

Model 4 : log µi = logEi +α0 +u1i + v1i + v2i +u2i. (3.1.31)

The models above were validated using data retrieved from the Ghana Health Service,

an independent institution charged with the collection and collation of data in all as-

pect of health importance, at the district level. Data on diabetes was collected, summed

and recorded on monthly basis by the district health offices. The estimated population

for each district, for the study period was obtained from the Ghana Statistical Service.

Data on this morbidity is available for all districts of Ghana. The period of consider-

ation is 2014 as the agency did not have all data for later years. There are no missing

data of any kind.

Model estimation was carried out using a Bayesian approach with every parameter

being assigned prior distributions. To be precise, a non informative normal prior was

assigned to the offset parameter, α0 whiles the variance parameters are assigned inverse

gamma distributions. The thesis was carried out under the assumption that covariates

are not available. Win Bugs version 1.4 was used in the implementation (Spiegelhalter

et al. (2003)) phase. A double chain of Markov chain Monte Carlo (MCMC) itera-

tions of 120,000 were ran with initial of 10,000 left out as the burn-in period and then

every tenth sample value considered for arriving at the convergence of the estimates

the remaining 11,000 samples. The decision on convergence was arrived at based on

the behaviour of our trace plots and auto-correlation plots of the MCMC output. The

models were compared using the Deviance Information Criterion (DIC) as proposed

by (Spiegelhalter et al. (2003)). The best fitting model is one with the smallest DIC
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value.

3.2 Parameter estimation

Bayesian method was used in estimating the unknown parameters. This is the method

of statistical estimation whereby posterior distribution about an unknown parame-

ter is borne based on prior information and data. Suppose a random variable Y =

(y1,y2, · · · ,yn) is observed and θ = θ1, . . . ,θn, (the unknown), is to be estimated; two

key information needed to achieve this goal (posterior distribution of θ given X) are

the prior distribution, p(θ) from which θ was derived and the likelihood function,

l (θ | X), (information from the data which compliments the prior distribution) (Smith

and LeSage (2004)). In our case lets assume θ is a vector of continuous variables.

With these information on likelihood and prior distributions, the posterior distribution

p(θ | X) is said to be proportional to the product of the likelihood and prior probability

ased on Baye’s theorem (Walsh (2002); Berger (2013)). The constant of proportion-

ality is 1
p(X) , computed with respect to θ and scales the product to one. The constant

p(θ) can be computed as p(X) =
´

θ
`(θ | X) .p(θ)dθ (Berger (2013)).

In our case we wish to estimate the spatial effects which are u1i,u2i,v1i and v2i and

variances. The prior p(θ = u1i,u2i) distribution of u1i and u2i are given as Eqution

(3.1.21) and Equation (3.1.22) respectively. The values of d1i,d2i,N (1i) and N (2i)

are known in our case. The other unknown parameters are v1i and v2i with priors

as Equation (3.1.23) and Equation (3.1.24) respectively (Ngesa et al. (2014b)). The

unknown variances τ1i =
(
k1i,σ

2
1i
)

, τ2i =
(
k2i,σ

2
2i
)

are given inverse gamma priors

(Walsh (2002); Smith and LeSage (2004); Nkurunziza et al. (2010); Berger (2013);

Ngesa et al. (2014b)).

As stated in the literature review, estimation is achieved by the MCMC method. In

this method, a sample is sequentially sampled from the complete set of conditional
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distributions for the parameters. We start by determining the complete set of joint

distributions for all unknown parameters. After which the sequential sampling is done

or derived. The set of estimates determined from this method converges in the limit to

the true (joint) posterior distribution of the unknown parameters(Gelfand and Smith,

1990)).

Now we use the basic Bayesian identity and the priors defined above to compute the

conditional posterior distributions.

p(u1i,u2i,v1iv2i,τ | y) .p(y) = p(y | u1i,u2i,v1i,v2i,τ1i,τ2i)

×p(u1i,u2i,v1iv2i,τ1i,τ2i)

 (3.2.1)

where p(.) is the posterior density involving the y observations.

The posterior joint distribution p(u1i,u2i,v1iv2i,τ1i,τ2i | y) is given up to a constant of

proportionality by;

p(u1i,u2i,v1iv2i,πi,τ1i,τ2i | y) ∝ p(y | λi,πi)× p(λi | u1i,v1i,τ1)

×p(πi | u2i,v2i,τ2)× p(u1i | u−1i,k1i)

×p
(
v2i | σ2

2i
)

p(u2i | u−2i,k2i)

×p
(
v1i | σ2

1i
)
× p(k1i)× p(k2i)

p
(
σ2

1i
)
× p

(
σ2

2i
)
.


(3.2.2)

With Equation (3.2.1), we establish the posterior marginal distribution of each of

the parameters. With this in mind and ? standing for the conditioning arguments

u1i,u2i,v1iv2i,τ , we begin with the posterior marginal distribution of u1i as;
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p(u1i | ?) =
p(λi,u1i,u2i,v1i,v2i,τ1,τ2 | y)

p(u2i,v1i,v2i,τ1,τ2 | y)
∝ p(λi,u1i,u2i,v1i,v2i,τ1,τ2 | y)

∝ p(λi | u1i,v1i,τ1,τ2) p(u1i)

∝ exp

{
− 1

2τ1

n

∑
i=1

(λi−ψ1i)

}
.exp

{
−1

2∑
i

∑
j∈N(1 j)

(
u1i−u1 j

)2

}


(3.2.3)

where ψ1i represents the covariates, Xβ for region 1.

Therefore the conditional posterior distribution of u1i follows a Normal distribution .

The conditional posterior distribution of u2i can also be calculated as;

p(u2i | ?) =
p(πi,u1i,u2i,v1i,v2i,τ1,τ2 | y)

p(u1i,v1i,v2i,τ1,τ2 | y)
∝ p(πi,u1i,u2i,v1i,v2i,τ1,τ2 | y)

∝ p(πi | u2i,v2i,τ1,τ2)× p(u2i)

∝ exp

{
−1

2∑
i

∑
j∈N( j)

(
u2i−u2 j

)2

}
.


(3.2.4)

Therefore the conditional posterior distribution of u2i follows a Normal distribution .

The conditional posterior distribution of v1i can also be computed as;

p(v1i | ?) =
p(πi,u1i,u2i,v1i,v2i,τ1,τ2 | y)

p(u1i,u2i,v2i,τ1,τ2 | y)
∝ p(πi,u1i,u2i,v1i,v2i,τ1,τ2 | y) ,

∝ p(λi | u1i,v1i,τ1,τ2) p(v1i) ,

∝ exp

{
− 1

2τ

n

∑
i=1

(λi−ψ1i)
2

}
.exp

{
− 1

2σ2
1i

n

∑
i=1

v2
1i

}
.


(3.2.5)

where ψ2i represents the covariates producing πi.

The conditional posterior distribution of v2i can be computed as;
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p(v2i | ?) =
p(πi,u1i,u2i,v1i,v2i,τ1,τ2 | y)

p(u1i,u2i,v1i,τ1,τ2 | y)
∝ p(πi,u1i,u2i,v1i,v2i,τ1,τ2 | y) ,

∝ p(λi | u1i,v2i,τ1,τ2) p(v2i) ,

∝ exp

{
− 1

2τ

n

∑
i=1

(λi−ψ2i)
2

}
.exp

{
− 1

2σ2
1i

n

∑
i=1

v2
2i

}
.


(3.2.6)

The conditional posterior distribution of τ can be computed as;

p(τ | ?) = p(τ | α,δ ) p(τ)

∝ (τ)−(α+1) exp
(
−δ

τ

)
,

 (3.2.7)

where α and δ are hyper parameters of the gamma distribution.

The advantage of Bayesian over classical statistics (MLE) is, confounding effects of

latent parameters are eliminated leading to better estimate of the posterior distribution

of some unknown parameter from a joint marginal posterior distribution. Another,

more practical approach is the addition of intangible information which will otherwise

be hidden in data. Not all characteristics can be measured numerically especially with

non-infectious disease modeling. Aside the nature of the population at risk, one core

characteristic that introduces spatial effect is the geographical locality of the popula-

tion. Enumerating such an influential indicator will be difficult to achieve. However,

the addition of collected data will cater for this defect taking into consideration the

fact that the population under study is partitioned into one hundred and thirty-eight

units. The MCMC approach can be extended to a multivariate distribution where a se-

quence of observations can be generated by a sampling method that employs MCMC

algorithm, especially when direct sampling fails. Two of such methods are Gibbs sam-

pling and Metropolis–Hastings algorithm which was used in the analysis of Models

(3.1.28,3.1.29,3.1.30 and 3.1.31).
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Chapter 4

Results and Discussion

Annual diabetes cases in Ghana falls within the brackets of one (1) to 29,474 with

the former being one of the newly created districts; North Tongu in the Volta Region

and the latter being Tema-Kpone-Akatamanso district in the Greater Accra region.

Diabetes cases are presumably low in the northern part of the country with the opposite

occurring as one travels down the South. A possible explanation could be the vast

variation in population. This pattern or occurrence is not different when one plots the

disease map for the rate of disease occurrence.

Model estimation was carried out using a Bayesian approach with every parameter

being assigned prior distributions. To be precise, a non informative normal prior was

assigned to the offset parameter, α0 whiles the variance parameters are assigned inverse

gamma distributions. The thesis was carried out under the assumption that covariates

are not available. WinBugs version 1.4 was used in the implementation (Spiegelhalter

et al. (2003)) phase. A double chain of MCMC iterations of 120,000 were ran with

initial of 10,000 left out as the burn-in period and then every tenth sample value con-

sidered for arriving at the convergence of the estimates the remaining 11,000 samples.

The decision on convergence was arrived at based on the behavior of our trace plots

and auto-correlation plots of the MCMC output. The models were compared using
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the Deviance Information Criterion (DIC) as proposed by (Spiegelhalter et al. (2003)).

The best fitting model,i.e, Model (3.1.31) was usd in the analysis.

The map helps to throw more light on the state of disease in the area under discussion.

With reference to this map, policy makers and stakeholders can formulate pragmatic

policies to tackle diseases in each district of Ghana thereby resulting in proper alloca-

tion of resources in countering these diseases.

In this work, no explanatory variables were considered except for the fact that the

relative risk was made to depend on only spatial properties, i.e. correlated (u1i) and

uncorrelated (v1i) spatial properties. Although the mean values of u1 falls between

(−9.072,9.306) but the 95 Credible Interval (CI) values are all in the positive range

which depicts a positive relationship with the relative risk. The same case follows for

v1, where the mean values falls in the range (−1.761,2.986), the 95% CI are positive

values.

The introduction of the spatially varying probability of under-reporting for each district

reduced the DIC of Model 3.1.28 (Model without under-reporting probability) by a

wide margin of more than 1000 (Table 4.1). This makes the Poisson model with the

under-reporting a better alternative to the Poisson model without the under-reporting

parameters.

In Figure ( 4.4), which is the disease map for the probability of under-reporting, it can

be seen from the legends that, most of the values fall between (0.1−0.9) with few

falling below and above 0.1 and 0.9 respecteively

The mean values of the correlated part, u2, of the spatial probability spans from−107.9

to 52,25 although it has more positive values as its Credible Intervals. A careful analy-

sis of Table (4.1 ) shows that the magnitude of the node is mostly influenced by the the

uncorrelated part v2 of the spatial variation:- as the spatial probability node increases

with increase in (v2). The 95% credible interval of v2 ranges from (−13.46,630.5)

with most of the figures been positive, signifying positive relationship between the rel-
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ative risk of diabetes and the unstructured spatial effect for under-reported cases, v2.

Although the 95% credible interval which ranges from (−9.809,16.87), most of the

range was in the positive range signifying positive relationship between the structured

spatial effect for under-reported cases, u2 and the relative risk. From Appendix B, it

can be seen that the Monte Carlo (MC) error values were all less that 5% for each of

the nodes in all units signifying a clear case of convergence.

In Figure (4.1), it is seen from the legends that, majority of the districts are in the

lower risk areas with the very few at higher risk. The lowest risks-prone areas are

predominantly found in some of the three northern regions. Some of which include

Wa West, Yendi and Bongo. This is clearly buttressed by the plot of the lower credible

interval disease map, Figure (4.2) where 137 out of 138 districts are below the 10 mark

and are all in the northern part of the country. On the other hand, the upper credible

interval map from Figure (4.3) also has most of the districts above the 10 mark looking

at the legend, with only 2 of them falling below the 0.1 mark. All of the districts falling

in this domain are all in the southern part of the country.

The districts with the highest risk are found in the southern part of the country with

examples as: Komenda-Edina-Eguafo-Ebirem, Obuasi, Akwapim North and Amansi

West hitting beyond the 20 mark.
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Table 4.1: Comparison of Count Models in Ghana

Model

1 2 3 4

α0 −1.537(−1.8,−1.28) −0.6671(−0.8246,−0.6866) −0.2721(−0.5113,−0.05194) −0.346(−0.6345,−0.03041)

σ2
u1

6.4(4.243,2.41) 7.853(3.75,12.72) 6.41(4.376,8.22) 6.595(3.729,10.476)

σ2
v1

2.026(1.642,2.41) 1.859(1.357,2.296) 1.275(0.2702,1.743) 6.595(3.729,10.476)

σ2
u2

NA 146.7(0.1498,393.6) NA 147.2(0.1518,413.7)

σ2
v2

NA NA 16.45(11.9,21.03) 17.06(9.326,25.306)

pD 153.187 −970.3210 −10317.60 −19856.100

DIC 1383.370 258.993 −9093.67 −10631.400
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Figure 4.1: Diabetes relative map of Ghana.
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Figure 4.2: The map of 2.5% credible
Interval.

Figure 4.3: The map of 97.5% credible
Interval

.
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Figure 4.4: Varying probability of under-reporting in Ghana.
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Chapter 5

Conclusions and Recommendations

5.1 Introduction

Disease mapping is gradually gaining grounds in the field of epidemiology for the

graphical display of the relative risk of some disease in a given geographical area.

However, incorporating under-reporting in econometric models in order to reduce

bias when estimating such models is a dominant problem. Under-reporting is mostly

present because, given a study population, there is always the chance that some will

not report to the recording authorities. Under-reporting also come about when one is

subjected to tedious and complex recording mechanisms. Occurrence of such cases

of under-reporting can create bias in estimation and also blurr the true state of some

disease cases in a given population.

In this paper, a model is devloped for count data taking into consideration that it is

lagged with under-reporting and a Bayesian method is applied in estimating the iden-

tified parameters. A Poisson regression model for the count data is proposed and with

the assumption of independence relaxed, the relative risk is made to depend on some

spatial components, proposed by (Besag and Newell, 1991b). Under-reporting on the

other hand is captured by a logit probability and made to vary spatially from one district
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to the other. This addition is an important contribution in the study area. We further

compute and estimate the spatial effects of the relative risk and the under-reporting

probability. Unobserved variables which contributes immensely to the relative risk are

treated as latent variables and employing methods in Gibbs sampling, the non-reported

variables or incidences are added, arriving at inferences on the model parameters. In

this paper, covariates are not included thereby flushing out the case of estimating state-

depedent variables. However, Bayesian estimation approach is used adding additional

value to the spatial parameters been estimated.

The proposed model was then applied to data collected over a period of one year on

monthly basis. Analysis of the model in relation to data clearly shows that, in the pres-

ence of spatial auto-correlation and particularly under-reporting, the proposed model

produces a very good fit to the diabetes data. In this work, we model spatially varying

count data with cases of under-reporting. This we do by first of all, using a Poisson

distribution to model the count data and the under-reporting represented by a binomial

probability with a logit as a link function. The average parameter of the distribution

is a product of the relative risk, λ and the expected count, E. With the assumption

of independence relaxed, the relative risk, λ can be made to depend on contribtuing

covariates. In this thesis, the contributing factors are solely correlated spatial effect, ui

and uncorrelated spatial effect, vi.

The third specific objective which is developing a disease map from the estimated

relative risk is achieved by a method likend to model validation. Using WinBugs

1.4, the achieved model in specific objective two (2) is sitmulated using real data

and the map generated after convergence was achieved. In achieving required results,

the spatially structured random effects were captured by the usual Conditional Auto-

regressive (CAR) model proposed by (Besag and Newell, 1991a) with parameters and

hyper-parameters assigned non-informative priors. The under-reporting parameter is a

probability which is allowed to vary spatially over the districts. This model is called
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spatial-pi-model. The model is a suitable alternative to most convolution models as

there is an advantage of capturing under-reported cases.

5.2 Conclusions

Quite a number of models were compared to the proposed model; some of which

include, the logistic and some convolution models. The spatial-pi-model (new model)

has a lesser DIC than the rest of the models making it a better choice. The spatial-

pi-model was used in producing diabetes prevalence smoothed maps for districts of

Ghana which can be used to advice policy makers on the dispensing of resources to

fight diabetes diseases. The spatially varying probability of under-reporting corrects

the lapses created by complex and tedious data collection mechanisms. This position

is confirmed by earlier works done by (Winkelmann and Zimmermann, 1993; Yang

et al., 2010).

Although Tema-Kpone-Akatanmanso recorded the highest number of cases in Ghana,

those in Techiman Municipal, Fanteakwa, Agona East, Ejura-Sekyedumase and Bo-

somtwi were found to be at the highest risk of contracting diabetes. These results are

in the same direction with the findings of (Darkwa, 2011) who identifies the Central,

Brong Ahafo and the Ashanti Regions of Ghana as some of the regions with diabetes

cases which are higher than the world average; at least one of the districts named above

can be found in at least one of these three regions. Quaye et al., 2015; Darkwa, 2011 in

their works identified the continual growth of diabetes cases in Ghana with Danquah

et al., 2012; Darkwa, 2011 identifying some of the factors associated with the disease

as the consumption of carbohydrates and fatty foods, urbanization and less exercising

among the population. These findings make a lot of sense when subjected to the five

populations identified. This is because the main or traditional foods of the inhabitants

are basically made from cassava and maize even though beans, yam and maize are

eaten across Ghana (Frank et al., 2014). Also, one of the reasons for the high risk
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could be as a result of urbanization which is in line with the findings of (Al-Lawati

and Jousilahti, 2004), where urbanization was accompanied with increase in income

and subsequently increase in car ownership and consumption of fatty foods. There

is a visible absence of recreational and aerobic activities in the identified populations

(Darkwa, 2011).

On the other side of the coin are Upper Manya Krobo, Ga East and La-Nkwanta,

Savelugu-Nanton, Kpandai and Nanumba North and South districts, which recorded

the lowest risk in ascending order. In the case of the first two, this could be associated to

the availability of health resources in the battling of the menace as fairly well equipped

health facilities are available (Darkwa, 2011). The other districts however are found in

the northern part of Ghana. In this part of the country, their main staple food is made

from millet, sorghum, guinea corn and groundnut with visibly small or no protein

contents. This extends to the fact that, carbohydrates and fatty foods are kept at the

barest minimum Frank et al. (2014). Also, inhabitants of these region trek miles from

their homes to farms and there is virtually no means of transportation. In the cases

where transportation is available, it comes at a cost. This is in line with many research

works where exercising has been identified to be one of the factors that retrogresses

diabetes (Al-Lawati and Jousilahti, 2004; Darkwa, 2011; Frank et al., 2014.)

5.3 Recommendations

In this work, validation was not based on covariates as the main idea was to identify

and correct spatial effects in under-reporting cases in each district. Disease maps are

very helpful in the area disease combat. Policy makers make reference to these (disease

maps) when allocating our scarced resources in controlling diabetes in Ghana.

For the sake of future works and recommendation, we propose an extension in the

effect of looking at multivariate domain where multiple diseases are known to ex-

40



ist in each geographical setting. Also, some assumptions like the exclusion of over-

dispersion should be relaxed and incorported in future research works by using nega-

tive binomial distribution instead of Poisson distribution.
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Appendix A

WinBugs codes

model{

for (i in 1:N)

#N=138

{

y[i]~dpois(mu1[i])

mu1[i]<-mu[i]*p1[i]

p1[i]<-min(1,max(0.001,p[i]))

log(mu[i])<-log(e[i]) + log(rr[i])

log(rr[i])<- aph0 +v1[i] +u1[i]

v1[i]~dnorm(0,tau.v1)

logit(p[i])<- u2[i]+ v2[i]

v2[i]~dnorm(0,tau.v2)

}

#Prior
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for(k in 1:sumNumNeigh)

{ weights[k]<-1

}

u1[1:N]~car.normal(adj[],weights[], num[],tau.u1)

u2[1:N]~car.normal(adj[],weights[], num[],tau.u2)

#PRIOR DISTRIBUTIONS (our model has no fixed effects

#components, that is the reason why we don't have betas)

tau.v1~dgamma(0.001,0.001)

tau.u1~dgamma(0.001,0.001)

tau.v2~dgamma(0.001,0.001)

tau.u2~dgamma(0.001,0.001)

aph0~dflat()

sigma.u1 <- sqrt(1 /tau.u1) # standard deviation of u1

sigma.v1<- sqrt(1 / tau.v1) # standard deviation of v1

sigma.u2<- sqrt(1 / tau.u2) # standard deviation of u2

sigma.v2<- sqrt(1 / tau.v2) # standard deviation of v2

}

#Data

#Initialization
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Spatial Variation of Diabetes Cases in some Districts in Ghana

ID District Name Mean (Credible Intervals) MC Error

1 Adansi North 0.1137(0.0936,0.1359) 0.0151

2 Adansi South 0.7702(0.7155,0.8269) 0.0001

3 Afigya Kwabre 1.033(0.9737,1.0950) 0.0004

4 Ahafo-Ano North 0.3203(0.2827,0.3609) 0.0004

5 Ahafo-Ano South 1.8160(1.7170,1.9120) 0.0003

6 Amansie Central 0.0669(0.0528,0.0832) 0.0006

7 Amansie West 0.7514(0.7077,0.7976) 0.0001

8 Asante-Akim Central 0.2223(0.1906,0.2558) 0.0003

9 Asante-Akim South 1.1680(1.1050,1.2350) 0.0002

10 Asante Mampong 0.1070(0.0875,0.1278) 0.0004

11 Atwima Kwanoma 0.7634(0.7250,0.8042) 0.0001

12 Atwima Mponua 0.0352(0.0240,0.0482) 0.0003

13 Atwima-Nwabiagya 0.601(0.5495,0.6568) 0.0009

14 Bekwai 5.5110(5.2960,5.7350) 0.0004

15 Bosome-Freho 0.2010(0.1769,0.2258) 0.00153

16 Bosomtwi 25.2500(24.6900,25.8300) 0.0002

17 Ejisu-Juaben 0.0269(0.0245,0.0294) 0.0002

18 Ejura-Sekyedumase 6.3670(6.1740,6.5670) 0.0016

19 Kumasi 0.0985(0.0833,0.1145) 0.0002

20 Kwabre East 5.0950(4.8780,5.3180) 0.0016

21 Obuasi 1.1970(1.1370,1.2570) 0.0005

22 Offinso 2.4940(2.3940,2.5970) 0.0007

23 Offinso North 0.8203(0.7574,0.8851) 0.0005

24 Sekyere Central 0.9520(0.8864,1.0190) 0.0005

25 Sekyere South 0.4438(0.4015,0.4872) 0.0003
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ID District Name Mean (credible Intervals) MC Error

26 Asutifi 0.0616(0.0473,0.0778) 0.0001

27 Atebubu Amanten 0.6130(0.5752,0.6501) 0.0003

28 Berekum 3.86(3.7050,4.0210) 0.0012

29 Dormaa East 1.6520(1.5620,1.7480) 0.0007

30 Dormaa Municipal 1.0050(0.9364,1.0750) 0.0005

31 Jaman North 0.5210(0.4677,0.5762) 0.0004

32 Jaman South 0.1743(0.1537,0.1967) 0.0002

33 Kintampo North 0.4676(0.4284,0.5079) 0.0003

34 Kintampo South 0.0512(0.0383,0.0662) 0.0001

35 Nkoranza North 1.1820(1.1310,1.2330) 0.0004

36 Pru 0.0359(0.0249,0.0488) 0.0009

37 Sene 0.08592(0.06535,0.1095) 0.0001

38 Sunyani Municipal 0.0207(0.0087,0.0380) 0.0001

39 Sunyani West 1.2920(1.2350,1.3490) 0.0004

40 Tain 1.8750(1.7730,1.9830) 0.0008

41 Tano North 0.1798(0.1545,0.2067) 0.0002

42 Tano South 0.1866(0.1666,0.2062) 0.0001

43 Techiman Municipal 1.1000(1.0400,1.1620) 0.0005

44 Wenchi 2.2360(2.1350,2.3410) 0.0008

45 Abura-Asebu 0.3784(0.3473,0.4116) 0.0002

46 Agona East 0.0983(0.0791,0.1198) 0.0001

47 Agona West 0.8027(0.758,0.8476) 0.0003

48 Ejumako-Enyam 5.3780(5.2310,5.5290) 0.0012

49 Asikuma-Odoben 0.4243(0.3946,0.4550) 0.0001

50 Assin North 0.1651(0.1436,0.1888) 0.0002
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ID District Name Mean (credible Intervals) MC Error

51 Assin South 6.8140(6.6410,6.9880) 0.001108

52 Awutu senya 1.1780(1.1100,1.2470) 0.0005

53 Cape Coast 0.8339(0.7814,0.8894) 0.0004

54 Ekumfi 0.0151(0.0101,0.0210) 0.0004

55 Gomoa East 4.7010(4.5490,4.8550) 0.0011

56 Gomoa West 2.4690(2.3660,2.5730) 0.0008

57 Komenda Edna 0.0940(0.07499,0.1005) 0.0002

58 Mfantsipim 0.1001(0.0809,0.1207) 0.0002

59 Twifo Aheman 0.0399(0.0359,0.0441) 0.0003

60 Upper Denkyira E. 3.309(3.2140,3.4050) 0.0005

61 Upper Denkyira W. 0.6113(0.5701,0.6534) 0.0003

62 Akwapim N. 2.901(2.8050,3.0010) 0.0002

63 Akwapim South 1.2540(1.1920,1.3180) 0.0005

64 Akyemansa 1.2370(1.1800,1.2930) 0.0001

65 Asuogyamang 0.0489(0.0344,0.0662) 0.0009

67 Atiwa 0.7965(0.7770,0.8164) 0.0003

68 Birim Central 0.0722(0.0601,0.0848) 0.0007

69 Birim South 0.2747(0.2462,0.3051) 0.0005

70 East Akim 1.0820(1.0380,1.127) 0.0003

71 Fanteakwa 0.3308(0.2833,0.3825) 0.0001

72 Kwabibirem 0.1451(0.1236,0.1684) 0.0001

73 Kwahu East 0.4894(0.4417,0.5385) 0.0009

74 Kwahu North 0.4894(0.4417,0.5385) 0.0002

75 Kwahu South 0.0338(0.0265,0.0419) 0.0003
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ID District Name Mean (credible Intervals) MC Error

76 Kwahu West 0.2581(0.2281,0.2896) 0.0002

77 Lower Manya Krobo 0.0487(0.0400,0.0633) 0.0008

78 New Juabeng 0.0537(0.0378,0.0718) 0.0003

79 Suhum Kraboa-Coaltar 0.1053(0.0880,0.1236) 0.0002

80 Upper Manya Krobo 0.0029(0.0006,0.0074) 0.0004

81 West Akim 0.0812(0.0650,0.0991) 0.0006

82 Yilo Krobo 0.0712(0.0571,0.0875) 0.0002

83 Accra Metro 0.0634(0.0479,0.0817) 0.0010

84 Adentan 0.2746(0.2567,0.2929) 0.0001

85 Ashaiman 0.0475(0.0355,0.0621) 0.0001

86 Damgme (Ada east) 0.1746(0.1458,0.2057) 0.0003

87 Damgme(Shai Osudoku) 0.1990(0.1765,0.2214) 0.0001

88 Ga East 0.0057(0.0028,0.0096) 0.0001

89 Ga South 0.1185(0.0988,0.1399) 0.0001

90 Ga west 0.6167(0.5789,0.6551) 0.0001

91 Ledzokuku 0.2006(0.1701,0.2329) 0.0001

92 Tema Kpone 0.2006(0.1701,0.2329) 0.0002

93 Bole 1.025(0.9622,1.089) 0.0002

94 Bunkpurugu 0.0325(0.0204,0.0468) 0.0002

95 Central Gonja 0.1677(0.1399,0.1978) 0.0002

96 Chereponi 0.4652(0.4248,0.5081) 0.0003

97 East Gonja 0.4328(0.3921,0.4770) 0.0002

98 East Mamprusi 0.0258(0.0166,0.0367) 0.0005

99 Gushiegu 0.0561(0.0438,0.0707) 0.0009

100 Karaga 0.1676(0.1405,0.1955) 0.0002
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ID District Name Mean (credible Intervals) MC Error

101 Kpandai 0.0877(0.0685,0.1089) 0.0003

102 Nanumba N. 0.0162(0.0071,0.0294) 0.0003

103 Nanumba S. 0.0477(0.0293,0.0712) 0.0008

104 Saboba 0.0505(0.0370,0.0661) 0.0009

105 Savelugu-Nanton 0.6500(0.5876,0.7152) 0.0002

106 Sawla-Tuna 0.0057(0.0017,0.0122) 0.0002

107 Tamale-Savelugu 0.0167(0.0079,0.0284) 0.0009

108 Tolon Kunbugu 0.6261(0.5795,0.6749) 0.0002

109 West Gonja 1.8650(1.7990,1.9350) 0.0010

110 West Mamprusi 2.2590(2.1250,2.3950) 0.0005

111 Yendi+Miom 0.4171(0.3788,0.4576) 0.0005

112 Zabzugu+Tatale 0.3679(0.3347,0.4027) 0.0009

113 Bawku+Binduri 2.4110(2.3010,2.5220) 0.0003

114 Bawku West 0.7513(0.7167,0.7872) 0.0005

115 Bolgatanga 1.0320(0.9690,1.0980) 0.0009

116 Bongo 0.7243(0.6545,0.7970) 0.0008

117 Builsa 0.0078(0.0034,0.0137) 0.0002

118 Garu 0.6401(0.5918,0.6904) 0.0003

119 Kasena-Nankana 0.5065(0.4661,0.5490) 0.0005

120 Kasena-Nankana W. 0.7242(0.6911,0.7585) 0.0006

121 Talensi+Nabdam 0.2239(0.1921,0.2579) 0.0004

122 Jirapa 0.3890(0.3497,0.4307) 0.0003

123 Lambussi-Kami 0.2280(0.2009,0.2557) 0.0003

124 Lawra+Nadowli 0.1488(0.1255,0.1740) 0.0002

125 Nadowli Kaleo 2.2150(2.1200,2.315.0) 0.0002
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126 Sissala East 0.0679(0.0548,0.0827) 0.0003

127 Sissala West 0.4128(0.3732,0.4542) 0.0001

128 Wa 0.8293(0.7748,0.8845) 0.0002

129 Wa East 0.4949(0.4556,0.5350) 0.0007

130 Wa West 0.4061(0.3774,0.4354) 0.0001

131 Adaklu+Agortime 0.5365(0.4820,0.5916) 0.0003

132 Akatsi 0.8333(0.7819,0.8841) 0.0004

133 Biakoye 2.8180(2.7320,2.9060) 0.0003
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