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ABSTRACT 

As the demand for wireless communication increases, there is need for better coverage, 

improved capacity, and higher transmission quality, all of which contribute to better 

Quality of Service (QoS). One of the promising technologies in achieving excellent 

QoS is the use of smart antenna systems (SASs) that dynamically radiate power beams 

to mobile nodes (MNs) in response to received signals to access a wireless link through 

a process known as beam forming. This has the effect of enhancing the performance 

characteristics (such as capacity and hand-over) in wireless systems. By using machine 

learning methods, it is possible to predict the upcoming change in the mobile location 

at an early stage and then carry out beam forming optimization to alleviate the 

reduction in network performance. This implies that with a dynamic SAS, a mobile 

user can be served relatively well while on the move. Efficient prediction of the 

position of mobile hosts in wireless networks by SASs requires an effective mobility 

optimization technique.  

The use static samples of Received Signal Strength (RSS) in locating MNs has also 

been proposed in many research studies with positive results. This implies that 

prediction of RSS in wireless networks would form a strong base for mobility 

prediction and localization. However, these predictions are still challenging issues, 

which called for this research study. 

One of the prediction techniques that has been proposed and used is the Grey 

prediction model (GM) which is associated with benefits of reduced overheads which 

is a serious issue in wireless cellular networks. This is due to its ability to perform 

prediction with little data and thus perform with little processing effort. In this research 
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we used of Adaptive Neuro-Fuzzy Inference System (ANFIS) to achieve better 

estimations of mobility than the prediction made by conventional models like Log-

Normal Shadowing Model (LNSM) and GM. The mobility, in this study, was based 

on the RSS at the mobile node (MN) as it traverses towards or away from the 

transmitting antenna. This methodology performs prediction with a mean absolute 

error (MAE); between 0.0826m and 0.6904m in short distances, and between 0.3220m 

and 3.8765m in long distances which makes ANFIS one of the excellent methods that 

have been researched about to solve the mobility prediction issue. The study has also 

revealed that the average distance at which anomalies in the accuracy of mobility 

prediction occurs has been identified at 62.33% and 64.82% for short (1m to 100m) 

and long (100m to 1800m) distance communication environments respectively. 
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CHAPTER ONE: INTRODUCTION 

1.1 Mobility Prediction 

With the current growth rates of mobile and high speed wireless communication 

networks, the mobile users expect of have a high Quality of Service (QoS) every time 

and wherever they traverse while they are communicating and accessing information. 

Telecommunication service providers are expected to provide high-speed data, 

superior quality voice and location based services [1]. With this motivation, smart 

antenna systems need to replace the conventional antenna systems and their smartness 

needs to be depicted in their support for real time services for mobile users with 

minimal signaling delays while enjoying global roaming. 

It has also been evident that mobile communications technology has developed very 

rapidly over the past few decades. To achieve a high data rate, the concept of mobility 

is considered as a very important feature of wireless networks. A number of researches 

have been carried out on mobility [2], and it is seen that in all of the technologies that 

have been proposed, the mobile node (MN) has a point of attachment as the access 

point (AP) or a base station (BS) which serves its mobility needs. When a MN is active 

in a network, there is always a continuous exchange of radio signals between the MN 

and BS to which the antennas are attached. The non-smart or semi- smart antenna 

systems relies on the on the predefined parametric rules to make decisions regarding 

variation in their radiation characteristics. The future of wireless technology will 

necessitate the antenna systems to be fully equipped with learning intelligence in order 

to cope up with changing environmental characteristics. 
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In [3] algorithms for real-time tracking of the location and dynamic motion of a MN 

in a cellular network using the pilot signal strengths from neighboring BSs were 

studied. The modelling was based on a dynamic linear system driven by a discrete 

command process that determines the MN's acceleration. The command process was 

modeled as a semi-Markov process over a finite set of acceleration levels. The tracking 

algorithm proposed in [3] was used to predict future mobility behavior, which is useful 

in resource allocation applications. The numerical outputs of the methodology 

indicated good accuracy over a wide range of mobility parameter values. In [4] it was 

shown that good results are produced in case of regular movements and in irregular 

mobility conditions poor predictions were made. 

Received Signal Strength Indicator (RSSI) is a property of a radio signal. RSSI does 

not require prior information relating to communication protocols. It is easy to observe 

by gathering the signal strength at the MN [5]. The methods involving mobility 

prediction using RSS are popular because they require no additional hardware and 

MNs in the networks have the ability to analyze the RSS [6]. The distance can then be 

estimated based on RSS data samples collected from a given channel. Calibration of 

models like the Log-normal Shadowing Model (LNSM) is done to adequately describe 

the environment through which the MNs traverse [6]. RSSI localization estimation is 

a feasible alternative to localization similar to GPS. 

To add on the research in the area of mobility prediction, an approach based on Grey 

theory and model attracted attention because of the benefits associated with it. The 

Grey model (GM) reduces overheads in wireless cellular networks because it requires 

little data and thus little processing effort. The GM approach has relatively excellent 
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performance results as well as very short calculation time. The processing of the data 

needs few data points to get a prediction and is therefore suitable for use in real-time 

systems due to its quick response time  [1] [7] [8]. 

It can therefore be noted that mobility prediction has remained an area of research 

seeking to come up with an optimal solution to track and locate mobiles in wireless 

networks. The methods available are not sufficient in estimating the next position of 

mobiles especially within the current environment having increased number of 

obstructions to the radio frequency signals. This is attributed to their failure to 

optimally reduce the errors made during predictions. Thus an ANFIS methodology, 

which is a learning system, needs to be investigated with a view to reduce the errors 

and thus make better predictions that would add on the intelligence of smart antenna 

systems when performing mobility prediction of mobiles nodes. 

1.2 Problem Statement 

Mobility in cellular networks is an everyday occurrence; the mobile users change their 

locations, moving from the proximity of one cell to another which are served by one 

or many Base Transceiver Stations (BTSs). This is usually done at the expense of 

reduced RSS of the RF signals transmitted from the transmitting antenna to the mobile 

node (MN) which reduces as the MN moves away from the transmitting station. 

Cooperation between or amongst antenna systems at different BTSs during handover 

is vital and may not be optimally exploited when the future location(s) of active MNs 

is unknown. 
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In dynamic smart antenna systems, once a mobile unit makes a call request to a BTS 

to access a wireless link or node, the antenna system in the BTS automatically 

concentrates its radiation  pattern in that direction, a process known as beam forming. 

This has the effect of enhancing the performance characteristics, such as capacity and 

hand-over, in wireless systems [9]. The smart antenna technology has dramatically 

enhanced the capacity of wireless link through a combination of diversity gain, array 

gain and interference suppression. This implies that with dynamic smart antenna 

system, a mobile user can be served relatively well while on the move. 

A number of models and optimization techniques have been investigated in the past to 

predict mobility of mobile nodes (MNs) in wireless network. These models include: 

Back Propagation (BP), Levenberg-Marquardt (LM), Feed-forward (FF), Bayesian 

Regularization (BR), Adaptive Neural Network (ANN), Multi-Layer Perceptron 

(MLP), Neural Networks (NN), and Hybrid (PSO-ANN) [10] [11] [12] [13] [14] [15]. 

However, the variations in the parameters that contribute to the RSS are not been 

considered. As a MN traverses in changing environments, the values of path loss, path 

loss exponent and relative distance between the MN and transmitter change. This has 

an impact on the overall prediction performance of mobility which depends on the RSS 

values. Also, the model complexities lead to a long processing time thus making 

mobility prediction remain an issue in mobile cellular and wireless networks.  

To control the mobility prediction challenges, an alternative methodology based on 

Grey Model (GM) and Adaptive Neuro-Fuzzy Inference System (ANFIS) has been 

proposed. GM predicts RSS with minimal overheads in terms of processing time, 

memory, computation power or bandwidth. The ANFIS system learns the patterns of 
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the input-measured data to produce an optimal trend of RSS which is used to compute 

the distance of the mobile node (MN) from the transmitter serving it so that the smart 

antenna systems may serve well the mobility needs of MNs. 

1.3 Justification 

The current trend of mobile and cellular communication networks necessitates an 

improvement in the antenna technology especially in the area of mobility prediction. 

As indicated in [1], with the current growth rates of mobile and high speed wireless 

communication networks, high-speed data, superior quality voice and location based 

services are expected from service providers to facilitate both local and global 

roaming. A number of algorithms have been applied to make better predictions than 

the conventional models that are based on the RSS. However, these algorithms have 

not yielded optimal results.  

In this research, ANFIS which is a hybrid of Fuzzy Logic and Artificial Neural 

Network (ANN) [16] [17] was used to come up with an optimal mobility prediction 

by effectively learning and minimizing errors that occur during localization and 

mobility prediction processes. The successful prediction of mobility improves wireless 

or cellular networks by increasing the intelligence of antenna systems thus improving 

the quality of service (QoS) by; reducing the complexity in mobility management 

which has been significant in many mobility prediction techniques, improving the 

handover prediction in wireless cellular networks as well as reducing the dependence 

of the communication systems on Global Positioning System (GPS) to update the 

antennas about their MNs’ location.  
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1.4 Research Objectives 

1.4.1 General Objective 

The general objective of this research is to optimize mobility prediction of Mobile 

Hosts in Smart Antenna Systems using Adaptive Neuro-Fuzzy Inference System 

(ANFIS) 

1.4.2 Specific Objectives 

The specific objectives are as follows: 

1. To design an adaptive neuro-fuzzy inference system for optimizing mobility 

prediction. 

2. To optimize and validate the performance of designed mobility prediction 

methodology. 

3. To evaluate the performance of the optimized mobility prediction methodology 

against reported methods. 

1.5 Significance 

The significance of the study is to: 

a) Improve on the mobility prediction of Mobile nodes in wireless or cellular 

networks which can improve on dynamic smart antenna intelligence during the 

process of beam forming. 

b) Provide an alternative approach for optimizing the mobility prediction with a 

keen focus on the smart antennas. 
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1.6 Scope 

This research was limited to a computer simulations using theoretical and measured 

data. All the algorithms used in this research; the LNSM, GM and ANFIS technique 

were simulated. The key parameters were all considered in the simulation and these 

are: Received Signal Strength, Distance of the mobile from the transmitter, Path loss 

exponent and Path loss at reference distance.  

1.5 Overview of Chapters 

This thesis is structured as follows: 

1. Chapter One covers the problem background together with the objectives of 

the research. 

2. The literature review is elaborated in Chapter Two which presents concepts of 

mobility prediction and prediction methods like Grey model, antenna systems, 

and artificial intelligence techniques for example; ANN and ANFIS.  

3. Chapter Three presents the research design methodology.  

4. Chapter Four presents the research results with analysis and discussion of the 

simulation results.  

5. Chapter Five consists of the conclusion and recommendations for future work. 

6. Finally, the References and Appendices are presented at the end of the thesis.  
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

Mobility in wireless communication networks and mobile communications technology 

has developed very rapidly over the past few decades [1]. For achieving good Quality 

of Service (QoS) like high speed and high data rates, mobility is considered to be an 

important feature of antenna systems for wireless networks. A number of wireless 

technologies like wireless LAN, cellular networks, cellular 3G and satellite networks 

all need mobility prediction mechanisms to provide excellent wireless connectivity 

and roaming across the globe. Mobile users and mobile units especially in wireless 

cellular networks have drastically shifted from being static to mobile as phone and 

computer technology shifted from desk phones to mobile phones. The improvement in 

communication technology in favor of wireless cellular network has not adequately 

supported the mobile users as they traverse while communicating. 

Mobility has become the order of the day with mobile users changing their positions 

at varying velocities and directions. Mobile users, thus, move from the proximity of 

one cell to another. Cooperation between different antenna systems during handover 

is vital and can be maximally exploited when the future location of mobiles are 

predicted. With the current technology of dynamic smart antenna systems [18], once a 

mobile unit makes a call or request to access a wireless link, the system automatically 

concentrates the directionality of its radiation patterns in response to the mobile unit's 

request. This has the effect of enhancing the performance characteristics (such as 

capacity and hand-over) in wireless systems. 



 

9 
 

In all the wireless technologies, whether providing voice, data or real multimedia 

applications, a mobile node (MN) has a point of attachment known as the access point 

(AP) or a base station (BS) which serves its mobility needs. An antenna as a part of 

the AP may thus serve as a reference point, to the mobiles that it serves within a given 

cell.  

2.2 Theoretical Review 

2.2.1 Cellular Networks 

A cellular network has two main parts; the radio access network (RAN) and core 

network (CN), as shown in Figure 2.1 [19] for most popular 3G/4G systems; 3G 

Universal Mobile Telecommunications System (UMTS) and 4G Long-Term 

Evolution (LTE). UMTS is the most widely deployed 3G cellular network technology 

that offers both data and voice services while LTE is the only mainstream 4G standard. 

The overall architecture is similar in all types of cellular networks. 3G RAN is 

composed of the User Equipment (UE), the Base Station (BS) or Node B, and the 

Radio Network Controller (RNC). Each RNC manages tens or even hundreds of BSs 

via Iu-B interface, while exchanging calls/sessions and provisioning services with the 

core network. It provides central control for radio resource management in RAN 

including radio resource control, admission control, channel allocation, and mobility 

management. Each RNC communicates with the Packet-Switched (PS) and the Circuit 

Switched (CS) core networks to provide data and voice services. The BS is the physical 

unit providing network access services to UE via its air interface to the UE. The main 

functionalities of a BS include wireless link transmission/reception, modulation/ 
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demodulation, fast link adaptation, packet scheduling, physical channel coding, error 

handling, and power control. 

 

Figure 2.1: 3G/4G Cellular Network Architecture 

2.2.2 Smart Antennas in Cellular Networks 

The demand for increased capacity in wireless communication networks has motivated 

recent research activities toward wireless systems that exploit the concept of smart 

antenna and space selectivity [18] [20]. Efficient utilization of limited radio frequency 

spectrum is possible with the use of smart/adaptive antenna system. As shown in 

Figure 2.2 [20], smart antenna radiates not only narrow beam towards desired users 

exploiting signal processing capability but also places null towards interferers, thus 

optimizing the signal quality and enhancing capacity. Adaptive antenna systems form 

an array with main lobe towards user and null towards a co-channel interferer. 

Adaptive antenna technology represents the most advanced smart antenna approach to 

date. Using a variety of new signal-processing algorithms, the adaptive system takes 
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advantage of its ability to effectively locate and track various types of signals to 

dynamically minimize interference and maximize intended signal reception. 

 

Figure 2.2: Adaptive array coverage  

Both adaptive antenna and signal processing algorithms attempt to increase gain 

according to the location of the user; however, only the adaptive system provides 

optimal gain while simultaneously identifying, tracking, and minimizing interfering 

signals. To efficiently radiate to a desired direction, smart antennas usually incorporate 

the Least Mean Squares Algorithm in coded form which calculates complex weights 

according to the signal environment.  

The functionality of an antenna depends on many factors including physical size of 

an antenna, impedance (radiation resistance), beam shape, beam width, directivity or 

gain and polarization among others [21]. By definition, an antenna array consists of 

more than one antenna element. The radiation pattern of an antenna array depends on 

the number of antenna elements used in array. The more elements they are, the 

narrower the beam that can be formed. Planar arrays are capable of making a narrow 

beam in the horizontal as well as vertical plane. Smart antennas with the ability of 

beam steering can be constructed by adding intelligence to planar arrays. 
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Receiver (𝑅x) smart antennas can be defined as antennas with multiple elements where 

signals from different elements are combined by an adaptive algorithm whereas 

transmit smart antennas are antennas in which the signals at the antenna elements are 

created by the algorithm. Increasing the antenna elements within an antenna array 

results into an increase in signal to noise ratio (SNR) compared with a single antenna. 

In a cellular system, each antenna has a fixed number of subscribers and increasing the 

number of antennas results in an increase in the number of subscribers that can be 

served by one BTS. By reducing the interference and increasing the signal power, a 

smart antenna improves link quality and this helps in combating large delay dispersion 

[22]. The current technology smart antennas [23], that is adaptive antenna as shown in 

Figure 2.2, exploits the array of antenna elements to achieve maximum gain in desired 

direction while rejecting interference coming from other directions. 

An adaptive antenna can steer the maxima and nulls of its array pattern in nearly any 

direction in response to the changing environment [22]. The basic idea behind adaptive 

antenna is the same as in switched beam antenna, which is to maximize the SINR 

values. While the multiple switched beam antennas have a limited selection of 

directions to choose the best beam, an adaptive antenna can freely steer its beam in 

correspondence to the location of user. Smart antenna employs Direction of Arrival 

(DOA) algorithm to track the signal received from the user, and places nulls in the 

direction of interfering users and maxima in the direction of desired user. On the other 

hand, since adaptive antennas needs more signal processing, multiple switched beam 

antennas are easier to implement and have the advantage of being simpler, and less 

expensive compared to adaptive antennas. The overall capacity gain of smart antennas 



 

13 
 

is expected to be in the range of 100% to 200%, when compared with conventional 

antennas. 

 Figure 2.3: Adaptive Beam Forming System  

Beam forming algorithms used in adaptive antennas are generally divided into two 

classes with respect to the usage of training signal: Blind Adaptive algorithm and Non-

Blind Adaptive algorithm [23]. In a non-blind adaptive beam forming algorithm, a 

known training signal 𝑑(𝑡) is sent from transmitter to receiver during the training 

period. The beam former uses the information of the training signal to update its 

complex weight factor. Blind algorithm does not require any reference signal to update 

its weight vector; rather it uses some of the known properties of desired signal to 

manipulate the weight vector. Figure 2.3 [23] shows the generic beam forming system 

based on non-blind adaptive algorithm, which requires a training (reference) signal. 

The output 𝑦(𝑡) of the beam former at time 𝑡  is given by a linear combination of 

the data at the 𝑘 antenna elements. The baseband received signal at each antenna 
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element is multiplied with the weighting factor which adjusts the phase and amplitude 

of the incoming signal accordingly. The sum of the weighted signals results in the 

array output 𝑦(𝑡). On the basis of adaptive algorithms, entries of weight vector 𝑤 are 

adjusted to minimize the error 𝑒(𝑡) between the training signal 𝑑(𝑡) and the array 

output 𝑦(𝑡). 

2.2.3 Load Balancing Algorithms 

In [24], an investigation of a load balancing scheme for mobile networks that changes 

cellular coverage according to the geographic traffic distribution in real time was 

carried out using a bubble oscillation algorithm. The results indicated that the 

performance of the whole cellular network is improved by contracting the antenna 

pattern around a traffic hotspot and expanding adjacent cells coverage to fill in the 

coverage loss. It also shows that the system capacity is improved by adjusting the cell 

size and shape according to the existing geographic traffic distribution at a particular 

time. 

In [25], we also see a sub-optimal Heaviest-First Load Balancing (HFLB) Algorithm 

that aimed at solving load imbalance that deteriorates the system performance in Long 

Term Evolution (LTE) networks. It was dealt with by proposing a load balancing 

framework, which aims at balancing the load in the entire network, while keeping the 

network throughput as high as possible. The results showed a significant load 

balancing while maintaining the same network throughput at the price of a bit more 

handover compared with the traditional signal strength based handover algorithm. 

Load imbalance that reduces network performance is a serious problem in LTE 
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Networks. Load imbalance occurs in communication networks due to non-uniform 

user deployment distribution. 

2.2.4 Mobility Effect on the RSS 

When an active mobile moves away from its reference antenna, the received signal 

strength (RSS) reduces with increase in travel distance. Wireless radio channel poses 

a severe challenge as a medium for reliable high-speed communication [26]. It is not 

only susceptible to noise, interference, and other channel impediments, but these 

impediments change over time in unpredictable ways due to user movement. 

Therefore, RSS [27] is a method to find distance from attenuation of propagation path. 

If the transmission power is known, the total attenuation of signal propagation through 

the path can be calculated by subtracting the received power from transmitted power. 

With the use of radio frequency (RF) transceiver, the received power can be measured 

and provided to an RSS ranging method. In most of the RF transceivers, a dedicated 

register is used to store the RSS indicator. Therefore, it is a low-cost and convenient 

way to measure distance.  

In a report on the challenges of mobility prediction, published by the Institute of 

Eurecom [28], a number of mobility prediction methodologies were highlighted. One 

of the techniques was an integrated mobility and traffic model for resource allocation 

in wireless networks in which the RSS Indicators are periodically sampled from all the 

base stations (BSs) the mobile node (MN) connects to and then transmitted to the 

attached base station. This helps in obtaining course relative position estimates of 

mobiles. The MN and the attached BS coordinate to identify the next possible BS that 

the MN may move to in preparation for any handovers. It is observed here that the 
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mobility prediction is based on estimated positions obtained by the sampled RSSI from 

different BSs. 

The mobility profile manager plays a major role in the handover prediction. It 

continuously monitors the mobility pattern of the MN concerned. The position of the 

MN is periodically computed basing on RSSI and then stored in the database. The 

mobility history is used in predicting the access point to which the MN is expected to 

have a handoff. RSS measurements uses historical values and optimal mobility 

predictions can be made when the predicted RSS measurements are used [29]. 

In [30], a mobility prediction algorithm based on dividing sensitive ranges was 

proposed. The division was based on the cell transformation probability. Different 

prediction methodologies were used according to the sensitivity of the defined ranges 

in order to gain high precision. A hierarchic position prediction algorithm was used 

basing on the user's movement history and instantaneous RSSI measurements of 

surrounding cells. This study proposed that the mobile user movement can be 

estimated by parameters like; current location, velocity and cell geometry which were 

estimated with the help of sampled instantaneous RSSIs. This method helped in setting 

up and reserving resources along a mobile's path, and planned quick handovers 

between BSs. Prediction performance was accurate at 75%. In this approach, the RSSI 

was just sampled to help them in locating positions. Greater accuracy in the prediction 

performance would be significant if the RSSIs were predicted instead of instantaneous 

sampling. This is because prediction yields a faster and timely response in locating 

new positions.  
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The changeover in IEEE 802.11 relies on the RSSI and many handover algorithms are 

based on RSSI [31]. For example; reduction in the RSSI of the currently associated 

Access Point (AP) beyond the preset thresholds can be used to trigger a handover. 

Depending on how the IEEE 802.11 standard is implemented on a mobile host device, 

the device may switch to another AP when the RSSI falls below a threshold. RSSI and 

other predictors like frame transmissions and frame losses play a vital role in mobility 

prediction and thus handover management. A handover may not be successful 

especially when the next access point is not discovered by the mobile host. However, 

effective prediction of the RSS measurements would yield an excellent mobility 

prediction and thus mobility prediction is necessary in handoff prediction.  

RSS is used to determine distance based on the attenuation of propagation path. With 

known parameters for transmission power and received power, the total attenuation of 

signal propagation through the path can easily be obtained [32]. Using trilateration 

estimation approach, unknown location of a MN from several reference locations can 

be calculated. Trilateration approach uses the distances among the locations to estimate 

the coordinate of the unknown location. The distances between reference locations and 

the unknown location can be considered as the radii of many circles with centers at 

every reference location and the unknown location is obtained as the intersection of all 

the sphere surfaces. This method works well when the reference positions are at least 

three and for lower numbers of reference positions, a triangulation method may be 

used. Triangulation estimation is a trigonometric-based approach of determining an 

unknown location using two angles and a distance between them. This method was 

used in sensor networks; two reference nodes can be located on the horizontal axis or 

vertical axis.  
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The signal attenuation distance between two reference nodes on the baseline can be 

measured in preliminary stage and stored in the system's memory. By extrapolating 

this idea, it implies that prediction of the RSS of MNs at future locations can yield 

excellent performance in location prediction. Thus, mobility prediction basing on RSS 

is vital in wireless networks and smart antenna systems.  

2.2.5 Capacity Enhancement in Cellular Networks through Sectorization 

Cell sectorization [33] is an economical way to enhance system capacity of existing 

cellular networks without change of existing base transceiver station (BTSs). This 

reduces the additional cost for adoption of new technologies employed with smart 

antennas, adaptive beam antenna and steerable antennas. Sectorization technique is a 

widely used technique to reduce co-channel interference in cellular mobile radio 

systems. There are two important factors that influence the system performance when 

using sectorization technique. The first is the number of sectors per cell  [21] [34]. By 

carefully controlling the transmission of signals to directions where they are really 

intended, directional antennas cut down the co-channel interference.  

Cell sectorization is used extensively to increase the capacity of cellular systems [35] 

and typically, a cell within a cellular network grows from minimal number of sectors 

(Omni cell) to more sectors (3-sector or more) in response to the growth of tele-traffc 

demand. Presently cellular systems are working on three antennas with 120° or six 

antennas with 60° architectures. Researchers of cellular networks are always looking 

for techniques to improve the network capacity within the limited frequency spectrum. 
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Figure 2.4: Cell Sector Configurations 

As shown in Figure 2.4 [34], the network enhancement method is to increase the 

number of sectors per base station. The challenge with sectoring as indicated in 

[21][34] is that they require more antennas to be mounted on a BTS and they also 

require more frequent handoffs whenever MNs move across sectors. 

2.2.6 Artificial Intelligence Techniques  

Artificial intelligence (AI) is defined as the ability of a computer or any other machine 

to perform those activities that are normally thought to require intelligence by 

evaluating information and making decisions according to pre-established criteria 

[17]. AI borrows its meaning from the word intelligence which is defined as the ability 

to apply past and present experience to satisfactorily solve present and future 

problems. In AI, the basic paradigm of intelligent action is that of searching through a 

space of partial solutions (called the problem space) for a goal situation. Fuzzy logic, 

artificial neural networks, genetic algorithms, and particle swarm optimization, among 

others, are examples of AI techniques that are applicable in every day's life [1]. 
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Artificial intelligence techniques have recently gained popularity in engineering 

design due to their efficiency and effectiveness and various papers have been published 

on the mobility prediction using AI techniques [4] [11] [36] [37]. 

2.2.7 Adaptive Neural Fuzzy Inference System (ANFIS) 

ANFIS is about taking a Fuzzy Inference System (FIS) and tuning it with an Adaptive 

Neural Networks (ANN) algorithm based on some collection of input-output data [17]. 

Using a given input/output data set, the ANFIS constructs a FIS whose membership 

function parameters are tuned (adjusted) using either a back-propagation algorithm 

alone or in combination with a least squares type of method. This adjustment allows 

the fuzzy systems to learn from the data being modeled. The parameters associated 

with the membership function changes through the learning process. The computation 

of the parameters is facilitated by a gradient vector. This gradient vector provides a 

measure of how well the fuzzy inference system is modeling the input/output data for 

any given set of parameters. When the gradient vector is obtained, any of several 

optimization routines can be applied in order to adjust the parameters and to reduce 

some error measure. This error measure is usually defined by the sum of the squared 

difference between actual and desired outputs. This process is referred to as supervised 

learning in neural network literature. By combining the advantages of imprecise data 

sampling of fuzzy logic and the intelligence of ANN, the neuro-fuzzy outsmarts the 

two individual AI; Fuzzy systems and Neural Networks. 

ANFIS structure consist of antecedent and conclusion parts. These two parts are linked 

by rules, to form a network. During the hybrid learning process, two steps are involved: 

a feed forward and feedback. In the feed forward, the parameters are first initialized 
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while keeping the antecedent parameters fixed, input data and functional signals 

propagate forward to compute the result of each layer node and the Least Square 

algorithm computes the consequent parameters. When the consequent parameters are 

identified, the functional signals continues in the forward motion until the error 

measure is computed and therefore known. In the feedback phase, the error rates 

propagate in a reverse order, from the output towards the input end [38] [39] [40]. The 

process is continued until the number of specified epochs (iterations) have been 

attained or error reaches a preset threshold. 

Figure 2.5 [41] shows the architecture of an ANFIS. It assumes a system with two 

inputs (x, y), four rules (Equation 2.1) and one output (z). The ANFIS structure 

executes the rules and calculates the output through five layers: fuzzification, product, 

normalization, de-fuzzification and total output. 

 

Figure 2.5: Structure of an ANFIS  
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This ANFIS structure has four rules and by using first-order Sugeno model, a typical 

set of fuzzy if-then rules are generated as 

If x is A1 and y is B1, then Z1 = p1x + q1y + r1                                          (2.1a)       

If x is A1 and y is B2, then Z2 = p2x + q2y + r2                                         (2.1b) 

If x is A2 and y is B1, then Z3 = p3x + q3y + r3                                          (2.1c) 

If x is A2 and y is B2, then Z4 = p4x + q4y + r4                                         (2.1d) 

Where 𝐴1, 𝐵1, 𝐴2, 𝐵2 are fuzzy sets, 𝑝𝑖, 𝑞𝑖  and 𝑟𝑖 (𝑖 = 1,2,3,4) are the coefficients of 

the first order polynomial linear functions. The different layers in Figure 2.5 are 

discussed next. 

Layer 1: Fuzzification Layer 

In this layer, the membership values are calculated from the membership 

relationship between input and output functions of layer 1 and they are 

identified as 

O1,i = μAi
(x),          i = 1, 2                                                                                (2.2a) 

O1,j = μBj
(y), j = 1, 2                                                                                 (2.2b) 

Where 𝑂1,𝑖 and 𝑂1,𝑗 represent the output functions and 𝜇𝐴𝑖
 and 𝜇𝐵𝑗

 represent 

the membership functions. 

Layer 2: Product Layer 

This layer has four nodes and the output, 𝑤𝑗, of each rule has to be computed 

by means of a fuzzy AND operation.  
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The Equation 2.3 illustrates how this. 𝑤𝑗 is the weight of the 𝑗𝑡ℎ rule and 𝑂2,𝑗 

is the output 

O2,j = wj = μAi
(x) μBi

(y), j = 1, 2, 3, 4.      i = 1, 2                                      (2.3) 

Layers 3: Normalized Layer 

The purpose of this layer is to normalize the weight function, wj, obtained from 

layer 2 to obtain the normalized output 𝑤̅𝑗. The output 𝑤̅𝑗 is calculated as the 

ratio of the 𝑗𝑡ℎ weight to the sum of the all weights. The output is denoted by  

O3,j = w̅j =
wj

∑ wi
4
i=1

                                                                                              (2.4) 

Layers 4: De-fuzzification Layer 

In the layer 4, 𝑤̅𝑗 multiplies the related output function (linear equations of the 

consequent part in Equation 2.4. The output of this layer is given by Equation 

2.5. 

O4,j = zj w̅j = w̅j(pjx + qjy + rj)                                                                     (2.5) 

Layers 5: Total Output Layer 

This is the final layer with a single node which gives the overall output. The 

output, given in Equation 2.6, is the sum of the former nodes. 

O4,j = ∑zj w̅j

4

j

                                                                                                         (2.6) 

The antecedents are tuned during the training process. Other parameters in the ANFIS 

training process are the coefficients of the output polynomials (as seen in Equation 
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2.1) and number of rules. The number of rules are defined by the number of inputs and 

membership functions [42]. 

2.3 Empirical Review 

2.3.1 Mobility Prediction Techniques and Models 

Mobility prediction of wireless users and units plays a major role in efficient planning 

and management of the bandwidth resources available in wireless networks [36]. In 

return, this efficiency allows better planning and improved overall QoS in terms of 

continuous service availability and efficient power management. In cellular networks, 

QoS degradation or forced termination may occur when there are insufficient resources 

to accommodate handoff requests. One solution is to predict the trajectory of mobile 

terminals so as to perform resource reservations in advance. With the vision that future 

mobile devices and thus smart antenna systems are likely to be equipped with 

reasonably accurate positioning capability, some new features for use in mobility 

prediction were investigated by Wee-Seng and Kim [43]. 

The application of mobility model is very important in the description of the movement 

pattern of mobile users. These patterns show how their location, velocity and 

acceleration among others change with respect to time. Every mobility prediction 

model has different characteristics as it performs location prediction of the target 

mobile node. A brief description of mobility prediction models which have been 

proposed and used are highlighted in this subsection of literature review. 
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2.3.2 Neural Network Techniques for Prediction in Mobile Networking 

Neural Networks (NN) are very sophisticated modeling techniques capable of 

modeling extremely complex functions [11] [15] and they have non-linear structure 

networks which learn by example. Neural Networks gather representative data and 

then invokes training algorithms to automatically learn the structure of the data. NN 

methodology for location prediction is done in two steps. Firstly, NN is trained with 

observed motion pattern. In the second step the trained NN is used for prediction, the 

actual movement and time is used to feed the trained neural network to make location 

prediction. This approach gives good results in the case of regular movements, but 

poor prediction results are seen in irregular mobility conditions [4]. 

2.3.3 Random Walk Mobility Model 

In this mobility model [44], mobile node (MN) moves from its current location to a 

new location by randomly choosing both the direction and speed. The new speed and 

direction are both chosen from ranges defined in advance; minimum speed-maximum 

speed and [0, 2π], respectively. The movement can be calculated in two ways; either 

with a constant time interval, 𝑡 or with a constant distance traveled d. If the MN 

approaches a boundary, it bounces back with an angle determined by the next 

upcoming direction. This mobility model is memoryless with the next move totally 

independent from the previous one. As the name of the model states, MNs are 

considered to be random and depicts a memoryless mobility system where the next 

move is totally independent from the previous one. 
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2.3.4 Random Waypoint Mobility Model 

The Random Waypoint Model was proposed by Johnson and Maltz [44]. This model 

includes pause times between changes in destination and speed. Firstly, the mobile 

node (MN) chooses a random location and considers it as its destination and then it 

moves towards its destination with constant velocity which is uniformly distributed 

between minimum velocity and maximum velocity. After arriving at the destination, 

the MN pauses for a specific time before choosing another random destination. The 

pause time can have the value zero (0), which means that it will continue its movement 

without any pause. This mobility model is also memoryless and the future movements 

of the future position MNs is independent of the previous movements [45]. From this 

brief description, this model is simple and is commonly studied in MANETs to 

evaluate their performance. 

2.3.5 Gauss-Markov Mobility Model 

From [19], the Gauss-Markov Mobility Model was planned to achieve randomness via 

one tuning parameter. Initially each mobile node (MN) is assigned a current speed and 

direction. At fixed intervals of time, n, movement occurs by updating the speed and 

direction of each MN. Specifically, the value of speed and direction at the 𝑛𝑡ℎ instance 

is calculated based on the value of speed and direction at the (𝑛 − 1)𝑡ℎ  instance and 

a random variable using the following equations: 

sn = asn−1 + (1 − a)μ + √(1 − a2)sxn−1
           (2.7a) 

αn = aαn−1 + (1 − a)μ + √(1 − a2)αxn−1
           (2.7b) 
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𝑠𝑛 and 𝛼𝑛 denotes the new speed and direction of the MN at time interval n, a is a 

tuning parameter used to vary the randomness, 0 ≤ 𝑎 ≤ 1, 𝑠𝑥𝑛−1
and 𝛼𝑥𝑛−1

 are random 

variables drawn from a Gaussian distribution with zero mean and standard deviation 

equal to 1. The value of 𝜇  is usually fixed at 1. For 𝑎 = 0, the equation yields totally 

random values, equivalent to Brownian motion. For 𝑎 = 1, the equation yields fixed 

values, equivalent to linear motion. The value of a can be adjusted between these two 

extremities to obtain different levels of random movement. At every time interval the 

next location of the MN is calculated based on the current location, speed, and 

direction of movement. Specifically, at time interval n, an MN’s position is given as 

xn = xn−1 + sn−1cosαn−1                         (2.8a) 

yn = yn−1 + sn−1sinαn−1                           (2.8b) 

(𝑥𝑛, 𝑦𝑛) and (𝑥𝑛−1, 𝑦𝑛−1)  are coordinates of the MNs position at the 𝑛𝑡ℎ and 

(𝑛 − 1)𝑡ℎ time intervals, respectively. 𝑠𝑛−1 and 𝛼𝑛−1 are the speed and direction of 

the MN at the (𝑛 − 1)𝑡ℎ time interval, respectively. 

This model ensures that the MNs do not go beyond the boundaries grid which acts like 

a cell. This prevents the MN from remaining near an edge of the grid for a long period 

of time. This is done by modifying the mean direction variable α, for example; its value 

can be changed to 180° when it reaches the grid. In Gauss Markov model, the velocity 

of a MN at any time slot is a function of its previous velocity. This summarizes Gauss-

Markov Model as a chronological dependency model with the degree of dependency 

being determined by the capacity of its memory to store parameter a which is a random 
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generator a that determines whether the model either behaves randomly in a Brownian 

form or in linear motion. 

2.3.6 Reference Point Group Mobility Model 

This model simulates group behavior [46], where each MN belongs to a group where 

every node follows a logical center, also known as a group leader. It is the leader that 

determines the group's motion behavior. The nodes in a group are usually randomly 

distributed around the reference point. The most vibrant contribution by this model is 

that different nodes use their own mobility model and are then added to the reference 

point which drives them in the direction of the group. At any given point in time, every 

node has a speed and direction that are derived by randomly deviating from that of the 

group leader. This general description of group mobility can be used to create a variety 

of models for different kinds of mobility applications. Group mobility as such can be 

used in military battlefield communications. One example of such mobility is that a 

number of soldiers may move together in a group. Another example is during disaster 

relief where various rescue crews, for example; firemen, policemen, and medical 

assistants form different groups and work together as a group. 

This model considers nodes to be moving in a group and that they are randomly 

distributed around the reference point. The reference point is a leader of the group. The 

individual position is neglected as long as it is not the leader. This increases the QoS 

at the reference node at the expense of the individual nodes. However, on a good note, 

every node may use its own mobility model and are then added to the reference point. 

The reference model does the work of driving nodes in a given direction as a group. 
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The group mobility model can thus be used to create a number of models for various 

kinds of mobility applications. 

2.4 Models under this Study 

2.4.1 Log-Normal Shadowing Model 

Signal propagation models are used to generate theoretical received signal strength 

(RSS) values. In this research, the log-normal shadowing model (LNSM) is proposed 

as the target signal propagation model. This is because of its ability to compensate the 

attenuating factors through the use a compensating factor 𝑋𝜉 , which is a Gaussian 

random variable (measured in dB) [43].  

In cellular or wireless networks, the location of the mobile node (MN) and its serving 

base transceiver stations (BTSs) is observable in the information that characterizes the 

forward link received signal strength indicator (RSSI) of all the active BTSs. The 

values of RSSI at the MN are measured at the mobile station and is modeled as a two-

fold effect of path loss and shadow fading [47].  The path loss, 𝑃𝐿(𝑑𝑖)[𝑑𝐵], at any 

distance, 𝑑𝑖(𝑚), in an open space is in Equation 2.9 [43]. 

PL(di)[dB] =  PL(d0)[dB] + 10nlog10 (
di

d0
)                                                  (2.9) 

Where; 𝑑𝑖 is the transmitter-receiver separation, n is the path loss exponent, 

PL(d0)[dB] is the path loss at known reference distance, 𝑑0. The path loss exponent, n, 

is an empirical constant and it varies with the characteristics of the propagation 

environment. 



 

30 
 

The model shown in Equation 2.9 is considered to be  unrealistic and with 

environmental factors like weather conditions, atmospheric absorption and space rays, 

the propagating signal is hindered by reflection, diffraction and scattering 

phenomenon. Basing on the empirical evidence, the path loss (𝑃𝐿(𝑑𝑖)) at any given 

distance di is modeled as a log-normally distributed random variable and a distance-

dependent [47] [48] [49] [50]. This forms the log-normal shadowing model in 

Equation 2.10 

PL(di)[dB] = PL(d0)[dB] + 10nlog10 (
di

d0
) + Xξ                                       (2.10) 

Where 𝑋𝜉 (𝑑𝐵)  is Gaussian random variable. The RSS at any given distance is 

modeled in Equation 2.11 

RSSI =  PR = PT − PL(di)

= PT − PL(d0)[dB] − 10nlog10 (
di

d0
) − Xξ                     (2.11a)  

RSSI =  −10nlog10(d) +  A                                                                          (2.11b) 

Where; RSSI denotes the signal power at the receiver, 𝑃𝑇 denotes the transmitted 

power, 𝑛 denotes the path loss exponent, 𝑑 =  
𝑑𝑖

𝑑0
 is the normalized distance from the 

transmitter and 𝐴 denotes (𝑃𝑇 − 𝑃𝐿(𝑑0)−𝑋𝜉). In this study, 𝑑0 is set between 1m and 

3.5m for short distance and 100m for long distance.  

2.4.2 Grey Prediction Model  

Grey prediction model is based on the Grey theory which organizes the original 

sequence of data so that a high degree of accuracy is achieved. Grey systems are 
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generic and may use colors to describe the subject under investigation. For example; a 

dark color may represent the degree of clarity of information. In a similar way, Black 

Box has been widely used to stand for a structure that is not known to the investigator. 

In Grey theory black symbolizes unknown information, white for known information 

and Grey for partially known information [1]. 

Grey and fuzzy concepts seem to be similar but different in the properties of internal 

meanings and external extensions of subjects under investigation. Grey systems 

emphasize the objects of definite external extensions and vague internal meanings, 

unlike fuzzy logic which studies the objects with definite internal meanings and vague 

external extensions [51]. Grey systems relies on the foundation of Grey numbers and 

their operations which are Grey matrices and equations. Some examples of research 

tasks with Grey systems are: control problems in industry, Grey systems analysis, 

modeling, forecasting and controlling intrinsic characteristics of systems. It is through 

organization of raw data that Grey systems can remove randomness, which is followed 

by series of operations for construction of the Grey model. The organization and 

operations of the Grey forecasting model are based on grey system theory which has 

got a strong adaptation ability since it requires less data and distribution information 

is not necessary. It requires a few discrete data values which are sufficient to 

characterize an unknown system in order to formulate a real world problem associated 

with uncertainty [52] [53] [54]. 

The prediction method of Grey systems theory has the following features: 

a. It is composed of a dynamic model expressed by an ordinary differential 

equation. 
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b. The right hand side of the differential equation can have various factors of 

fluctuation (mainly input factors). 

c. The algorithm is relatively easy to understand and requires only a few 

calculations. 

The Grey system prediction methodology is achieved through: conversion of original 

data into a new data sequence, a process called Accumulated Generation Operation 

(AGO); and parameter determination through the use of least squares method using 

the new data series. As already mentioned, the theory relies on objects that are known 

as Grey numbers, together with operations, matrices and equations. It is also already 

known that Grey theory treats raw data using suitable laws to transform it into 

processed data. The randomness in the data is reduced by the AGO on the raw data to 

make it meaningful. The AGO is illustrated below: Consider 

× (0) = 1, 2.5, 3, 4.5, 5, 3.5                        (2.12) 

This sequence in Equation 2.12 does not have clear rule. After the application of AGO, 

the sequence in Equation 2.13 has a steady increase in the numbers which are 

generated. 

× (1) = 1, 3.5, 6.5, 11, 16, 19.5            (2.13) 

The AGO method removes the irregularities in the raw data and this is the basis of 

Grey theory. AGO transforms the original data into data with an exponential curve 

which is illustrated in Figure 2.6 
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Figure 2.6; Data transformation for AGO operation in the Grey model 

The Grey model GM(1,1) is the most widely used Grey forecasting model. GM(1,1) 

is a single variable first-order Grey model, which weakens the randomness of the 

original data series. It relies on the original data to search the intrinsic regularity of the 

data. It is achieved through the following steps: 

Step 1: Generate the initial time series 

x(0)(t) =  x(0)(1), x(0)(2), … , x(0)(k)                                                             (2.14) 

Step 2: Generate regular data sequence by applying the AGO on the initial irregular 

data sequence in Equation 2.14. 

x(1)(k) =  x(1)(1), x(1)(2), . . . , x(1)(n)                                                           (2.15) 

Where x(1)(n) is the nth value of the regular sequence. The result of the AGO 

is summarized as 

x(1)(k) =  ∑x(0)(t)

k

t=1

                                                                                         (2.16) 

Step 3: Formulate the first-order Grey differential equation. 
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The first-order differential equations of the Grey model GM(1,1) is formulated 

as follows: 

dx(1)

dt
+ ax(1) = b                                                                                                (2.17) 

Where; a is the development coefficient for reflecting the development trends 

of  x0 and  x1, b is the Grey input. The values of a and b are obtained by 

applying a least square method to Equation 18. 

[
a
b
] =  (𝐁T𝐁)−1(𝐁YN)𝑇                                                                                     (2.18) 

Where; 

𝐁 =

[
 
 
 
 
 −

𝟏

𝟐
[x(1)(2) + x(1)(1)] 1

−
𝟏

𝟐
[x(1)(3) + x(1)(2)]

.

.

.

1
.
.
.

−
𝟏

𝟐
[x(1)(n) + x(1)(n − 1)] 1]

 
 
 
 
 

 and 𝐘N = [x(0)(2), x(0)(3),… , x(0)(n)] 

The first column of the B-matrix consists of the background sequence and each 

point in the sequence forms part of the background value. The values of a and 

b are obtained by substituting the values of  𝑩 and 𝒀𝑁 into Equation 2.18. 

Step 4: Solve the differential equation 

Using the solution of step 3 and Equation 2.17, the prediction model GM(1,1) 

is obtained as 

x(1)(k + 1) = [x(1)(0) −
b

a
] e−ak +

b

a
,   k = 1,2,3, … , n                             (2.19)  

Step 5: Apply Inverse Accumulated Generating Operation (IAGO) 
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The IAGO is applied to obtain a prediction value corresponding to the original 

data series. 

x̂(0)(k + 1) = x(1)(k + 1) − x(1)(k) = (1 − e−a) [ x(1)(0) −
b

a
 ] e−ak  (2.20) 

Step 6: Validation of the accuracy of prediction 

The accuracy of the GM(1,1) model is inspected by testing the accuracy of the 

prediction and prediction error made by the modelling algorithm. The original 

data series x(0)(k) = {x(0)(1), x(0)(2), . . . , x(0)(n)} and formulated predicted 

data series x̂(0) = {x̂(0)(1), x̂(0)(2), . . ., x̂(0)(n)} are used in calculating of 

residual error, relative error and mean relative error.  

The absolute residual error is calculated as shown in Equation 2.21. 

εk
(0) = |x(0)(k) − x̂(0)(k)|, k = 1, 2, 3, … , n                                               (2.21) 

The relative error is calculated as shown in Equation 2.22. 

Δk =
ε(0)(k)

x(0)(k)
=  

|x(0)(k) − x̂(0)(k)|

x(0)(k)
, k = 1,2,3, … , n                                 (2.22) 

The mean relative error is calculated as 

ek = Δk
̅̅ ̅ =  

1

n
∑ Δk

n

k=1

                                                                                            (2.23) 

The prediction accuracy is  (1 − 𝑒𝑘) ∗ 100%. When 𝑒𝑘 ≤ 0.3, the grey model 

GM(1,1) is suitable for medium and long term forecasting [52].  

Step 7: Introduce weights in GM(1,1) 
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Introduce weights, 𝑤1 and 𝑤2, in Equation 8 and Equation 14 to form a new a 

weighted-prediction sequence.  

x̂N
(0)(k + 1) = w1x

(0)(k) + w2x̂
(0)(k + 1)                                                 (2.24)   

Where x̂N
(0)(k + 1) is the weighted GM, which is a generic prediction based 

on GM. Step 6 was performed to validate the prediction accuracy.  

2.5 Identified Research Gap 

From the current methodologies used in studying mobility prediction, as highlighted 

in the literature review, we learn that many of the proposed models do not consider 

using Received Signal Strength (RSS) during mobility prediction. A few methods 

which partially use the RSS measurements to perform localization and mobility 

prediction only use the historical measurements of the RSS accompanied with other 

parameters that describe the motion or map the path of mobile nodes (MNs) like 

current location, velocity and cell geometry. Optimum utilization of RSS 

measurements would be of a great importance in achieving accurate mobility 

prediction of MNs in current and future generation wireless networks and smart 

antenna systems. In this research, an ANFIS methodology that utilizes RSS values to 

perform localization of MNs has been studied. This method is very efficient since 

using RSS does not require any additional hardware components on both the 

transmitter and receiver ends.   
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CHAPTER THREE: RESEARCH METHODOLOGY 

3.1 Rationale of the Study 

Mobility prediction in smart antenna systems is of vital importance in predicting the 

position of mobile hosts as well as any future handovers. Prediction, in this research, 

is based on the Received Signal Strengths (RSS), at the reception of the mobile node 

(MN), from the base station (BS) to which the node is connected. With a good 

prediction of the RSSI values it is possible to achieve excellent future location and the 

related advantages like handoff predictions. The proposed methodology uses the RSS 

to predict the movement of the MN. 

By benchmarking with the similar studies carried out in [10] [11] [12] [13] [14] [15], 

a log-normal shadowing model (LNSM) was chosen to provide a basis of this research. 

This model was chosen because of its ability to compensate for the shadow fading, 

which is either as a result of multipath propagation or due to shadowing from obstacles 

affecting the wave propagation, in RSS through the inclusion of the Gaussian random 

variable. The Grey model is then used to predict RSS values based on the data supplied 

by the LNSM [43] [55] [56].  

It is known that the major goal of wireless communications is to allow a user to access 

the capabilities of global networks at any time without encountering problems of 

location and mobility, the technology of future smart antenna systems needs to make 

right predictions about Mobile Nodes' movement. Therefore, an ANFIS technique that 

demonstrates inherent learning abilities due to the neural network (NN) training 

algorithm incorporated for the tuning of the nonlinear parameters was chosen to 
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optimize the RSS values at the MN. The tuned RSS are used in the optimal estimation 

of the Mobile Node’s distance from the transmitter. The proposed technique also has 

a rule-based structure that performs fuzzy reasoning to extract the dynamics of the 

studied phenomenon. 

3.2 Conceptual Design Flow of ANFIS in Mobility Prediction 

In this study, the Grey prediction model and its weighted version perform prediction 

of RSS using the data generated by the LNSM. Both LNSM and the ANFIS models 

are supplied with the same parameter values. The RSS values are contributed by three 

parameters, which include path loss at reference distance, distance and path loss 

exponent.  

Optimization of mobility prediction using ANFIS technique is therefore achieved by 

using a three-steps below:  

1. Process the input data so as to construct the mobility model according to 

the Grey theory to predict the RSS values. 

2. Feed the ANFIS with both the training and testing data.   

3. Run the ANFIS to generate the optimal RSS values. 

In Figure 3.1 the ANFIS simulates the relationship between the input and output data 

through training and learning processes. This study used secondary data as the training 

dataset. This data was gathered from published journals as indicated in Table 3.1 [10] 

[47] [43] [48] [57]. The testing data was generated by the Grey model. The inputs of 

the GM were the RSS values generated by the Log-normal Shadowing Model 

(LNSM). Through its learning, the ANFIS optimizes the RSS values indicated by 
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RSSA. The error in the output of ANFIS was determined by the number of epochs 

which was limited to 800 epochs.  

 

Figure 3.1: RSS Prediction Set-up for ANFIS and Other Models  

Table 3.1: Simulation Parameters 

Index, 

x 

Path loss 

exponent, 

n 

Path loss at 

reference 

distance 

(dB) 

Reference 

Distance 

(m) 

Distance 

(m) 

Standard 

Deviation 

(dB) 

Transmitter 

Power 

(dBm) 

References 

1 1.613 39.00 1.0 1.5 – 61.5 0.4510 0.000 [10] 

2 2.200 45.00 1.0 1.0 – 10.0 0.2721 0.000 [48] 

3 3.800 47.30 1.0 2.5 – 35.0 0.7270 3.802 [57] 

4 3.11 89.77 100.0 100.0– 1250 6.000 44.771  [47] 

5 3.55 106.00 100.0 100.0– 1800 8.000 0.000 [43] 

6 2.57 95.00 100.0 100.0– 1800 5.400 0.000 [43] 

7 1.701 41.00 3.0 3.0 – 48.0 2.157 0.000  [10] 

 

3.3 Logical Design Flow of ANFIS Methodology   

All the models used in this research; which are Log-normal Shadowing Model 

(LNSM), Grey model (GM) and ANFIS were simulated in MATLAB (R2012b). The 

ANFIS model which forms the heart of this research is logically presented in Figure 

ANFIS 

LNSM 

GM 

w-GM 

n 

d 

PL 

RSSA 

RSSL 

RSSGM 

RSSwGM 
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3.2. The simulation begins with the LNSM which provided the inputs to the Grey 

model. The simulation parameters highlighted in Table 3.1 provided the inputs to the 

LNSM. Both the LNSM and GM are simulated together and this is captured in 

Appendix A-1. The Received Signal Strength (RSSL) is processed by the GM and w-

GM to produce outputs; RSSGM and  RSSwGM respectively. The output of the GM, 

RSSGM, together with input parameters of the LNSM formed the testing data set to the 

ANFIS. 

The training data set to the ANFIS was gathered from the published papers [10] [47] 

[43] [48] [57]. This data is captured in Appendix A-2. The training and testing data 

was organized in corresponding rows and columns before the execution of the 

MATLAB programme. 

During the simulation process, 106 datasets was used for training and testing. The 

input data to the ANFIS as shown in Figure 3.1, was the path loss, path loss exponent 

and distance. The output of the system was the optimized RSS values, RSSA. The input 

data consisted of set of [4 4 5] membership functions which generated 80 (4x4x5) 

rules. The selection of these membership functions was reached basing on a series of 

simulations that were performed to check the performance of the system. A hybrid 

learning algorithm constituting of error back propagation and gradient descent method 

was used in this research for ANFIS learning.  
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Figure 3.2: Mobility Prediction Optimization  

During the learning process, the premise parameters of the fuzzification layer and 

consequent parameters in the de-fuzzification layer are tuned for a desired output. 

Once the preset number of epochs are reached, ANFIS uses Equation 3.1 to obtain the 

Root Mean Square Error (RMSE) incurred during training. 

RMSE = √
1

N
∑ (di − oi)2N

i=1                                                                                 (3.1)      
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Where 𝑑𝑖 denotes the desired output, 𝑜𝑖 denotes the ANFIS output for the 𝑖𝑡ℎ sample 

from training data and N is the training sample count. 

The optimized RSS and distance parameters were used to generate regression models 

which were used in distance estimations. The outputs of ANFIS simulation were 

exported to and analyzed using Microsoft Excel. The exported RSS data was used to 

generate the approximate distances. During the validation of ANFIS performance, the 

error between the distance values generated by ANFIS and the measured and published 

distances was computed. The mean average error was calculated and used to compare 

with the reported errors in other methods. 
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CHAPTER FOUR: RESULTS AND DISCUSSION  

4.1 Introduction  

The output data, from the ANFIS programme, which was exported to excel was 

analyzed at this point. The column for the RSS values was pivotal in computing the 

corresponding distances and gaining deeper insights about the behavior of the designed 

methodology. This involved generating regression models for each data sets. To 

validate the performance of ANFIS in estimating mobility or the distance of Mobile 

Node (MN) from the transmitting stations in wireless or cellular networks, a 

comparison of the mean absolute errors produced by ANFIS estimates and those 

produced by other methods highlighted in [10] [11] [12] [13] [14] [15] was performed. 

4.2 Simulation of Models 

All the models used in this research; which are Log-normal Shadowing Model 

(LNSM), Grey model (GM) and ANFIS were implemented in MATLAB (R2012b). 

The simulation begun with the LNSM which provided the inputs to the Grey model. 

The Received Signal Strength (RSSLN) is processed by the GM to produce an output 

Received Signal Strength (RSSGM). The RSSGM together with the input parameters of 

the LNSM formed the testing data set to the ANFIS. The testing data was organized in 

corresponding rows and columns before the execution of the MATLAB code. 
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4.2.1 LNSM and Grey Model  

Using Equation 2.20 and 2.24, Grey and weighted Grey models were simulated. As 

shown in Appendix A-1, the LNSM provided the inputs to the GM. When plotted, the 

results of this simulation produced Figure 4.1.  

In Figure 4.1, a plot of GM is seen having the same nature as the LNSM with a reducing 

difference (error) from the starting point (100m) up to the second last point (1200m). 

There a notable anomaly at the last point. This is caused by the nature of GM which 

uses a sliding window while performing predictions. At every point of its prediction, 

GM searches for a value at 𝑛 + 1 point. On failing to get the next point, GM drops the 

search that falls out of the window and the output becomes a random value on the right 

hand side of the sliding window. 

 

Figure 4.1: RSS versus Distance with Endpoint Error 
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Figure 4.2: RSS versus Distance without Endpoint Error 

The end point error contributed to a large mean average error in the outputs of GM. In 

order to eliminate the endpoint diversion of the last values in GM predictions, as shown 

in Figure 4.1, the value that corresponds to the endpoint was eliminated to give Figure 

4.2. Figure 4.2a-b show en enlarged view of Figure 4.2. This was done to give a clear 

view of the congested plots in Figure 4.2. On average, this reduced the average mean 

error by 0.0572 as well as reduced the average run time in its processing. An alternative 

approach towards the elimination of the endpoint error was to predict the (𝑛 + 1)𝑡ℎ 

data points, where 𝑛 is the expected number of data points. After predicting with one 

extra point the last point can then be discarded.  The execution times of the two 

versions of GM Prediction were compared under the same hardware and software 

conditions. The version of the GM with end point error took a longer time to converge 
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than the version whose endpoint error was eliminated. Without the endpoint error the 

running time reduced by 12.83%. The endpoint error inherent in the GM prediction is 

attributed to the sliding window operation to which GM model relies on. The model 

tries to search for the matching value in the RSS which doesn’t exist. The output to 

this is a random value which is less than the second last prediction.  

The illustrations of Figures 4.1 and 4.2 are a representative of dataset corresponding 

to index 4 of Table 3.1. The others datasets corresponding to indices 1, 2, 3, 5, 6 and 

7 exhibit similar characteristics like the data set in index 4. 

Another study on the GM was done to reduce the error magnitude between the GM 

and LNSM. This reduced the error by 0.7696dBm (from 1.9436 to 1.1740). This was 

done by applying weighted averages in the primitive data and the GM predicted data 

to form a generic version. The weights of 𝑤1 = 0.5 and 𝑤2 = 0.5 were randomly 

chosen and used in Equation 2.24 for all the datasets used in the study. After the 

application of weights, the resulting predicted data had a reduced error between the 

output values of LNSM and GM. The impact of the weighted averaging is shown in 

the third legend of the curves in both Figure 4.1 and 4.2. 
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Figure 4.2a: Enlarged View of Figure 4.2 for Distance between 0m and 600m 

 

Figure 4.2b: Enlarged of RSS Figure 4.2 for Distance between 600m and 1400m 
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Using Equation 2.23, the accuracies of Grey Model and weighted Grey model were 

computed. On average, the accuracies of GM and weighted GM were 96.56% and 

97.86% respectively. This shows that the prediction accuracy of weighted GM, in 

reference to the LNSM outputs, is better than that of ordinary GM. Table 4.1 

summarizes the different prediction accuracies of first order Grey Model, GM(1,1), on 

different sets of data used in this research. 

Table 4.1: Grey Model Prediction Accuracy 

 

In Table 4.1, 𝑒𝑘 denotes the average relative error and (1 − 𝑒𝑘) is the prediction 

accuracy. Using Equation 2.23, the relative errors in each dataset, indices 1-7, and the 

corresponding prediction accuracies were calculated. The results in Table 4.1 show 

that the prediction accuracy of both GM and wGM are excellent. However, it is evident 

that the prediction accuracy of wGM in relation to the LNSM outputs is better than 

that of ordinary GM. 

4.2.2 ANFIS 

As discussed in Chapter Three, the simulation of ANFIS was performed with input 

data consisting of a set of [4 4 5] membership functions which generated 80 (4x4x5) 

rules. This information is captured in Figure 4.3 that shows the relationship between 

Index, x 
Grey Model(GM) Weighted Grey Model(wGM) 

𝐞𝐤 (𝟏 − 𝐞𝐤) ∗ 𝟏𝟎𝟎% 𝐞𝐤 (𝟏 − 𝐞𝐤) ∗ 𝟏𝟎𝟎% 

1 0.02053 97.9467 0.01208 98.7912 

2 0.04249 95.7503 0.02566 97.4335 

3 0.05292 94.7076 0.03490 96.5092 

4 0.02278 97.7219 0.01310 98.6892 

5 0.03753 96.2469 0.02411 97.5888 

6 0.03011 96.9884 0.01826 98.1737 

7 0.0212 97.8773 0.0119 98.8075 
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the input and output parameters of the proposed ANFIS model. The input parameters 

before and after the training are indicated in Figures 4.4 and 4.5. The selection of these 

membership functions was experimentally done based on a series of simulations that 

were carried out to check their performance.  

 

Figure 4.3: Input-Output Relationship for the ANFIS Model 
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Figure 4.4: Membership of ANFIS Input Parameters before Training 

 

 

Figure 4.5: Membership of ANFIS Input parameters after Training 
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The performance indicators for the simulation were: convergence or run time, and 

training error size. The selected set of membership functions trained the data for 

approximately 120s (averaged time) with a training RMSE of 0.4016 which 

corresponded to the predefined 800 epochs. The run time depends on the amount of 

data and training error depends on the number of epochs in the ANFIS algorithms. 

Other sets of simulations performed here consisted a higher and lower number of 

membership functions and rules. In these other sets of simulations, the number of 

epochs were varied. Increase in the number of rules increased the execution time while 

reducing the RMSE and the reverse was true. The similar trend of behavior was 

significant with variation in the number of epochs; increase in the epochs improved 

the RSME at the expense of the execution time. 

Three independent studies were performed on ANFIS by subjecting the system to 

different sets of testing data: the first study involved the use of GM’s output; the second 

one involved the use of LNSM output; and in the last one the wGM outputs were used. 

Under all these testing data, the trained outputs of ANFIS exhibited the same behavior 

with the same results.  

As already mentioned, the study was carried out on data gathered from both short and 

long distance communication environments. Data plots of RSS versus distance have 

been shown in Figures 4.6-8, 4.15-17 and 4.26. In all these plots, five RSS parameter 

values are plotted against distance. These RSSs values are measured RSS from 

published data; optimal RSS which is the ANFIS output, RSS output from GM; RSS 

output from the weighted GM; and RSS output from LNSM. 
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The measured data used in this research consists of data gathered from both long and 

short distance environments. It is evident that the outputs of different predictions 

follow a general trend; the RSS at the MN reduces as the distance between the MN 

and the transmitter increases. The performance of the different prediction models in 

estimating distance was analyzed by studying the relationship between the RSS values 

and the logarithmic values of distance and the results are shown in Figures 4.9-11, 

4.18-20 and 4.27. Each figure yielded a set of regression line approximations for the 

prediction models under study. These regression line approximations are presented in 

the Tables 4.2-3 and 4.5. The index 𝑥 used here is similar and therefore corresponds 

to the indices used in Table 3.1.  

4.2.2.1 Short Distance Outdoor Environment 

In this research short distance environment considered distance less than 100m. 

Specifically, Table 3.1 highlights the short distance ranges as 1.0-10.0m, 2.5-35.0m, 

3.0-48.0m and 1.5-61.5m. Figures 4.6-8 show plots of RSS versus distance for the four 

models (ANFIS, LNSM, GM, and wGM) plus a plot for the measured data used in this 

study for short distance communication environment. Figures 4.9-11 show the 

regression approximations for the datasets shown in Figures 4.6-8. Figures 4.12-14 

show plots of localization error versus distance for the models indicated in Figures 4.6-

8.  
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Figure 4.6: RSS versus Distance for Index 1 

The vertical line in Figure 4.6 at a distance of 30m separates the display into two 

sections that are represented by Figure 4.6a-b. This was done to have a clear view of 

Figure 4.6. 

 

 

Figure 4.6a: Enlarged View of Figure 4.6 for Distance between 0m and 30m 
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Figure 4.6b: Enlarged View of Figure 4.6 for Distance between 30m and 70m 

 

 

Figure 4.7: RSS versus Distance for Index 2 
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Figure 4.8: RSS versus Distance for Index 3 
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this occurs at 38m distance; for Figure 4.7 it occurs at 6m distance; and for Figure 

4.8, it occurs at 23m distance. 

From the Figures 4.9-11, the regression lines formed by the ANFIS outputs are very 

close to the ones formed by the measured data compared to other models considered 

under this study. The nature of these regression lines depicts the observations made 

from Figures 4.6-8. 

 

Figure 4.9: RSS versus log10(d) for Index 1 
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Figure 4.10: RSS versus log10(d) for Index 2 

 

 

Figure 4.11: RSS versus log10(d) for Index 3 
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From Figures 4.12-14, it is seen that the localization or mobility prediction is carried 

out with some errors as the mobile node (MN) moves away from the base station. A 

large increase in the prediction error for Figure 4.12 begins to occur at 38m distance; 

for Figure 4.13, it occurs at a distance of 6m; and in Figure 4.14, it occurs at 23m. In 

each dataset, a rise in the error magnitude is due to the deviation in the RSS values 

recorded at the MN which slightly or greatly deviates away from the trend of the 

previously collected data. The error changes as seen in Figures 4.12-14 correlate to the 

observations made from Figures 4.6-8. By comparing the distance covered by the MN 

before the RSS becomes erroneous to the entire distance under the study, it is seen that 

the magnitude of error correlates to the total distance of coverage. Thus, for longer 

distances, larger error values are observed. On average, a large increase in error occurs 

at 62.33% of the total distance in short distance communication environment.   

 

Figure 4.12: Localization Error for the Different Prediction Models for Index 1 
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Figure 4.13: Localization Error for the Different Prediction Models for Index 2 

 

 

Figure 4.14: Localization Error for the Different Prediction Models for Index 3  
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Table 4.2: Regression Line Estimations for the Different Prediction Models for Index 

1-3 

Index, 𝐱 Regression Line Approximation 𝐑𝟐 

1 

RSS1(dBm) = −16.746 ∗ log10(dm) − 40.895 0.9695 

RSS1(dBm) = −16.231 ∗ log10(da) − 41.522 0.9774 

RSS1(dBm) = −16.13 ∗ log10(dl) − 39.451 1.000 

RSS1(dBm) = −14.081 ∗ log10(dwg) − 42.534 0.994 

RSS1(dBm) = −12.972 ∗ log10(dg) − 44.315 0.9881 

2 

RSS2(dBm) = −27.68 ∗ log10(dm) − 40.122 0.8716 

RSS2(dBm) = −28.253 ∗ log10(da) − 39.747 0.9579 

RSS2(dBm) = −22 ∗ log10(dl) − 45.272 1.000 

RSS2(dBm) = −18.299 ∗ log10(dwg) − 49.065 0.9961 

RSS2(dBm) = −16.586 ∗ log10(dg) − 51.115 0.9933 

3 

RSS3(dBm) = −40.278 ∗ log10(dm) − 48.025 0.9521 

RSS3(dBm) = −38.774 ∗ log10(da) − 49.2 0.9709 

RSS3(dBm) = −38 ∗ log10(dl) − 44.227 1.000 

RSS3(dBm) = −31.848 ∗ log10(dwg) − 51.057 0.9946 

RSS3(dBm) = −29.896 ∗ log10(dg) − 53.752 0.9933 

 

In Tables 4.2-3, 𝑥 is the index; 𝑑𝑚 is the ratio 𝑑𝑖 𝑑0⁄  for the measured data regression 

line; 𝑑𝑎 is the ratio 𝑑𝑖 𝑑0⁄  for the ANFIS regression line; 𝑑𝑙 is the ratio 𝑑𝑖 𝑑0⁄  for the 

LNSM regression line; 𝑑𝑤𝑔 is the ratio 𝑑𝑖 𝑑0⁄  of the weighted Grey model regression 

line; 𝑑𝑔 is the ratio 𝑑𝑖 𝑑0⁄  of  the Grey model regression line; and 𝑅2 is the correlation 

coefficient of the estimated regression lines. 

4.2.2.2 Long Distance Outdoor Environment   

In this research long distance environment considered distance between 100m and 

1800m as summarized in Table 3.1 with index 4-6. Figures 4.15, 4.16 and 4.17 show 

plots of RSS versus distance for the four models (ANFIS, LNSM, GM, and wGM) and 

a plot of measured data used in this study. Figures 4.18, 4.19 and 4.20 show the 

regression approximations for the datasets shown in Figures 4.15, 4.16 and 4.17. 
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Figures 4.21, 4.22 and 4.23 show plots of localization error against distance for the 

models indicated in Figures 4.15, 4.16 and 4.17.  

From Figures 4.15-17, the following observations were made: 

1. ANFIS outputs and the measured data form curves that are almost normally 

distributed around each other. 

2. The ANFIS curves have an independent trend to the curves of the testing data in 

terms of linearity.  

3. In each dataset, the ANFIS curves form multiple points of intersection with the 

training data (measured data) and very few points of intersection with the testing 

data (from the GM). Longer distances form more intersecting points than the 

shorter distance. 

4. For each dataset, there is the deviation in the recorded RSS and ANFIS output 

values from the general trend of the previously recorded and generated data. For 

Figure 4.15, this occurs at 800m distance; for Figure 4.16 it occurs at 1100m 

distance; and for Figure 4.17, it occurs at 1200m distance. 

The regression lines formed by the ANFIS outputs, as shown in Figures 4.18-20 are 

very close to the ones formed by the measured data unlike the other models used under 

this study. The nature of these regression lines also depicts the observations made 

from Figures 4.15-17. 
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Figure 4.15: RSS versus Distance for Index 4 

 

 

Figure 4.16: RSS versus Distance for Index 5 
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Figure 4.17: RSS versus Distance for Index 6 

 

 

Figure 4.18: RSS versus log10(d) for Index 4 
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Figure 4.19: RSS versus log10(d) for Index 5 

 

 

Figure 4.20: RSS versus log10(d) for Index 6 
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distance; for Figure 4.22, it occurs at a distance of 1100m; and for Figure 4.23, it occurs 

at 1200m distance. In each dataset, a rise in the error magnitude is due to the deviation 

in the RSS values recorded at the MN which slightly or greatly deviates away from the 

trend of the previously collected data. The error changes as seen in Figures 4.21-23 

correlate to the observations made on Figures 4.15-17. By comparing the distance 

covered by the MN before the RSS becomes erroneous to the entire distance under the 

study, it is seen that the magnitude of error increases with increase in distance of 

coverage. Thus, the longer the distance, the larger the error change at the 

corresponding variable distances is incurred. On average, a large increase in error 

occurs at 64.82% of the distance in long distance communication environment.   

 

 

Figure 4.21: Localization Error for the Different Prediction Models for Index 4 
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Figure 4.22: Localization Error for the Different Prediction Models for Index 5 

 

 

Figure 4.23: Localization Error for the Different Prediction Models for Index 6 
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Table 4.3: Regression Line Estimations for the Different Prediction Models for Index 

4-6 

Index, 𝐱 Regression line approximation 𝐑𝟐 

4 

RSS4(dBm) = −49.7 ∗ log10(dm) − 31.679 0.8824 

RSS4(dBm) = −49.734 ∗ log10(da) − 31.654 0.8852 

RSS4(dBm) = −31.1 ∗ log10(dl) − 51 1.000 

RSS4(dBm) = −28.634 ∗ log10(dwg) − 53.661 0.9989 

RSS4(dBm) = −27.21 ∗ log10(dg) − 55.337 0.998 

5 

RSS5(dBm) = −28.418 ∗ log10(dm) − 62.323 0.8809 

RSS5(dBm) = −28.367 ∗ log10(da) − 62.36 0.9042 

RSS5(dBm) = −35.5 ∗ log10(dl) − 53 1.000 

RSS5(dBm) = −30.392 ∗ log10(dwg) − 59.011 0.9951 

RSS5(dBm) = −28.561 ∗ log10(dg) − 61.56 0.9935 

6 

RSS6(dBm) = −32.305 ∗ log10(dm) − 43.878 0.845 

RSS6(dBm) = −32.332 ∗ log10(da) − 43.855 0.8762 

RSS6(dBm) = −25.7 ∗ log10(dl) − 50.4 1.000 

RSS6(dBm) = −22.266 ∗ log10(dwg) − 54.469 0.996 

RSS6(dBm) = −20.677 ∗ log10(dg) − 56.597 0.9935 

 

4.2.2.3 Summary for Short and Long Distance Prediction Performance 

From Tables 4.2-3, it is evident that regression line estimates exhibit a general linear 

equation of a line between two points. This equation is stated as 

y = mx + b                                                                                                              (4.1) 

Where  𝑦 denotes  RSS, 𝑚 denotes −10𝑛, 𝑥 denotes log10(𝑑𝑖 𝑑0)⁄  and 𝑏 is the 

intercept on the y-axis. For all the regression line estimates the approximate distance 

was calculated using 

di = d0 ∗ 10
−(

RSS+b
10n

)
                                                                                            (4.2) 

All the errors and the corresponding root mean square error (RMSE) which are formed 

by the deviations in distance for different predictions from the measured distance using 
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the results of Equation 4.2 were computed. These errors are shown in the Figures: 4.12, 

4.13, 4.14, 4.21, 4.22 and 4.23. In Table 4.4-5, these errors have been summarized. 

Table 4.4: Errors for the Different Prediction Models in Outdoor Environments for 

Index 1-2 

Index, 𝐱 Models Mean Error (m) RMSE (m) 

1 

ANFIS 0.690 1.0412 

LNSM 13.068 15.8700 

wGM 14.502 19.7730 

GM 14.794 21.7050 

2 

ANFIS 0.083 0.1057 

LNSM 0.581 0.6008 

wGM 0.908 0.9826 

GM 0.997 1.1736 

 

 

Table 4.5: Errors for the Different Prediction Models in Outdoor Environments for 

Index 3-6 

Index, 𝐱 Models Mean Error (m) RMSE (m) 

3 

ANFIS 0.368 0.4718 

LNSM 8.061 9.2600 

wGM 8.077 10.1895 

GM 7.266 9.4479 

4 

ANFIS 0.322 0.4681 

LNSM 161.033 175.8635 

wGM 189.716 208.7665 

GM 204.888 225.5499 

5 

ANFIS 3.877 4.6456 

LNSM 135.755 139.1499 

wGM 95.955 100.4047 

GM 49.111 54.6076 

6 

ANFIS 0.630 1.0228 

LNSM 177.564 292.5742 

wGM 278.223 455.1970 

GM 327.125 516.8296 
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Figure 4.24: Localization Error in Short Distance Outdoor Environment 

 

Figure 4.25: Localization Error in Long Distance Outdoor Environment 
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Generally, the mean error in outdoor environments in all the models’ estimates 

increases with increase in distance and with a notably small increase for the ANFIS 

estimates. This is visible in Figure 4.24. This is attributed to the increase in the error 

magnitudes of the testing datasets which increase rapidly with increase in distances.  

Short distance provided good estimations when using the ANFIS model. The shortest 

distance provided the best estimation compared to the long distances. This is attributed 

to the sampling distance of 1m which was used for data corresponding to index 2. Data 

samples obtained from short distances make it easy for ANFIS to learn about the 

pattern that exists in them.  

For long distances, ANFIS prediction performance for data gathered from suburban 

environments is better than the performance in an urban environment. Dataset 

corresponding to index 5 was gathered from a dense urban environment. This is 

evident in Figure 4.16 and 4.22 (data from urban environment) compared to: Figures 

4.15 and 4.21; and Figures 4.17 and Figure 4.23 (data from suburban environment). 

Urban environments contain high path loss because of the many obstructions; like 

storey buildings, vehicles, transmitters, which are present in the path of the radio 

signals and thus measured values and estimated values are at great variance. 

Also, in dataset represented by index 5, the ANFIS estimates begin to increase with a 

high margin at distance of 800m as shown in Figure 4.22. This behavior is different 

from the rest of the long distance datasets. The data in this dataset was gathered from 

a dense urban environment with factories, many offices with communication towers, 

high dense human and vehicular traffic. All these listed items contributed to a high 
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shadow factor and a poor radio signal reception. The large error at the near end 

positions is due to the poor learning of ANFIS from the training data. 

For long distance ANFIS estimates the mean error between 0.322 and 3.877m, which 

values are relatively good for long distance localization of mobile nodes. The estimates 

made from the LNSM had a large error magnitude. The outputs of other prediction 

models used in this study can’t be relied on for the data sets under consideration. The 

poor prediction of LNSM are spread to the Grey and weighted Grey Models whose 

inputs are the outputs of the LNSM. The LNSM relies on the theoretical parameters 

which lead to a large spread between its output and the measured data. The large spread 

inherent in LNSM estimations, when used as testing data to the ANFIS, gives a 

different pattern in the trained data output. This impacts the ANFIS estimations 

negatively since this may increase the error in the output values. 

4.2.2.4 A study on the Indoor Environment  

An extra study was conducted involving the data captured from the short distance 

environment [10]. This data is captured in index 7 of Table 3.1. The system was run 

and the output of this study was analyzed and compared against the outputs of the 

outdoor short distance. 
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Figure 4.26: RSS versus Distance from the Transmitter for Index 7 

 

Figure 4.27: RSS versus log10(d) for Index 7 
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Figure 4.26 shows plots of RSS versus distance for the four models (ANFIS, LNSM, 

GM, and wGM) plus a plot for the measured data used in the study. Figure 4.27 shows 

the regression approximations for the dataset shown in Figures 4.26. Figure 4.28 shows 

plots of localization error against distance for the same models indicated in Figure 

4.26. The Figures 4.26-28 correspond to index 7 of Tables 4.5-6. 

In Figure 4.28, there is a great variation in the magnitude of error produced by all the 

models at distances of 10, 26 and 43m. This was attributed to the reflection of the 

radio frequency (RF) signals by obstructions like walls, windows, doors and furniture 

within the hall. At a distance corresponding to 10m, the major contributors of 

divergence were walls and windows. At 26m distance, the contributors for divergence 

were doors, windows, and walls. For 43m distance, the contributors were furniture, 

walls and windows. This explains the reason as to why there are divergences at the 

three highlighted positions. The magnitude of divergence correlates with number and 

intensity of obstructions. A high number of reflectors at 26m distance contributed to 

high divergence. The divergence reduces with the reduction in the reflectors. This is 

seen at 43m and 10m distances. 
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Figure 4.28: Localization Error for the Different Prediction Models for Index 7 
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in Table 4.7. 

Table 4.6: Regression Line Estimations for the Different Prediction Models for Index 

7 

Index, 𝐱 Regression line Approximation 𝐑𝟐 

7 

RSS7(dBm) = −21.126 ∗ log10(dm) − 44.506 0.549 

RSS7(dBm) = −22.302 ∗ log10(da) − 43.861 0.928 

RSS7(dBm) = −17.01 ∗ log10(dl) − 45.157 1.000 

RSS7(dBm) = −15.12 ∗ log10(dwg) − 45.317 0.998 

RSS7(dBm) = −14.087 ∗ log10(dg) − 46.697 0.995 

 

Table 4.7: Errors for the Different Prediction Models in Indoor Environment  

Index, 𝐱 Model Mean Error (m) RMSE (m) 

7 

ANFIS 2.471 4.152 

LNSM 25.992 42.528 

wGM 55.931 93.668 

GM 62.276 108.389 
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Like in the outdoor environment, the localization error in the ANFIS estimates for 

indoor environment increases with increase in distance. The ANFIS estimates for the 

dataset collected from indoor environment deviates from the outdoor one. The absolute 

error is seen fluctuate rapidly at distances of 10m, 26m and 43m as already explained. 

This behavior is attributed to the large variation in training dataset. During the learning 

process of ANFIS, the pattern of the data was hard to be mastered and thus ANFIS 

output a poor approximation. The regression line for this training was hard to trace and 

this is seen in its correlation coefficient of 0.5488, which is a poor correlation.  

In comparison with results from outdoor environments, the data gathered from an 

outdoor environment contributed a better prediction than the data gathered from indoor 

environment. For short distance outdoor environment, the error in ANFIS is in the 

range of 0.083m to 0.690m whereas the error in short distance indoor environment is 

2.472m.  

4.3 Evaluation of ANFIS Performance 

The performance of ANFIS was evaluated by comparing its localization error, as 

shown in Table 4.6 and Figure 4.28, with other methods and algorithms which are 

published in [10] [12] [13] [14] [15]. 

Table 4.8: Comparison of ANFIS Errors with other Algorithms’ Errors 

Other Learning Algorithms ANFIS 

Algorithms Distance (m) Error (m) Distance (m) Error (m) 

BR, LM 300x300 0.490 1250 0.322 

BP 100x100 1.186 1250 0.322 

PSO-ANN 65 0.022 65 0.690 

NN 50x50 6.500 35 0.368 

BP 10x10 0.694 10 0.083 
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In Table 4.8, a comparison between ANFIS and other algorithms in error performance 

is presented. BR is the Bayesian Regression, LM is the Levenberg-Marquardt, BP is 

the Back-propagation, PSO-ANN is the Particle Swarm Optimization-Adaptive Neural 

Network, and NN is the Neural Network. 

 

Figure 4.29: Comparison of ANFIS Errors with other Algorithms’ Errors. 

The study shows that the error ratios of ANFIS to BR and LM, BP, PSO-ANN, NN 

and BP are; 23:35 (0.670), 161:595 (0.271), 345:11 (31.364), 92:1625 (0.057) and 

83:694 (0.120) respectively. A lower error ratio indicates a high prediction 

performance whereas a high error ratio indicates a poor prediction performance. From 

this error ratio comparison it is concluded that ANFIS methodology has a superior 

performance in comparison to many of the highlighted algorithms. For short distances, 

the performance of ANFIS is comparable to that of Hybrid Particle Swarm 

Optimization and Adaptive Neural Networks (PSO-ANN) with ANFIS and PSO-ANN 

having mean errors of 0.083m and 0.022m respectively. The performance of ANFIS 

in comparison with PSO-ANN is significant at the error ratio of 345:11 which is bigger 

than the rest of the comparisons with other models, thus training ANFIS with PSO 

would improve on the results. It is also significant that the error values in long distance 
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ANFIS estimations are close and some are smaller than the error values in highlighted 

methods that were used for short distance estimations. For example, using ANFIS 

methodology at a 1250m distance performed with a mean error of 0.322m which is 

better than BR and LM which perform with a mean error of 0.490 at a distance of 

300m. 

The further study showed a poor performance of ANFIS for indoor environment when 

compared with other methods that were used in indoor localization under closely 

similar distance of study. Thus ANFIS methodology needs to be integrated with other 

methods in special cases like indoor environment for optimal prediction performance 

to be achieved. 
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CHAPTER FIVE: CONCLUSION AND RECOMMENDATION 

5.1 Conclusion  

In this work, the objectives of research were met. The application of ANFIS in an 

optimal mobility prediction was investigated. The study has been made on real data 

which was gathered from published papers. Prediction algorithms like Log-Normal 

Shadowing Model (LNSM), Grey Model (GM) and its weighted version have been 

explored too and their behavior have been critically learned as well. From the design 

of the ANFIS, it is evident that its algorithm is simple to construct. The convergence 

time for training this ANFIS methodology, for all the seven datasets, was 

approximately 120s with an optimal output and an error of 0.083m-3.877m which 

makes it a fast and reliable mobility prediction methodology in wireless or cellular 

networks.  

During the analysis, the ANFIS output using different sets of testing data exhibited the 

same behavior. The study and analysis presented in this thesis was based on the testing 

data produced by the GM. This was due to the negligible difference in the ANFIS 

outputs. Thus, the localization estimations in this research used the RSS values of the 

ANFIS model which was tested using RSS extracted from GM outputs. 

In long distance outdoor environments, it was seen that ANFIS estimates have mean 

errors between 0.322m and 3.877m, the values which are relatively good for long 

distance localization of mobile nodes (MNs) since the maximum error approximates 

to a size of a small vehicle. For short distances outdoor environments, the error in 

ANFIS is in the range of 0.083m to 0.690m whereas in short distance indoor 
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environment, the error value of 2.472m was obtained. The results for outdoor 

environment were validated and found satisfactory. However, the results for indoor 

environment were not satisfactory, probably due to insufficient data that were used. 

This limited ANFIS’s ability to learn and adaptive the data supplied to it. Thus it is 

evident that the data gathered from outdoor environment contributes to a better 

prediction than the data gathered from indoor environment. This can be attributed to 

the many and strong sources of signal fluctuation, such as reflection caused by indoor 

items/structures like furniture, walls, and windows among others. 

It has been discovered that ANFIS prediction methodology performs well up to a given 

distance as the MN traverses. The average approximated distance at which the 

anomalies in the accuracy of mobility prediction occurs has been noted as 62.33%  and 

64.82% for short and long distance communication environments respectively. This 

implies that whenever there is a change in the general trend of ANFIS output values 

and the measured data, the accuracy in mobility prediction begins to diminish from 

that point and onwards. In the actual implementation of this ANFIS methodology in 

smart antenna systems (SAS) such points correspond to critical distances and the beam 

forming characteristics in the SAS need to be adjusted to counteract the diversion from 

the normal mobility prediction trend and accuracy.   

To validate our methodology, the errors in this prediction were compared with the 

errors which were reported in other methods as seen in Figure 4.29. The performance 

of ANFIS in outdoor environment was very good and comparable Particle Swarm 

Optimization and Adaptive Neural Network (PSO-ANN) which is characterized by 

complex processes and, thus, executes for a longer time before converging. 
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The designed methodology therefore is suitable for application in outdoor localization 

or mobility prediction of MNs and thus it can be integrated in the current and future 

smart antenna systems. However, the antenna system that will use this methodology 

needs to have a capability of storing the learned values for future reference so that the 

learning process on new data may be simplified and therefore use little time to 

complete the execution.   

5.2 Recommendation 

The study considered the data gathered from outdoor, short and long, distance 

environments. The short distance covered 1m-10m, 35m and 61.5m whereas the long 

distance covered 100m-1250m and 1800m. Generally, prediction error in ANFIS 

increases with increase in distance between the transmitter and Mobile Node (MN). It 

is also notable that ANFIS prediction for short distances outperformed its prediction 

for long distances. This is attributed to the data sampling intervals used in short and 

long distances; the sampling intervals for short distance was 1m, 1.5m and 2.5m 

whereas the one for long distance was 50m and 100m. Using data gathered from a 

small intervals would yield better approximations in long distances.  

The gathered data used in this research was assumed to be from reliable sources and 

was not subjected to any forms of validation before use since it was collected from live 

environments under consideration at the time the reported researches were carried out.  

The values of weights used in Grey Model were the averaged estimates and other 

variations in values of 𝑤1 and  𝑤2  were not studied. Also the predictions of Grey and 
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weighted Grey Models depended on the outputs on the LNSM. Further study, where 

the inputs of Grey and weighted Grey models are measured data, is needed. 

The study only considered data gathered from suburban and dense urban 

environments. Further studies could to be carried out on other environments like rural 

environment which wasn’t covered in the data set considered in this study.  

The investigation for indoor environment showed unsatisfactory results due to 

insufficient data. Hence more research needs to be undertaken. 
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APPENDICES 

Appendix A: Matlab Code  

Appendix A-1: Matlab Code for LNSM, GM and w-GM models  

function begin = trainingparameters1 

tic 

clc 

clear all 

clf 

d0=1.5;%Reference distance for outdoor propagation environment  

n1=1.613; %Path loss exponent according to Rappaport 

s=65+d0; 

std=0.451; %Standard deviation  

j=27; 

w1=0.5;w2=0.5; % weights for creating weighted averages 

%%%%%%% 

pt=0.001;%(in Watts) 

pt_d=10*log10(pt);%in dB 

prdBm=-39;%RSS at a refernce distance, d0=1m, in dBm 

prW=0.001*10.^(prdBm/10); 

PL0=10*log10(pt/prW); %PL0 in dB at refernece distance) 

d=d0:2.5:s; 

for i=1:j 

    RSS_0(i)=pt_d-PL0-10*n1*log10(d(i)/d0)-std; 
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end 

for i=1:j 

    rss_0(i)=10.^(-RSS_0(i)/10); 

end 

sum=0; 

for i=1:j 

    sum=sum+rss_0(i); 

    rss_1(i)=sum; %AGO application 

end 

for i=1:j-1 

    B(i,1)=-1/2.*(rss_1(i)+rss_1(i+1)); %Background value calculation 

end 

B(:,2)=1; % the second column of the (B and B2)-matrix is 1 

yn=(rss_0(2:j))'; %Application of AGO on the iregular data sequence 

v=inv(B'*B)*(B*yn)';%Application of square method 

%%%%%%% 

a=v(1);% Row one of the result of square method 

b=v(2);% Row one of the result of square method 

for i=1:j 

    prss_1(i)=rss_1(i); 

    prss_1(i+1)=(rss_0(i)-b/a)*exp(-a*j)+(b/a); %Solution for the conventional Grey 

Model    

    %%% 

    prss_0(i)=rss_0(i); 
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    prss_0(i+1)=prss_1(i+1)-prss_1(i); %Obtaining the predicted value of the 

primitive data at time (i+1),  

    %the IAGO is used. 

end 

for i=1:j 

PRSS_0(1:j)=-10*log10(prss_0(2:j+1)); %converted to dB 

end 

for i=1:j 

    prss_2(i)=w1*rss_0(i)+w2*prss_0(i+1);%Predicted value after applying the 

weigted average method 

end 

for i=1:j 

PRSS_2(1:j)=PRSS_0(1:j);%converted back to dB 

end 

for i=1:j 

PR1(i:j-1)=10*log10((10.^(PRSS_2(i:j-1)/10))/0.001);%Conversion to dBm 

end 

for i=1:j 

d1(i:j-1)=d(i:j-1); 

end 

trncolumn1 = d1'; 

%%%%%% 

for i=1:j 

PR00(i:j-1)=10*log10((10.^(RSS_0(i:j-1)/10))/0.001);%Conversion to dBm 
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%rs_0(1:j-1)=awgn(PR0(1:j-1),d0-0.5); 

end 

PR0=PR00'; 

trncolumn2 =PR1';  

%%%%%%%%%%%%%%%% 

t=ones(26,1);   

tn1=n1*t; 

tPL01=PL0*t;%dB 

%%%%%%%%%%%%%%%% 

begin = [tn1 tPL01 trncolumn1 trncolumn2 PR0]; 

save begin 

end 

function begin2 = trainingparameters2 

tic 

clc 

clear all 

clf 

d0=1;%Reference distance for outdoor propagation environment  

n2=2.2; %Path loss exponent according to Rappaport 

s=10+d0;%in m 

std=0.2721; %Standard deviation  

j=11; 

w1=0.5;w2=0.5; % weights for creating weighted averages 

%%%%%%% 
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pt=0.001;%(in Watts)=-3.802 dB 

pt_d=10*log10(pt);%in dB 

prdBm=-45;%RSS at a refernce distance, d0=1m, in dBm 

prW=0.001*10.^(prdBm/10); 

PL02=10*log10(pt/prW); %PL0 in dB at reference distance  

d2=d0:1:s; 

for i=1:j 

    RSS_0(i)=pt_d-PL02-10*n2*log10(d2(i)/d0)-std; 

end 

for i=1:j 

    rss_0(i)=10.^(-RSS_0(i)/10); 

end 

sum=0; 

for i=1:j 

    sum=sum+rss_0(i); 

    rss_1(i)=sum; %AGO application 

end 

for i=1:j-1 

    B(i,1)=-1/2.*(rss_1(i)+rss_1(i+1)); %Background value calculation 

end 

B(:,2)=1; % the second column of the (B and B2)-matrix is 1 

yn=(rss_0(2:j))'; %Application of AGO on the iregular data sequence 

v=inv(B'*B)* (B*yn)';%Application of square method 

%%%%%%% 
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a=v(1);% Row one of the result of square method 

b=v(2);% Row one of the result of square method 

for i=1:j 

    prss_1(i)=rss_1(i); 

    prss_1(i+1)=(rss_0(i)-b/a)*exp(-a*j)+(b/a); %Solution for the conventional Grey 

Model    

    %%% 

    prss_0(i)=rss_0(i); 

    prss_0(i+1)=prss_1(i+1)-prss_1(i); %Obtaining the predicted value of the 

primitive data at time (i+1),  

    %the IAGO is used. 

end 

for i=1:j 

PRSS_0(1:j)=-10*log10(prss_0(2:j+1)); %converted to dB 

end 

for i=1:j 

    prss_2(i)=w1*rss_0(i)+w2*prss_0(i+1);%Predicted value after applying the 

weighted average method 

end 

for i=1:j 

PRSS_2(1:j)=PRSS_0(1:j);%converted back to dB 

end 

for i=1:j 

PR1(i:j-1)=10*log10((10.^(PRSS_2(i:j-1)/10))/0.001);%Conversion to dBm 
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end 

for i=1:j 

dd2(i:j-1)=d2(i:j-1); 

end 

trncolumn12 = dd2'; 

 %%%%%% 

for i=1:j 

PR00(i:j-1)=10*log10((10.^(RSS_0(i:j-1)/10))/0.001);%Conversion to dBm 

end 

PR02=PR00'; 

trncolumn22 = PR1';  

%%%%%%%%%%%%%%%% 

t2=ones(10,1);   

tn2=n2*t2; 

%tPL02=(10*log10((10.^(PL02/10))/0.001))*t2;%dBm 

tPL02=PL02*t2;%dBm 

%%%%%%%%%%%%%%%% 

begin2 = [tn2 tPL02 trncolumn12 trncolumn22 PR02]; 

save begin2 

end 

function begin3 = trainingparameters3 

tic 

clc 

clear all 
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clf 

 d0=2.5;%Reference distance for outdoor propagation environment  

n3=3.8; %Path loss exponent according to Rappaport (In buildings) 

s=35+d0;%in m 

std=0.727; %Standard deviation  

j=15; 

w1=0.5;w2=0.5; % weights for creating weighted averages 

%%%%%%% 

pt=0.0024;%(in Watts) 

pt_d=10*log10(pt);%in dB 

prdBm=-43.5;%RSS at a refernce distance, d0=1m, in dBm 

prW=0.001*10.^(prdBm/10); 

PL02=10*log10(pt/prW); %PL0 in dB at reference distance) 

d2=d0:2.5:s; 

for i=1:j 

    RSS_0(i)=pt_d-PL02-10*n3*log10(d2(i)/d0)-std; 

end 

  

for i=1:j 

    rss_0(i)=10.^(-RSS_0(i)/10); 

end 

sum=0; 

for i=1:j 

    sum=sum+rss_0(i); 
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    rss_1(i)=sum; %AGO application 

end 

for i=1:j-1 

    B(i,1)=-1/2.*(rss_1(i)+rss_1(i+1)); %Background value calculation 

end 

B(:,2)=1; % the second column of the (B and B2)-matrix is 1 

yn=(rss_0(2:j))'; %Application of AGO on the iregular data sequence 

v=inv(B'*B)* (B*yn)';%Application of square method 

%%%%%%% 

a=v(1);% Row one of the result of square method 

b=v(2);% Row one of the result of square method 

for i=1:j 

    prss_1(i)=rss_1(i); 

    prss_1(i+1)=(rss_0(i)-b/a)*exp(-a*j)+(b/a); %Solution for the conventional Grey 

Model    

    %%% 

    prss_0(i)=rss_0(i); 

    prss_0(i+1)=prss_1(i+1)-prss_1(i); %Obtaining the predicted value of the 

primitive data at time (i + 1),  

    %the IAGO is used. 

end 

for i=1:j 

PRSS_0(1:j)=-10*log10(prss_0(2:j+1)); %converted to dB 

end 
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for i=1:j 

    prss_2(i)=w1*rss_0(i)+w2*prss_0(i+1);%Predicted value after applying the 

weigted average method 

end 

for i=1:j 

PRSS_2(1:j)=PRSS_0(1:j);%converted back to dB 

end 

for i=1:j 

PR1(i:j-1)=10*log10((10.^(PRSS_2(i:j-1)/10))/0.001);%Conversion to dBm 

end 

for i=1:j 

d3(i:j-1)=d2(i:j-1); 

end 

trncolumn13 = d3'; 

 %%%%%% 

for i=1:j 

PR00(i:j-1)=10*log10((10.^(RSS_0(i:j-1)/10))/0.001);%Conversion to dBm 

end 

PR03=PR00'; 

trncolumn23 = PR1';  

%%%%%%%%%%%%%%%% 

t3=ones(14,1);   

tn3=n3*t3; 

tPL03=PL02*t3;%dB 
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%%%%%%%%%%%%%%%% 

begin3 = [tn3 tPL03 trncolumn13 trncolumn23 PR03]; 

save begin3 

end 

function begin4 = trainingparameters4 

tic 

clc 

clear all 

clf 

%% 

d0=3;%Reference distance for outdoor propagation environment  

n3=1.701; %Path loss exponent according to Rappaport (In buildings) 

s=50+d0;%in m 

std=2.157; %Standard deviation  

j=20; 

w1=0.5;w2=0.5; % weights for creating weighted averages 

%%%%%%% 

pt=0.001;%(in Watts) 

pt_d=10*log10(pt);%in dB 

prdBm=-41;%RSS at a refernce distance, d0=1m, in dBm 

prW=0.001*10.^(prdBm/10); 

PL02=10*log10(pt/prW); %PL0 in dB at reference distance) %(PL0=41.04dB) 

d2=d0:2.5:s; 

for i=1:j 
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    RSS_0(i)=pt_d-PL02-10*n3*log10(d2(i)/d0)-std; 

end 

 for i=1:j 

    rss_0(i)=10.^(-RSS_0(i)/10); 

end 

sum=0; 

for i=1:j 

    sum=sum+rss_0(i); 

    rss_1(i)=sum; %AGO application 

end 

for i=1:j-1 

    B(i,1)=-1/2.*(rss_1(i)+rss_1(i+1)); %Background value calculation 

end 

B(:,2)=1; % the second column of the (B and B2)-matrix is 1 

yn=(rss_0(2:j))'; %Application of AGO on the iregular data sequence 

v=inv(B'*B)* (B*yn)';%Application of square method 

%%%%%%% 

a=v(1);% Row one of the result of square method 

b=v(2);% Row one of the result of square method 

for i=1:j 

    prss_1(i)=rss_1(i); 

    prss_1(i+1)=(rss_0(i)-b/a)*exp(-a*j)+(b/a); %Solution for the conventional Grey 

Model    

    %%% 
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    prss_0(i)=rss_0(i); 

    prss_0(i+1)=prss_1(i+1)-prss_1(i); %Obtaining the predicted value of the 

primitive data at time (i + 1),  

    %the IAGO is used. 

end 

for i=1:j 

PRSS_0(1:j)=-10*log10(prss_0(2:j+1)); %converted to dB 

end 

for i=1:j 

    prss_2(i)=w1*rss_0(i)+w2*prss_0(i+1);%Predicted value after applying the 

weigted average method 

end 

for i=1:j 

PRSS_2(1:j)=PRSS_0(1:j);%converted back to dB 

end 

for i=1:j 

PR1(i:j-1)=10*log10((10.^(PRSS_2(i:j-1)/10))/0.001);%Conversion to dBm 

end 

for i=1:j 

d3(i:j-1)=d2(i:j-1); 

end 

trncolumn14 = d3'; 

 %%%%%% 

for i=1:j 
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PR00(i:j-1)=10*log10((10.^(RSS_0(i:j-1)/10))/0.001);%Conversion to dBm 

end 

PR04=PR00'; 

trncolumn24 = PR1';  

%%%%%%%%%%%%%%%% 

t3=ones(19,1);   

tn4=n3*t3; 

tPL04=PL02*t3;%dB 

begin4 = [tn4 tPL04 trncolumn14 trncolumn24 PR04]; 

save begin4 

end 

function begin5 = trainingparameters5 

tic 

clc 

clear all 

clf 

d0=100;%Reference distance for outdoor propagation environment  

n=3.11; %Path loss exponent according to Rappaport 

s=1250; 

std=6; %Standard deviation  

j=24; 

w1=0.5;w2=0.5; % weights for creating weighted averages 

pt=30;%(in Watts) 

pt_d=10*log10(pt);%in dB 
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prdBm=-45;%RSS at a refernce distance, d0=100, in dBm 

prW=0.001*10.^(prdBm/10); 

PL0=10*log10(pt/prW); %PL0 in dB at refernece distance) %PL0=75;%dB 

d=d0:50:s; 

for i=1:j 

    RSS_0(i)=pt_d-PL0-10*n*log10(d(i)/d0)-std; 

end 

for i=1:j 

    rss_0(i)=10.^(-RSS_0(i)/10); 

end 

sum=0; 

for i=1:j 

    sum=sum+rss_0(i); 

    rss_1(i)=sum; %AGO application 

end 

for i=1:j-1 

    B(i,1)=-1/2.*(rss_1(i)+rss_1(i+1)); %Background value calculation 

end 

B(:,2)=1; % the second column of the (B and B2)-matrix is 1 

yn=(rss_0(2:j))'; %Application of AGO on the iregular data sequence 

v=inv(B'*B)* (B*yn)';%Application of square method 

a=v(1);% Row one of the result of square method 

b=v(2);% Row one of the result of square method 

for i=1:j 
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    prss_1(i)=rss_1(i); 

    prss_1(i+1)=(rss_0(i)-b/a)*exp(-a*j)+(b/a); %Solution for the conventional Grey 

Model    

    prss_0(i)=rss_0(i); 

    prss_0(i+1)=prss_1(i+1)-prss_1(i); %Obtaining the predicted value of the 

primitive data at time (i + 1),  

    %the IAGO is used. 

end 

for i=1:j 

PRSS_0(1:j)=-10*log10(prss_0(2:j+1)); %converted to dB 

end 

for i=1:j 

    prss_2(i)=w1*rss_0(i)+w2*prss_0(i+1);%Predicted value after applying the 

weigted average method 

end 

for i=1:j 

PRSS_2(1:j)=PRSS_0(1:j);%converted back to dB 

end 

for i=1:j 

PR1(i:j-1)=10*log10((10.^(PRSS_2(i:j-1)/10))/0.001);%Conversion to dBm 

end 

 for i=1:j 

d1(i:j-1)=d(i:j-1); 

end 
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trncolumn15 = d1'; 

 for i=1:j 

PR00(i:j-1)=10*log10((10.^(RSS_0(i:j-1)/10))/0.001);%Conversion to dBm 

end 

PR05=PR00'; 

trncolumn25 = PR1';  

t5=ones(23,1);   

tn5=n*t5; 

tPL05=t5*PL0; 

begin5 = [tn5 tPL05 trncolumn15 trncolumn25 PR05]; 

save begin5 

end 

function begin6 = trainingparameters6 

tic 

clc 

clear all 

clf 

d0=100;%Reference distance for outdoor propagation environment  

n2=3.55; %Path loss exponent according to Rappaport 

s=1800; 

std=8; %Standard deviation  

j=18; 

w1=0.5;w2=0.5; % weights for creating weighted averages 

pt=0.001;%(in Watts) 
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pt_d=10*log10(pt);%in dB 

prdBm=-45;%RSS at a refernce distance, d0=100, in dBm 

prW=0.001*10.^(prdBm/10); 

PL02=10*log10(pt/prW); %PL0 in dB at refernece distance) 

d2=d0:100:s; 

for i=1:j 

    RSS_0(i)=pt_d-PL02-10*n2*log10(d2(i)/d0)-std; 

end 

for i=1:j 

    rss_0(i)=10.^(-RSS_0(i)/10); 

end 

sum=0; 

for i=1:j 

    sum=sum+rss_0(i); 

    rss_1(i)=sum; %AGO application 

end 

for i=1:j-1 

    B(i,1)=-1/2.*(rss_1(i)+rss_1(i+1)); %Background value calculation 

end 

B(:,2)=1; % the second column of the (B and B2)-matrix is 1 

yn=(rss_0(2:j))'; %Application of AGO on the iregular data sequence 

v=inv(B'*B)* (B*yn)';%Application of square method 

a=v(1);% Row one of the result of square method 

b=v(2);% Row one of the result of square method 
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for i=1:j 

    prss_1(i)=rss_1(i); 

    prss_1(i+1)=(rss_0(i)-b/a)*exp(-a*j)+(b/a); %Solution for the conventional Grey 

Model    

    prss_0(i)=rss_0(i); 

    prss_0(i+1)=prss_1(i+1)-prss_1(i); %Obtaining the predicted value of the 

primitive data at time (i + 1),  

    %the IAGO is used. 

end 

for i=1:j 

PRSS_0(1:j)=-10*log10(prss_0(2:j+1)); %converted to dB 

end 

for i=1:j 

    prss_2(i)=w1*rss_0(i)+w2*prss_0(i+1);%Predicted value after applying the 

weigted average method 

end 

for i=1:j 

PRSS_2(1:j)=PRSS_0(1:j);%converted back to dB 

end 

for i=1:j 

PR1(i:j-1)=10*log10((10.^(PRSS_2(i:j-1)/10))/0.001);%Conversion to dBm 

end 

for i=1:j 

dd2(i:j-1)=d2(i:j-1); 



 

111 
 

end 

trncolumn16 = dd2'; 

for i=1:j 

PR00(i:j-1)=10*log10((10.^(RSS_0(i:j-1)/10))/0.001);%Conversion to dBm 

end 

PR06=PR00'; 

trncolumn26 = PR1';  

t6=ones(17,1);   

tn6=n2*t6; 

tPL06=t6*PL02; 

begin6 = [tn6 tPL06 trncolumn16 trncolumn26 PR06]; 

save begin6 

end 

function begin7 = trainingparameters7 

tic 

clc 

clear all 

clf 

d0=100;%Reference distance for outdoor propagation environment  

n3=2.57; %Path loss exponent according to Rappaport 

s=1800; 

std=5.4; %Standard deviation  

j=18; 

w1=0.5;w2=0.5; % weights for creating weighted averages 
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pt=0.001;%(in Watts) 

pt_d=10*log10(pt);%in dB 

prdBm=-45;%RSS at a refernce distance, d0=100, in dBm 

prW=0.001*10.^(prdBm/10); 

PL02=10*log10(pt/prW); %PL0 in dB at refernece distance) 

d2=d0:100:s; 

for i=1:j 

    RSS_0(i)=pt_d-PL02-10*n3*log10(d2(i)/d0)-std; 

end 

for i=1:j 

    rss_0(i)=10.^(-RSS_0(i)/10); 

end 

sum=0; 

for i=1:j 

    sum=sum+rss_0(i); 

    rss_1(i)=sum; %AGO application 

end 

for i=1:j-1 

    B(i,1)=-1/2.*(rss_1(i)+rss_1(i+1)); %Background value calculation 

end 

B(:,2)=1; % the second column of the (B and B2)-matrix is 1 

yn=(rss_0(2:j))'; %Application of AGO on the iregular data sequence 

v=inv(B'*B)* (B*yn)';%Application of square method 

a=v(1);% Row one of the result of square method 



 

113 
 

b=v(2);% Row one of the result of square method 

for i=1:j 

    prss_1(i)=rss_1(i); 

    prss_1(i+1)=(rss_0(i)-b/a)*exp(-a*j)+(b/a); %Solution for the conventional Grey 

Model    

    prss_0(i)=rss_0(i); 

    prss_0(i+1)=prss_1(i+1)-prss_1(i); %Obtaining the predicted value of the 

primitive data at time (i + 1),  

    %the IAGO is used. 

end 

for i=1:j 

PRSS_0(1:j)=-10*log10(prss_0(2:j+1)); %converted to dB 

end 

for i=1:j 

    prss_2(i)=w1*rss_0(i)+w2*prss_0(i+1);%Predicted value after applying the 

weigted average method 

end 

for i=1:j 

PRSS_2(1:j)=PRSS_0(1:j);%converted back to dB 

end 

for i=1:j 

PR1(i:j-1)=10*log10((10.^(PRSS_2(i:j-1)/10))/0.001);%Conversion to dBm 

end 

for i=1:j 
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d3(i:j-1)=d2(i:j-1); 

end 

trncolumn17 = d3'; 

for i=1:j 

PR00(i:j-1)=10*log10((10.^(RSS_0(i:j-1)/10))/0.001);%Conversion to dBm 

end 

PR07=PR00'; 

trncolumn27 = PR1';  

t3=ones(17,1);   

tn7=n3*t3; 

tPL07=t3*PL02; 

begin7 = [tn7 tPL07 trncolumn17 trncolumn27 PR07]; 

save begin7 

end 

Appendix A-2: Matlab Code for Training Data 

%% Training Dataset   

function check = testingdata 

chkcolumn1 = [ 

%%%Testing Data for Index 1 

1.0 -40;3.5 -46.5;6.0 -54;8.5 -55.8;11.0 -56.5;13.5 -57.6;16.0 -58;18.5 -58.6;21.0 -

60;23.5 -60.5;26.0 -61.4;28.5 -60.7;31.0 -64.5;33.5 -64;36.0 -63;38.5 -63.5;41.0 -

66.1;43.5 -65.8;46.0 -66.2;48.5 -66;51.0 -65.5;53.5 -65.7;56.0 -65.4;58.5 -68.5;61.0 -

69.5;63.5 -69.7; ...  

%%%% Testing Data for Index 2 
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1.0 -45;2.0 -47.5;3.0 -48.5;4.0 -53;5.0 -55.6;6.0 -62;7.0 -67.5;8.0 -67;9.0 -69;10.0 -

67.7;…  

%%% Testing Data for Index 3 

2.5 -43.5;5.0 -62;7.5 -67;10.0 -73.5;12.5 -78.0;15.0 -84.5;17.5 -85.5;20.0 -87;22.5 -

85;25.0 -83;27.5 -88;30.0 -93;32.5 -90;35.0 -93;...  

%%% Testing Data for Index 7 

3.00 -44;5.50 -46;8.00 -52.5;10.5 -62.0;13.0 -55;15.5 -53;18.0 -58.5;20.5 -64.0;23.0 -

72.0;25.5 -77;28.0 -74;30.5 -67.5;33.0 -59;35.5 -60;38.0 -62.5;40.5 -70.0;43.0 -

75.0;45.5 -70.0;48.0 -59.0;… % 

%%% Testing Data for Index 4 

100 -45;150 -46;200 -47;250 -50;300 -51;350 -52;400 -54;450 -56;500 -61;550 -

64;600 -66;650 -68;700 -71;750 -74;800 -76;850 -78;900 -81;950 -84;1000 -86;1050 

-87;1100 -89;1150 -90;1200 -91;…  

%%% Testing Data for Index 5 

100 -62;200 -66;300 -73;400 -81;500 -87;600 -84;700 -89;800 -94;900 -92;1000 -

96;1100 -91;1200 -94;1300 -88;1400 -90;1500 -95;1600 -97;1700 -94;…  

%%% Testing Data for Index 6 

100 -50;200 -53;300 -59;400 -63;500 -61;600 -67;700 -70;800 -67;900 -79;1000 -

77;1100 -75;1200 -68;1300 -78;1400 -83;1500 -87;1600 -90;1700 -89 

]; 

%%% 

c=ones(26,1); 

n=1.613; 

cn1=n*c; 
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%% 

c2=ones(10,1); 

n2=2.2; 

cn2=n2*c2; 

%% 

c3=ones(14,1); 

n3=3.8; 

cn3=n3*c3; 

%% 

c4=ones(19,1); 

n4=1.701; 

cn4=n4*c4; 

%% 

c5=ones(23,1); 

n5=3.11; 

cn5=n5*c5; 

%% 

c6=ones(17,1); 

n6=3.5; 

cn6=n6*c6; 

%% 

c7=ones(17,1); 

n7=2.57; 

cn7=n7*c7; 
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%% 

cPL01=39*c;%dB 

cPL02=45*c2; 

cPL03=47.3*c3; 

cPL04=41.04*c4; 

%% 

cPL05=89.7712*c5; 

cPL06=106*c6; 

cPL07=95*c7; 

%% 

check = [[cn1;cn2;cn3;cn4;cn5;cn6;cn7] 

[cPL01;cPL02;cPL03;cPL04;cPL05;cPL06;cPL07] chkcolumn1]; 

save check 

end  

 

Appendix A-3: Matlab Code for ANFIS Program 

%ANFIS (GANFIS) Optmization of RSS at the Mobile Node using Grey model 

%output as the testing data 

tic 

clc 

clear all 

run trainingparameters1 

run trainingparameters2 

run trainingparameters3 
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run trainingparameters4 

run trainingparameters5 

run trainingparameters6 

run trainingparameters7 

run testingdata 

load begin.mat 

load begin2.mat 

load begin3.mat 

load begin4.mat 

load begin5.mat 

load begin6.mat 

load begin7.mat 

load check.mat 

chkdata=[[tn1;tn2;tn3;tn4;tn5;tn6;tn7] 

[tPL01;tPL02;tPL03;tPL04;tPL05;tPL06;tPL07]... 

[trncolumn1;trncolumn12;trncolumn13;trncolumn14;trncolumn15;trncolumn16;trnco

lumn17]... 

[trncolumn2;trncolumn22;trncolumn23;trncolumn24;trncolumn25;trncolumn26;trnco

lumn27;]]; 

trndata=[[cn1;cn2;cn3;cn4;cn5;cn6;cn7] 

[cPL01;cPL02;cPL03;cPL04;cPL05;cPL06;cPL07] chkcolumn1]; 

%%%%% A plot training data and checking data versus mobile distance 

plot(trndata(:,3),trndata(:,4),'-.*',chkdata(:,3),chkdata(:,4),'-.x'); 

legend('Training data','Checking data') 
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grid 

xlabel('Distance from the antenna(m)') 

ylabel('Received Signal Strength in dBm') 

title('Received Signal Versus MNs distance for Training and Checking') 

numMFs=[4 4 5]; 

mfType='gbellmf'; 

fismat=genfis1(trndata,numMFs,mfType); 

showfis(fismat) 

showrule(fismat) 

ruleview(fismat) 

ruleedit(fismat) 

fismat = setfis(fismat, 'name','RSS'); 

fismat = setfis(fismat, 'input',1,'name','Path loss exponent'); 

fismat = setfis(fismat, 'input',2,'name','Path loss at refernce distance'); 

fismat = setfis(fismat, 'input',3,'name','MN distance from the Antenna'); 

fismat = setfis(fismat, 'output',1,'name','Received Signal Strength'); 

figure 

plotfis(fismat); 

figure 

for input_index=1:3, 

subplot(2,2,input_index) 

[x,y]=plotmf(fismat,'input',input_index); 

plot(x,y) 

axis([-inf inf 0 1.2]); 
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xlabel(['Input ' int2str(input_index)]); 

title('Initial Membership Values') 

end 

numEpochs=800; 

[fismat1,trnErr,ss,fismat2,chkErr]=anfis(trndata,fismat,[numEpochs 0 0.04 0.9 

1.1],... 

    NaN,chkdata,1); 

trnOut=evalfis([trndata(:,1) trndata(:,2) trndata(:,3)], fismat1); 

trnRMSE=norm(trnOut-trndata(:,4))/sqrt(length(trnOut)); 

fprintf('trnRMSE: %s \n', trnRMSE); 

%drawing error curves 

epoch=1:numEpochs; 

figure 

plot(epoch, trnErr,'+', epoch, chkErr,'x'); 

ylabel('RMSE'); xlabel('Epochs'); legend('Training error','Testing error'); 

hold on; 

plot(epoch, [trnErr chkErr]); 

hold off; 

%step size during training 

figure 

plot(epoch, ss,'*',epoch,ss,'x');  

ylabel('Step Size');  

xlabel('Epochs'); 

%membership function after training 
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figure 

for input_index=1:3, 

subplot(2,2,input_index) 

[x,y]=plotmf(fismat1,'input',input_index); 

plot(x,y) 

axis([-inf inf 0 1.2]); 

xlabel(['Input ' int2str(input_index)]); 

title('Final Membership Values') 

end 

optrss = trnOut; 

save optrss 

orig_rss=PR0; 

orig_rss2=PR02; 

orig_rss3=PR03; 

orig_rss4=PR04; 

orig_rss5=PR05; 

orig_rss6=PR06; 

orig_rss7=PR07; 

%% 

mm=trndata(:,4); 

%% 

allparameters = {'n' 'PLO' 'Dist' 'Log-Normal' 'Pred_RSS_GM' 'Opt_RSS_ANFIS' 

'Measured_RSS';... 

    tn1 tPL01 trncolumn1 orig_rss trncolumn2 optrss mm}; 
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allt = [[tn1;tn2;tn3;tn4;tn5;tn6;tn7] 

[tPL01;tPL02;tPL03;tPL04;tPL05;tPL06;tPL07]... 

[trncolumn1;trncolumn12;trncolumn13;trncolumn14;trncolumn15;trncolumn16;trnco

lumn17]... 

    [orig_rss;orig_rss2;orig_rss3;orig_rss4;orig_rss5;orig_rss6;orig_rss7]... 

[trncolumn2;trncolumn22;trncolumn23;trncolumn24;trncolumn25;trncolumn26;trnco

lumn27] optrss mm]; 

save allparameters 

s1 = xlswrite('rssvalues.xls',allparameters,'simulation','A1'); 

s2 = xlswrite('rssvalues.xls',allt,'simulation','A3'); 

toc 

 

Appendix B: Raw Results Data  

The table below contains the raw data used in the study. RSS denotes the Received 

Signal Strength, LNSM denotes the Log-Normal Shadowing Model, GM denotes the 

Grey Model, wGM denotes the weighted Grey Model, ANFIS denotes Adaptive 

Neuro-Inference System and Measured denotes the column for data extracted from 

published papers. 

Path Loss 

Exponent, n 

Path 

Loss, PL 

Distance 

(m) 

RSS 

LNSM GM wGM ANFIS Measured 

1.613 39 1.5 -39.4510 -46.3219 -44.1234 -44.2566 -40.0 

1.613 39 4 -46.3219 -49.7229 -48.3472 -47.4289 -46.5 

1.613 39 6.5 -49.7229 -52.0026 -51.0106 -50.2394 -54.0 

1.613 39 9 -52.0026 -53.7197 -52.9455 -52.7094 -55.8 

1.613 39 11.5 -53.7197 -55.0977 -54.4631 -54.8611 -56.5 

1.613 39 14 -55.0977 -56.2487 -55.7112 -56.7172 -57.6 

1.613 39 16.5 -56.2487 -57.2369 -56.7709 -58.3008 -58.0 

1.613 39 19 -57.2369 -58.1029 -57.6915 -59.6358 -58.6 

1.613 39 21.5 -58.1029 -58.8735 -58.5052 -60.7461 -60.0 
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1.613 39 24 -58.8735 -59.5676 -59.2344 -61.6564 -60.5 

1.613 39 26.5 -59.5676 -60.1991 -59.8948 -62.3914 -61.4 

1.613 39 29 -60.1991 -60.7784 -60.4984 -62.9762 -60.7 

1.613 39 31.5 -60.7784 -61.3134 -61.0541 -63.4361 -64.5 

1.613 39 34 -61.3134 -61.8104 -61.5690 -63.7967 -64.0 

1.613 39 36.5 -61.8104 -62.2745 -62.0487 -64.0839 -63.0 

1.613 39 39 -62.2745 -62.7098 -62.4976 -64.3238 -63.5 

1.613 39 41.5 -62.7098 -63.1195 -62.9195 -64.5427 -66.1 

1.613 39 44 -63.1195 -63.5067 -63.3174 -64.7674 -65.8 

1.613 39 46.5 -63.5067 -63.8735 -63.6940 -65.0250 -66.2 

1.613 39 49 -63.8735 -64.2221 -64.0513 -65.3430 -66.0 

1.613 39 51.5 -64.2221 -64.5542 -64.3913 -65.7495 -65.5 

1.613 39 54 -64.5542 -64.8712 -64.7156 -66.2734 -65.7 

1.613 39 56.5 -64.8712 -65.1745 -65.0255 -66.9443 -65.4 

1.613 39 59 -65.1745 -65.4652 -65.3223 -67.7927 -68.5 

1.613 39 61.5 -65.4652 -65.7443 -65.6070 -68.8507 -69.5 

1.613 39 64 -65.7443 -66.0128 -65.8806 -70.1514 -69.7 

2.2 45 1 -45.2721 -51.8948 -49.7396 -43.0104 -45.0 

2.2 45 2 -51.8948 -55.7688 -54.2501 -47.1521 -47.5 

2.2 45 3 -55.7688 -58.5174 -57.3570 -51.0201 -48.5 

2.2 45 4 -58.5174 -60.6494 -59.7130 -54.6105 -53.0 

2.2 45 5 -60.6494 -62.3914 -61.6072 -57.9194 -55.6 

2.2 45 6 -62.3914 -63.8643 -63.1900 -60.9426 -62.0 

2.2 45 7 -63.8643 -65.1401 -64.5489 -63.6761 -67.5 

2.2 45 8 -65.1401 -66.2654 -65.7391 -66.1156 -67.0 

2.2 45 9 -66.2654 -67.2721 -66.7979 -68.2571 -69.0 

2.2 45 10 -67.2721 -68.1827 -67.7512 -70.0960 -67.7 

3.8 47.3 2.5 -44.2270 -55.6661 -52.9570 -51.1976 -43.5 

3.8 47.3 5 -55.6661 -62.3576 -60.1903 -58.5694 -62.0 

3.8 47.3 7.5 -62.3576 -67.1053 -65.3503 -65.1492 -67.0 

3.8 47.3 10 -67.1053 -70.7879 -69.3257 -70.9506 -73.5 

3.8 47.3 12.5 -70.7879 -73.7967 -72.5478 -75.9874 -78.0 

3.8 47.3 15 -73.7967 -76.3407 -75.2524 -80.2736 -84.5 

3.8 47.3 17.5 -76.3407 -78.5444 -77.5809 -83.8231 -85.5 

3.8 47.3 20 -78.5444 -80.4882 -79.6242 -86.6496 -87.0 

3.8 47.3 22.5 -80.4882 -82.2270 -81.4441 -88.7666 -85.0 

3.8 47.3 25 -82.2270 -83.7999 -83.0843 -90.1870 -83.0 

3.8 47.3 27.5 -83.7999 -85.2359 -84.5770 -90.9234 -88.0 

3.8 47.3 30 -85.2359 -86.5568 -85.9464 -90.9876 -93.0 

3.8 47.3 32.5 -86.5568 -87.7799 -87.2113 -90.3910 -90.0 

3.8 47.3 35 -87.7799 -88.9185 -88.3864 -89.1440 -93.0 

3.11 89.8 100 -51.0000 -56.4764 -54.5497 -44.5315 -45.0 

3.11 89.8 150 -56.4764 -60.3620 -58.8400 -46.6385 -46.0 

3.11 89.8 200 -60.3620 -63.3759 -62.1253 -47.7248 -47.0 

3.11 89.8 250 -63.3759 -65.8385 -64.7795 -48.5451 -50.0 

3.11 89.8 300 -65.8385 -67.9205 -67.0031 -50.1896 -51.0 

3.11 89.8 350 -67.9205 -69.7241 -68.9152 -52.4276 -52.0 

3.11 89.8 400 -69.7241 -71.3149 -70.5919 -54.9167 -54.0 

3.11 89.8 450 -71.3149 -72.7380 -72.0845 -57.5837 -56.0 

3.11 89.8 500 -72.7380 -74.0253 -73.4291 -60.3744 -61.0 

3.11 89.8 550 -74.0253 -75.2005 -74.6525 -63.1228 -64.0 

3.11 89.8 600 -75.2005 -76.2816 -75.7746 -65.6451 -66.0 
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3.11 89.8 650 -76.2816 -77.2825 -76.8109 -68.1814 -68.0 

3.11 89.8 700 -77.2825 -78.2144 -77.7734 -71.0368 -71.0 

3.11 89.8 750 -78.2144 -79.0861 -78.6721 -73.7874 -74.0 

3.11 89.8 800 -79.0861 -79.9049 -79.5148 -76.2050 -76.0 

3.11 89.8 850 -79.9049 -80.6769 -80.3081 -78.5410 -78.0 

3.11 89.8 900 -80.6769 -81.4072 -81.0574 -81.0329 -81.0 

3.11 89.8 950 -81.4072 -82.1000 -81.7674 -83.5365 -84.0 

3.11 89.8 1000 -82.1000 -82.7590 -82.4420 -85.6787 -86.0 

3.11 89.8 1050 -82.7590 -83.3873 -83.0845 -87.4383 -87.0 

3.11 89.8 1100 -83.3873 -83.9877 -83.6979 -88.9739 -89.0 

3.11 89.8 1150 -83.9877 -84.5625 -84.2846 -89.8626 -90.0 

3.11 89.8 1200 -84.5625 -85.1139 -84.8470 -91.0458 -91.0 

3.55 45 100 -53.0000 -63.6866 -61.0321 -62.2058 -62.0 

3.55 45 200 -63.6866 -69.9378 -67.8514 -65.2170 -66.0 

3.55 45 300 -69.9378 -74.3731 -72.6987 -74.9947 -73.0 

3.55 45 400 -74.3731 -77.8134 -76.4254 -80.3518 -81.0 

3.55 45 500 -77.8134 -80.6244 -79.4425 -83.9819 -87.0 

3.55 45 600 -80.6244 -83.0010 -81.9733 -86.9242 -84.0 

3.55 45 700 -83.0010 -85.0597 -84.1512 -89.4127 -89.0 

3.55 45 800 -85.0597 -86.8756 -86.0619 -91.6061 -94.0 

3.55 45 900 -86.8756 -88.5000 -87.7633 -93.6384 -92.0 

3.55 45 1000 -88.5000 -89.9694 -89.2966 -94.9439 -96.0 

3.55 45 1100 -89.9694 -91.3109 -90.6918 -93.3521 -91.0 

3.55 45 1200 -91.3109 -92.5450 -91.9716 -90.8427 -94.0 

3.55 45 1300 -92.5450 -93.6875 -93.1537 -89.5115 -88.0 

3.55 45 1400 -93.6875 -94.7512 -94.2519 -89.9506 -90.0 

3.55 45 1500 -94.7512 -95.7463 -95.2772 -94.9903 -95.0 

3.55 45 1600 -95.7463 -96.6809 -96.2387 -96.8816 -97.0 

3.55 45 1700 -96.6809 -97.5622 -97.1439 -94.0911 -94.0 

2.57 45 100 -50.4000 -58.1365 -55.8021 -49.8841 -50.0 

2.57 45 200 -58.1365 -62.6620 -60.9638 -53.3669 -53.0 

2.57 45 300 -62.6620 -65.8729 -64.5577 -58.4992 -59.0 

2.57 45 400 -65.8729 -68.3635 -67.2944 -61.7682 -63.0 

2.57 45 500 -68.3635 -70.3985 -69.4991 -64.1583 -61.0 

2.57 45 600 -70.3985 -72.1190 -71.3434 -65.4892 -67.0 

2.57 45 700 -72.1190 -73.6094 -72.9278 -67.2096 -70.0 

2.57 45 800 -73.6094 -74.9240 -74.3163 -71.9034 -67.0 

2.57 45 900 -74.9240 -76.1000 -75.5517 -76.5272 -79.0 

2.57 45 1000 -76.1000 -77.1638 -76.6644 -77.9812 -77.0 

2.57 45 1100 -77.1638 -78.1350 -77.6765 -72.1554 -75.0 

2.57 45 1200 -78.1350 -79.0283 -78.6046 -71.8372 -68.0 

2.57 45 1300 -79.0283 -79.8555 -79.4616 -76.3812 -78.0 

2.57 45 1400 -79.8555 -80.6255 -80.2576 -82.3332 -83.0 

2.57 45 1500 -80.6255 -81.3459 -81.0006 -87.9476 -87.0 

2.57 45 1600 -81.3459 -82.0225 -81.6974 -89.3251 -90.0 

2.57 45 1700 -82.0225 -82.6605 -82.3532 -89.2255 -89.0 

1.701 41 3 -43.1570 -47.6347 -45.9491 -43.5831 -44.0 

1.701 41 5.5 -47.6347 -50.4027 -49.2356 -47.8866 -46.0 

1.701 41 8 -50.4027 -52.4116 -51.5223 -51.7235 -52.5 

1.701 41 10.5 -52.4116 -53.9893 -53.2717 -55.1107 -62.0 

1.701 41 13 -53.9893 -55.2887 -54.6874 -58.0659 -55.0 

1.701 41 15.5 -55.2887 -56.3934 -55.8761 -60.6069 -53.0 



 

125 
 

1.701 41 18 -56.3934 -57.3541 -56.9002 -62.7518 -58.5 

1.701 41 20.5 -57.3541 -58.2042 -57.7999 -64.5190 -64.0 

1.701 41 23 -58.2042 -58.9664 -58.6020 -65.9268 -72.0 

1.701 41 25.5 -58.9664 -59.6573 -59.3256 -66.9938 -77.0 

1.701 41 28 -59.6573 -60.2891 -59.9847 -67.7386 -74.0 

1.701 41 30.5 -60.2891 -60.8711 -60.5898 -68.1794 -67.5 

1.701 41 33 -60.8711 -61.4106 -61.1492 -68.3348 -59.0 

1.701 41 35.5 -61.4106 -61.9133 -61.6692 -68.2231 -60.0 

1.701 41 38 -61.9133 -62.3840 -62.1550 -67.8623 -62.5 

1.701 41 40.5 -62.3840 -62.8265 -62.6109 -67.2707 -70.0 

1.701 41 43 -62.8265 -63.2439 -63.0402 -66.4662 -75.0 

1.701 41 45.5 -63.2439 -63.6391 -63.4460 -65.4667 -70.0 

1.701 41 48 -63.6391 -64.0142 -63.8307 -64.2900 -59.0 
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Abstract – Owing to the growing demand for wireless communication, the 

communication network should have better coverage, improved capacity, and higher 

transmission quality, which contribute to better Quality of Service (QoS). The use of 

smart antenna systems (SASs) is one of the promising technologies in achieving this 

demand.  The SASs achieve this by dynamically radiating shaped signal beams to the 

mobile terminals in response to received signals. This has the effect of enhancing the 

performance characteristics such as capacity and hand-over in wireless systems. By 

using machine learning methods, it is possible to predict upcoming changes in the 

mobile terminal location at an early stage and then carry out beam forming 

optimization to alleviate the reduction in network performance. Prediction of Received 

Signal Strength (RSS) in wireless networks offers a strong base for mobility prediction 

and localization with minimal effort. The need for mobility prediction is significant 

and calls for the use of artificial intelligence approaches to make precise and efficient 

predictions.  

This paper presents the use of Grey Prediction model (GM) which is associated with 

benefits of reduced overheads in wireless cellular networks and Adaptive Neuro-Fuzzy 

Inference System (ANFIS) in improving mobility prediction. In this methodology, the 

ANFIS uses both measured data and the theoretical data used by Log-Normal 

Shadowing Model (LNSM) to achieve a better estimation of mobility. Mobility is 

based on the RSS at the mobile node (MN) as it moves towards or away from the 
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transmitting antenna. The approach also takes into account the factors that contribute 

to the RSS including; path loss exponent, path loss at reference distance and distance 

of the MN from the transmitter. The results show that ANFIS achieves prediction with 

a mean absolute error (MAE); between 0.083m and 0.690m for short distances (1m-

65m), and between 0.322m and 3.877m for long distance (100m-1800m). The results 

were compared against those from other models including the LNSM, GM and generic 

weighted GM which were found to achieve prediction with larger MAE than ANFIS. 

Keywords-Adaptive Neuro-Fuzzy Inference System, Grey Prediction Model, 

Mobility Prediction, Path Loss, Received Signal Strength. 

 


