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ABSTRACT

Probability distributions are very useful models for characterising inherent vari-

ability in lifetime data.The Weibull distribution is a widely used distribution in

lifetime data analysis and hence has been modified many times to yield new distri-

butions with greater flexibility. Modified forms of Weibull distribution are widely

used in survival data analysis due to their versatility and relative simplicity. In

this study, a new Odd Kumaraswamy inverse Weibull distribution is developed

and its statistical properties are derived. The model contains several lifetime dis-

tributions as special submodels. The shapes of the probability density function

and the hazard function are discussed. The model parameters are estimated us-

ing maximum likelihood method and a simulation to assess the performance of

maximum likelihood estimators of the parameters is carried out.The average bias

and root mean square error results from the simulation study decrease in terms of

overall trend as the sample size increases indicating asymptotic consistency and

unbiasedness of the estimators. The model is then applied to several survival data

sets namely cancer patients data, guinea pigs data, glass fibres data, and Kelvar

epoxy strand data to illustrate its flexibillity. Applications of the model to survival

data empirically indicate its flexibility and usefulness in modeling various types

of biomedical and reliability data and its superiority over three other lifetime dis-

tributions compared with the model in the study. The model may attract wider

applications in survival analysis, reliability analysis, and insurance.

ix



CHAPTER 1

INTRODUCTION

1.1 Background of the Study
Study of data is the most fundamental topic in statistics. Sometimes a simple

exploratory study of data via descriptive measures such as graphical representation

(histograms, bar plots, charts, etc.), measures of location and dispersion may

seem adequate in helping us understand the sort of information the data conveys.

However, one common and almost universal characteristic of data is their inherent

variability. Probability distributions facilitate characterization of the variability

and uncertainty prevailing in a data set by identifying the patterns of variation.

Statistical probability distributions not only summarize the observations into a

concise mathematical form containing a few parameters, but also provide means

to analyze the basic structure that govern the data generating mechanism.

To describe (specify) the probability distribution of a random variable Y (say) we

utilize the following concepts: cumulative distribution function (F (y) = Pr(Y ≤

y)), Probability density function (f(y) = F ′(y)), quantile function (Q(p) = F−1(p)),

Quantile density function, Density Quantile (fp(p) = fY (Q(p)). In classical statis-

tics, cumulative distribution function (CDF) and probability density function

(PDF) are the most popular techniques of defining most distributions in statistical

theory and practice.

The objective of statistical modeling is finding appropriate probability distribu-

tions that adequately describe a data set generated by experiment, surveys, ob-

servational studies etc. In order to do this, there are two broad approaches viz de-

riving theoretical models from the basic assumptions and relations underlying the

data and/or the data generating mechanism, and empirical modeling. The former
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makes assumptions about the physical characteristics governing data generating

process and subsequently find a suitable model that satisfies such assumptions or

by adapting existing models from other disciplines. The latter approach is data-

dependent. It is suitable in situations where there is lack of understanding of the

data generating process. The overarching goal of this approach is finding the best

distributional approximation to the data by focusing attention on versatile families

of distributions with enough parameters capable of producing different shapes and

characteristics that match the features exhibited by the available observations.

In empirical statistical modeling, the challenge is finding a distribution function’s

parameter estimates that are as close as possible to the true values of the theo-

retical model parameters. Depending on the desired degree of accuracy several

different modelling procedures that ensure proximity in the estimate and the true

parameter value may be utilized. However, there is no single statistical distribution

that is suitable for different data and so the need to extend existing distributions

or develop new ones. Recent developments focus on defining new families of dis-

tributions that extend classical distributions and at the same time provide great

versatility in modelling data. So, several techniques to generate new distributions

by adding more parameters have been proposed. Most of the generalizations are

developed for the following reasons: a physical or statistical theoretical argument

to explain the mechanism of the generated data, an appropriate model that has

previously been used successfully, and a model whose empirical fit is good to the

data.

One of the most important distributions used in modelling lifetime data is the

Weibull distribution whose cumulative distribution function (CDF) and probabil-

ity density function (PDF) are respectively given by

F (x;α, β) = 1− exp
(
−x
α

)β
(1.1)
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and

f(x;α, β) =
β

αβ
xβ−1 exp

(
−x
α

)β
, (1.2)

where x > 0, α > 0 andβ > 0, and α is a scale parameter and β is a shape pa-

rameter. Weibull distribution is an appropriate model for modelling failure times

in instances where an item consists of numerous components and each component

has an identical failure time distribution and the item fails when the weakest part

fails (Liu, 1997). If X is a random variable following a Weibull distribution with

parameters α > 0, β > 0, under the transformation
1

x
, the inverse Weibull distri-

bution proposed by Keller and Kamath [1982] is obtained. The CDF and PDF of

the inverse Weibull distribution are respectively given by

G(x;α, β) = exp
(
−α
x

)β
(1.3)

and

g(x;α, β) = βαβx−(β+1) exp
(
−α
x

)β
(1.4)

where x > 0, α > 0, and β > 0. The inverse Weibull distribution has proven to be

very useful in the modeling of lifetime data. Thus, it has been compounded with

other continuous distributions to produce new more flexible lifetime distributions.

For example, the Kumaraswamy inverse Weibull (KIW) distribution (Shahbaz

et al., 2012). This is a generalisation of the inverse Weibull distribution based on

the Kumaraswamy distribution. A random variable X ∼ KIW (α, β, λ, η, ) if its

CDF is given by

F (x;ψ) = 1−
[
1− exp

{
−λ
(α
x

)β}]η
(1.5)

where ψ = {α, λ, β, η}. Knowing the appropriate distribution a particular data set

follow helps in making sound inference about the data. Limitations of classical

statistical distributions in suitably modelling different data set motivated the need

to extend existing distributions or develop new ones. Recent statistical advances

focus on defining new families of models that extend well-known distributions and
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provide greater flexibility in modelling survival data arising in hordes of different

field of survival analysis, insurance, medical and reliability engineering.

1.2 Statement of the Problem
Weibull distribution is popular in survival analysis due to its versatility to model

lifetime data which exhibit monotone failure rates. However, in many practical

situations, classical Weibull distribution fails to provide adequate fits to real life

survival data such as machine life cycle, human mortality, and biomedical data

which exhibit non-monotone failure rates. Recent statistical advances focus on

defining new families of distributions that extend Weibull distribution to provide

greater flexibility in modelling survival data arising in hordes of different fields

of survival analysis, insurance, medical and reliability engineering. Existing tech-

niques for generalising Weibull distributions such as Beta generators and Gamma

generators involvle complexities of Beta-G distribution and Gamma-G distribution

since they involve special functions such as Beta functions and incomplete Gamma.

Recent alternative techniques deal with Kumaraswamy distribution which has sim-

ilar properties as Beta-G but has advantage in terms of tractability. However,

Kumaraswmay distribution is bounded on the interval (0, 1) and consequently

generalised forms of inverse Weibull distributions are also bounded on the unit in-

terval hence limiting their applicability in survival data modelling. Furthermore,

generalised distributions based on Gamma, Beta or Kumaraswamy generators are

not flexible enough to adequately model survival data that exhibit non-monotone

failure rates such as bathtub hazard shape and unimodality which are quite com-

mon in biological , human mortality, and reliability engineering studies. Proposing

a new generalisation of Kumaraswamy inverse Weibull distribution is thus impor-

tant in developing a model that is tractable and capable of modeling survival data

with both monotone and non-monotone failure rates as well as enhanced flexibility

of kurtosis and possibility of developing heavy-tailed distributions for modelling

survival data.
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1.3 Justification for the Study
Although the exisiting extended forms of Weibull distribution effectively provide

better fits for unimodal survival data that exhibit monotone failure rates, they

are not flexible enough to provide reasonable parametric fit for modelling phe-

nomena with complex non-monotone failure rates such as bathtub and bimodal

failure rates which are quite common in biological, medical, financial and reliability

studies. Therefore, developing new highly versatile generalisation of the Weibull

distribution with tractable cumulative distribution function is very important not

only in statistical analysis of survival data characterised by both monotonic and

non-monotonic failure rates but also in controlling skewness, kurtosis and tail

variations of distributions common in insurance, finance, biomedical, and survival

analysis applications.

1.4 General Objective
To propose and study the properties of odd Kumaraswamy inverse Weibull distri-

bution and apply it to survival data.

1.5 Specific Objectives
1. To develop a new odd Kumaraswamy inverse Weibull distribution.

2. To derive the statistical properties of the new distribution.

3. To estimate the parameters of the new distribution using maximum likeli-

hood method.

4. To assess the performance of the estimators using simulation.

5. To apply the new distribution to survival data sets.

1.6 Significance of the Study
Statistical lifetime distributions are widely employed in survival data modelling

in a host of application areas such as reliability engineering, survival analysis,

biomedical applications, insurance and social sciences. Particularly interesting

are the applications of lifetime distributions in reliability engineering to estimate
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the survival time of electrical components, computation of time a patient takes

to respond to a therapy, and modelling of the lifetime of marriages in social sci-

ences. Numerous classical distributions have been extensively utilized over the

past decades for modeling data in many areas of applied sciences. Essentially,

there is a great need for extended forms of the classical distributions in many ap-

plied areas such as biology, insurance, finance, human mortality studies, medical,

reliability and survival analysis owing to the fact that compounded distributions

are more flexible to model real data. Generalized Weibull family of distributions

such as OKIW distribution proposed in this study are more flexible and are ca-

pable of modeling real survival data that exhibit monotonic and non-monotonic

hazard rates better than the classical Weibull distribution making them highly

applicable in survival data analysis. Thus, it is expected that OKIW distribution

may attract wider applications in the aforementioned areas.

1.7 Thesis Outline
The rest of the thesis is organised as follows. Chapter 2 presents literature review

on modifications and extensions of Weibull, estimation techniques, and survival

data. Chapter 3 presents the methodology for the study. Chapter 4 presents the

study results and discussion. Finally, chapter 5 presents conclusions and recom-

mendations of the study.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction
In this chapter, a critical review of some of the techniques for developing exten-

sions and modifications of distributions and parameters estimation based largely

on some well-known generators is provided, clearly highlighting the limitations

in existing modified forms of Weibull distribtuion and the need to adopt new

extensions and generalisation.

2.2 Statistical Distributions and Survival Data Mod-

elling
Statistical lifetime distributions are widely utilized in many different fields for

modelling data sets. Some of the most common application areas include but not

limited to: reliability engineering, survival analysis, duration analysis in economic,

modelling of default rate for bank customers, and insurance such as the durations

without claims of customers policies. Reliability is defined as the probability that

a system or some process performs its prescribed duty without failure for some

specified time if it is operated correctly in a given environment (Khan et al., 2008).

In social sciences, a fascinating application of lifetime distributions is modelling

the lifetime of marriages (Almalki and Nadarajah, 2014), that is, modelling time

to divorce.

The hazard rate function plays a crucial role in lifetime modelling. A lifetime

distribution is said to have a monotone hazard rate if its hazard function, h(x),

increases over time or decreases over time or remains approximately constant over

time. Otherwise, a lifetime distribution is said to have a non-monotone hazard
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rate if h(x) initially decreases, followed by an approximately constant period, then

followed by an increasing period (bathtub failure rate) or if its hazard rate function

has a unique mode (upside-down bathtub shape/unimodal). The different shapes

of the hazard rate function can be examined using the first derivative of the hazard

function.

Some of the most popular lifetime distributions include the exponential,Weibull,

gamma, Pareto, and Rayleigh all of which have monotonic hazard rate func-

tions (Lawless, 1982). However, certain lifetime data (e.g., human mortality,

machine life cycles and data from some biological and medical studies) require

non-monotonic shapes like the bathtub shape, the unimodal (upside-down bath-

tub) or modified unimodal shape.

2.3 Review of Modifications and Generalisation of

Weibull Distribution
The Weibull distribution, introduced by Weibull [1951], is one of the most im-

portant lifetime distribution and has extensive appliciations in reliability, quality

control and survival analysis. Its CDF is simple and so are the expressions for

its survival and hazard functions. Its extended forms such as inverse Weibull dis-

tribution is commonly used to model a variety of failure characteristics: infant

mortality, useful life and wear-out periods. Over the years, researchers have been

developing various extensions and modified forms of the two-parameter inverse

Weibull distribution that are more flexible than existing ones by adding more pa-

rameters to the distribution function in order to achieve non-monotonic hazard

shapes and very versatile PDF (Bebbington et al., 2007; Mudholkar and Hutson,

1996; Zhang and Xie, 2011).

Khan [2010] introduced a new four-parameter reliability model of inverse Weibull

distribution referred to as the beta inverse Weibull distribution generated from the

logit of a beta random variable and Baharith et al. [2014] introduced an exten-
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sion of the inverse Weibull distribution called the beta generalized inverse Weibull

distribution by generalising beta inverse Weibull. These models have hazard rate

that is monotonically decreasing and, for some of its special cases, an upside down

bathtube shape. Models parameters were obtained via maximum likelihood esti-

mation and finite sample performance of maximum likelihood estimators assessed

by simulation.

Motivated by the intractability of cumulative distribution function of beta distri-

bution due to the incomplete beta function ratio, Gusmao et al. [2011] defined a

three-parameter generalized inverse Weibull distribution with rapidly decreasing

and unimodal failure rate. While Khan and King [2012] proposed a generalised

version of four-parameter modified inverse Weibull distribution with modified in-

verse exponential, modified inverse Rayleigh distribution as its special cases. The

model has increasing and decreasing failure rate pattern for life time data mak-

ing it more flexible in modelling survival data. Model parameters were obtained

using maximum likelihood estimation and estimators’ performance assessed via

simulation. Shahbaz et al. [2012] introduced and studied a four-parameter inverse

Weibull distribution with similar flexibility as Khan and King [2012] model but

with fairly computational ease.

Owing to the difficulty that comes with distributions that involve the logit of

the beta distribution, researchers have resorted to using other bounded distribu-

tions on the interval (0, 1) to obtain the generalisation of any parent cumulative

Weibull distribution function. Kumaraswamy [1980] is one such distribution, with

distribution function given by

F (x;α, ω) = 1− [1− xα]ω, (2.1)

and its pdf by,

f(x;α, ω) = αωxα−1[1− xα]ω−1, (2.2)
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where α > 0 and ω > 0. This density can be unimodal, increasing, decreasing

or constant, thus making it a viable alternative to beta distribution.Cordeiro and

Castro [2011] proposed to use the Kumaraswamy to generalize other distributions

by considering a random variable X with a distribution G and applying the Ku-

marasawamy distribution to G(x) to obtain a generalised Kumaraswamy−G dis-

tribution. A similar idea is used to consider the distribution functions of Weibull

and inverse Weibull distribution as candidates for G to obtain the Kumaraswamy-

Weibull (Cordeiro et al., 2010) and Kumaraswamy inverse Weibull (Shahbaz et al.,

2012) distributions. Besides, following a similar technique, Rodrigues et al. [2016]

proposed a new distribution called the exponentiated Kumaraswamy inverse Weibull

(EKIW), a generalisation of inverse Weibull distribution, which is more flexible

than its predecessors and accommodate several special cases such as the inverse

exponential, inverse Weibull, inverse Rayleigh and exponentiated Weibull distri-

butions. The model parameters estimation was done via methods of moments

and maximum likelihood estimation. However, generalisation via Kumaraswamy

generator is limiting in that Kumaraswamy distribution is bounded on the interval

(0, 1) and that the consequent hazard functions does not exhibit highly desirable

bathtub and modified bathtub failure rates in addition to limited flexibility of the

resulting PDF.

2.4 Survival Data
Survival data consists of the time until an event of interest occurs and usually the

censoring information for each individual or component. Thus, of great interest

in this study will be characterising the distribution of "time to event" for a given

population. Survival times of some individuals might not be fully observed due to

different reasons: either the survival study stops before full survival times of all

individuals can be observed; a subject drops out of a study, or a subject is lost to

follow-up, subjects survives beyond the time of the study, etc. During a survival

study either the individual is observed to fail at time X, or the observation on that

individual ceases at time k. Then the observation is min(T, k) and an indicator
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variable Ik showing if the individual is censored or not. Therefore, estimators for

hazard and survival functions must be adjusted to account for censoring (Lawless,

1982). This study intends to illustrate the applicability and flexibility of the

proposed model using complete samples of survival data. Due to time constrained

for the study, we wish to consider application of the proposed model to censored

survival data as a subsequent separate work.

2.5 Summary of Literature Review
In this chapter, a review of various modified forms of inverse Weibull distribu-

tion is provided together with parameters estimation methods and versatility in

terms of lifetime data modelling. The foregoing modified forms of inverse Weibull

distribution effectively provide better fits for unimodal survival data that exhibit

monotonically increasing, monotonically decreasing and constant failure rates, but

they fail to provide reasonable parametric fit for phenomena with non-monotone

failure rates such as bathtub and modified failure rates which are quite common in

biological and reliability studies. Besides, Kumaraswmay distribution is bounded

on the interval (0, 1) and consequently generalised forms of inverse Weibull dis-

tributions are also bounded on the unit interval hence limiting their applicability

in survival data modelling. There is a need for a new generalisation of the Ku-

maraswamy inverse Weibull distribution to enhance the versatility of its PDF and

tractability of its CDF and also to construct heavy-tailed distributions for finan-

cial and insurance applictions since the research in this area has not thus far tackle

this limitation. Proposing a new generalisation of Kumaraswamy inverse Weibull

distribution is critical in providing a tractable model capable of modeling lifetime

data with both monotone and non-monotone failure rates as well as enhanced

flexibility of kurtosis and possibility of developing heavy-tailed distributions for

modelling survival data.
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CHAPTER 3

METHODOLOGY

3.1 Introduction
In this section, a technique for developing a new distribution is discussed in ad-

dition to candidate estimation procedure clearly highlighing the underlying phi-

losophy in the estimation approach.The study introduces key concepts regarding

survival data and provide a conceptual framework for survival data modelling,

theoretical background and the methods behind the analysis of the survival data.

3.2 The Odd Generalized Exponential family of

distributions
Some attempts have been made to define new classes of distributions to extend

well-known families of distributions and at the same time provide great flexibility

in modeling data in practice. Most of the generalizations are developed for one

or more of the following reasons: a physical or statistical theoretical argument to

explain the mechanism of the generated data, an appropriate model that has pre-

viously been used successfully, and a model whose empirical fit to the data is good.

Most of the techniques for extending classical distributions involve addition of sin-

gle shape parameter to the baseline distributions such as in exponentiated-G class

of distributions, i.e., a two-parameter generalised-exponential (GE) distribution

which is an extension of the exponential distribution.

The generalised-exponential family of distributions is widely applied in analysing

lifetime data which exhibit monotonic failure rate but is limited if the failure rate

is upside-down, J or reversed-J, bathtub or modified bathtub shapes.

Alternatively, more effective generalisation techniques involve argumenting a base-

12



line distribution with multiple shape and scale parameters. Tahir et al. [2015]

proposed a new family of continuous distributions called the odd generalized ex-

ponential family (OGE-G). This new family is very versatile and highly flexible

because the hazard rate shapes could be increasing, decreasing, J, reversed-J, bath-

tub and upside down bathtub. A random variable X is said to have generalised

exponential (GE) distribution with paramters α, λ if its CDF is given by

F (x;α, λ) =
(
1− exp−λx

)α
for x > 0, α > 0, λ > 0.

The OGE-G family of distributions has found wider application in applied statis-

tics owing to the basic motivations to make the kurtosis more flexible than is

in the baseline model; produce a skewness for symmetrical distributions; con-

struct heavy-tailed distributions; and to generate distributions with symmetric,

left-skewed, right-skewed, and reversed-J shaped.

The OGE-G family is defined as follows. Let G(x;ϕ) be the CDF of any dis-

tribution which depends on parameter(s) ϕ and thus the survival function is

G(x;ϕ) = 1−G(x;ϕ), then the CDF of OGE-family is defined by

F (x;α, λ,ϕ) =

(
1− exp−λG(x;ϕ)

G(x;ϕ)

)α
, x > 0;α,ϕ, λ > 0. (3.1)

Where λ > 0, α > 0 are scale and shape paramters respectively. The pdf corre-

sponding to (3.1) is given by

f(x;α, λ,ϕ) =
λαg(x;ϕ)

G(x;ϕ)2
exp−λG(x;ϕ)

G(x;ϕ)

(
1− exp−λG(x;ϕ)

G(x;ϕ)

)α−1

, (3.2)

where g(x;ϕ) is the baseline pdf.

The hazard function, h(x), is the instantaneous rate at which events occur given

13



no previous events (instantaneous failure rate), where

h(x) = lim
∆x→0

Pr(x < X ≤ x+ ∆x|X > x)

∆x
=
f(x)

S(x)
.

Thus, the hazard function of X is given by

h(x;α, λ,ϕ) =
λαg(x;ϕ) exp−λG(x;ϕ)

G(x;ϕ)

G(x;ϕ)2
{

1−
(

1− exp−λG(x;ϕ)

G(x;ϕ)

)α} (1− exp−λG(x;ϕ)

G(x;ϕ)

)α−1

(3.3)

The OGE-G family of distributions can be illustrated as follows. Let Y be a

lifetime random variable having a continuous CDF G(x;ϕ)). The odds function/

ratio that a component following the lifetime Y will fail at time x is G(x;ϕ))

G(x;ϕ))
. As an

illustration, let’s consider the variability of this odd failure as represented by the

random variable X having, say, a Weibull distribution with a scale σ and shape

parameter ω. Then, we have

Pr(Y ≤ x) = Pr

(
X ≤ G(x;ϕ))

G(x;ϕ))

)
= F (x;σ, ω, θ).

The Weibull-G density function becomes

f(x;σ, ω, θ) = σωg(x; θ)

[
G(x;ϕ))ω−1

G(x;ϕ))ω+1

]
exp

{
−σ
[
G(x;ϕ))

G(x;ϕ))

]ω}

That is, X ∼ Weibull − G(σ, ω, θ). If ω = 1, it corresponds to the exponential

generator.

3.3 Kumaraswamy Inverse Weibull Distribution
The Kumaraswamy inverse Weibull (KIW) distribution was proposed and studied

by Shahbaz et al. [2012]. This is a generalisation of the inverse Weibull dis-

tribution based on the Kumaraswamy distribution. A random variable X ∼

14



KIW (α, β, λ, η, ) if its CDF is given by

F (x;ψ) = 1−
[
1− exp

{
−λ
(α
x

)β}]η
(3.4)

where ψ = {α, λ, β, η}.

The study intends to propose a new distribution by generalising Kumaraswamy in-

verse Weibull distribution (3.4) dubbed a new Odd Kumaraswamy Inverse Weibull

distribution via univariate distributions generator by Tahir et al. [2015] in order

to obtain distributions with large class of sub-models and which show higher flex-

ibility as well as wider applicability.

3.4 Maximum Likelihood Estimation
The Maximum Likelihood Estimation (MLE) is a method of estimating the param-

eters of a statistical model by selecting the set of values of the model parameters

that maximizes the likelihood function. Let X = (X1, X2, ..., Xn)T be a vector

of random variables from one of a class of distributions on Rn and indexed by a

p-dimensional parameters θ = (θ1, θ2, · · · , θp)T where θ ∈ Ω ⊂ Rp and p ≤ n.

Let F (X|θ) be the distribution function of X and that the joint density function

f(x1, x2, ..., xn|θ) exists. Then the likelihood of θ is the function

L(θ) = f(x1, x2, ..., xn|θ)

which is the probability of observing the given data as a function of θ. The

maximum likelihood estimates (MLEs) of θ are those values of θ that maximise

the likelihood function, i.e., the value(s) that make(s) the observed data the most

probable. If the X = (X1, X2, ..., Xn) are iid, then the likelihood simplies to

L(θ) =
n∏
i=1

f(xi|θ).
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By MLEs, various statistics are built for assessing the goodness-of-fit of a model,

such as: Akaike Information Criterion(AIC), Bayesian Information Criterion (BIC),

3.5 Methods of Evaluating Maximum Likelihood

Estimators
Let X1, X2, · · · , Xn be a random sample of size n from the sampling model f(x/θ),

where θ is an unknown parameter. An estimator of θ obtained by method such as

maximum likelihood estimation and method of moment, is a function of the sam-

ple, i.e., a statistic θ̂ = T (X1, X2, · · · , Xn). To study the quality of an estimator or

asymptotic properties of the estimator, Mean square error and bias (equivalently

root mean square error and average bias).

3.5.1 Mean Square Error of an Estimator

Let θ̂ be the estimator of the unknown parameter θ from the random sample

X1, X2, · · · , Xn. Then the deviations from θ̂ to the true θ, |θ̂ − θ|, measures the

quality or performance of the estimator. That is, the mean square error (MSE) of

an estimator θ̂ of a parameter θ is the function of θ defined by

MSEθ̂ = E(θ̂ − θ)2 = V ar(θ̂) + (E(θ̂)− θ)2 = V ar(θ̂) + (Bias(θ̂))2 (3.5)

. The expectation in (3.5) is with respect to the random variables X1, X2, · · · , Xn

since they are the only random components in the expression. The sequence of

estimators {Θ̂n} is weakly consistent or equivalently MSE consistent if Θ̂n → θ in

probability as n→∞. That is, ∀ε > 0, if n→∞

P
(
|Θ̂n − θ| > ε

)
→ 0. (3.6)

Equivalently, anda sequence of estimators Θ̂n is weakly consistent if

lim
n→∞

MSE(Θ̂n) = 0. (3.7)
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That is , if the number of observations increase the MSE descend to zero.

3.5.2 Bias of an Estimator

The bias of an estimator θ̂ of the parameter θ is the difference between the expected

value of θ̂ and θ. That is,

Bias(θ̂) = E(θ̂)− θ (3.8)

An estimator is unbiased if E(θ̂) = θ, ∀θ. For an unbiased estimator θ̂,

MSEθ̂ = E(θ̂ − θ)2 = V ar(θ̂) (3.9)

and so, if an estimator is unbiased, its MSE is equal to its variance. The sequence

of estimators {Θ̂n} is asymptotically unbiased if E(Θ̂n)→ θ as n→∞.

3.6 Model Comparison and Model Selection Cri-

teria
To demonstrate the applicability and flexibility of our proposed model in modelling

real data, we compare its performance with other existing competing models in

terms of information lost. Essentially, a comparison of different model-selection

approaches’ ability to detect a true model involves a trade-off between goodness

of fit and model’s parsimony. So, we employ information criteria techniques and

goodness-of-fit statistics that penalize model for complexity, to keep the model

from overfitting, to assess the best model from a variety of alternative models which

may have different number of parameters. The most commonly used information

criteria are the Akaike information criterion (AIC), corrected Akaike information

criterion (AICC) and the Bayesian information criterion (BIC). The information

criterion selects model with smaller values of AIC, AICC, and BIC for a given set

of candidate models and specified data set.

The Akaike information criterion(AIC) (Akaike, 1974) measures the quality of

statistical models for a given data set. It quantifies information lost when the data
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generating process is represented by a statistical model by obtaining an equilibrium

in the trade-off between goodness-of-fit of the model and its complexity. Suppose

we have a statistical model of some data x. Let p be the number of estimated

parameters in the model and L̂ the maximum value of the model’s likelihood

function. That is, L̂ = P (x/θ̂) where θ̂ are the parameter values that maximise

the likelihood function. Then the AIC is given by

AIC = 2p− 2 log(L̂).

AIC rewards goodness of fit, but it also includes a penalty (to minimises overfit-

ting) that is an increasing function of the number of estimated parameters.

AICC (Hurvich and Tsai, 1989) is AIC with a correction for finite sample sizes

defined as follows:

AICC = AIC +
2p(p+ 1)

(n− p− 1)

where n is the number of observations, and p is the number of estimated parame-

ters.That is, AICC is essentially AIC with a greater penalty for extra parameters.

It is recommended to use AICC if the sampel size is not large or when the model

has too many parameters (Anderson, 2002).

The Bayesian information criterion (BIC) (Schwarz, 1978) is a technique for

model selection among a finite set of models. When fitting models, it is possible

to increase the likelihood by adding parameters, but with trade-off for overfitting.

Both BIC and AIC attempt to resolve this problem by introducing a penalty term

for the number of parameters in the model; the penalty term is larger in BIC than

in AIC. The BIC is defined as

BIC = log(n)p− 2 log(L̂)

where L̂ is the maximized value of the model likelihood function, n is the sample
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size, p is the number of parameters to be estimated.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 The Odd Kumaraswamy Inverse Weibul Dis-

tribution
Let G(x; ζ) be any baseline CDF of any distribution which depends on parame-

ter(s) ζ, then the survival function is given by G(x; ζ) = 1−G(x; ζ). The CDF of

OGE-family of distributions (Tahir et al., 2015) is defined by

F (x;ω, θ, ζ) =

(
1− exp−θG(x; ζ)

G(x; ζ)

)ω
, x > 0;ω, ζ, θ > 0, (4.1)

where θ > 0, ω > 0 are additional scale and shape parameters respectively. The

PDF corresponding to (4.1) is given by

f(x;ω, θ, ζ) =
θωg(x; ζ)

G(x; ζ)2
exp−θG(x; ζ)

G(x; ζ)

(
1− exp−θG(x; ζ)

G(x; ζ)

)ω−1

, (4.2)

where g(x; ζ) is the corresponding baseline PDF. Thus, the hazard function of X

is given by

h(x;α, θ, ζ) =
θαg(x; ζ) exp−θG(x;ζ)

G(x;ζ)

G(x; ζ)2
{

1−
(

1− exp−θG(x;ζ)

G(x;ζ)

)α} (1− exp−θG(x; ζ)

G(x; ζ)

)α−1

(4.3)

We define a new five-parameter distribution dubbed Odd Generalised Exponenti-

ated Kumaraswamy inverse Weibull distribution (henceforth Odd KIW or OKIW).

The CDF of OKIW follows from (4.1) and (3.4) by taking G(x; ζ) to be Equation

(3.4) and g(x; ζ) to be the PDF corresponding to (3.4) with ζ = {α, λ, β, η, } and

also taking θ = 1 in (4.1) so that we utilise a standard OGE-family generator.
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Consequently, the CDF of OKIW becomes

F (x; ζ, ω) =

1− e
1−
{

1−e(−λ(αx )β)
}−ηω , x > 0 (4.4)

where α > 0, λ > 0, β > 0, η > 0, and ω > 0. Here, λ, α are scale parameters and

β, η, ω are shape parameters.

Proposition 4.1.1. Equation (4.4) is a well-defined distribution function of the

random variable X.

Proof

If Equation (4.4) is a CDF of a random variable X, then the following conditions

hold:

i). Limiting values:

a). lim
x→+∞

FX(x) = lim
x→+∞

1− e
1−
{

1−e(−λ(αx )β)
}−ηω = 1

b). lim
x→−∞

FX(x) = 0, i.e, lim
x→0

1− e
1−
{

1−e(−λ(αx )β)
}−ηω = 0

ii). Monotonicity: Suppose that x1 ≤ x2. Then, {X ≤ x1} ⊂ {X ≤ x2}, which

implies that

F (x1) = P(X ≤ x1) ≤ P(X ≤ x2) = F (x2).

A particular case is confirmed in (i) above, i.e., FX(x) is monotonically

increasing between 0 and 1.

iii). Right-continuity: For every x, we have lim
x2↓x1

FX(x2) = FX(x1).

That is, for any x and any decreasing sequence (xn, n ≥ 1), that converges

to x, lim
n→∞

F (xn) = F (x). Consider a decreasing sequence xn converging to

x, then the sets En = {X ≤ xn} also form a decreasing sequence with

{X ≤ x} =
∞⋂
En.
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Consequently,

lim
n→∞

F (xn) = lim
n→∞

P(En) = lim
n→∞

1− e
1−

1−e

(
−λ( α

xn )
β
)
−η

ω

= P{X ≤ x} = F (x)

by the continuity properties of the measures(propabilities). Since this is

true for every such sequence {xn}, we therefore conclude that lim
x2↓x1

FX(x2) =

FX(x1).

This completes the proof.
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Figure 4.1: Plot of the OKIW CDF for some parameters values.

The plots of OKIW CDF (Figure 4.1) show a monotonic non-decreasing shape

bounded between 0 and 1 which is typical of any CDF.
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4.1.1 Quantile and Median of OKIW Distribution

For a random variable X with CDF F , the inverse CDF or quantile function

is defined by

F−1(q) = inf{x : F (x) > q}, q ∈ [0, 1].

If F is strictly increasing and continuous, then F−1(q) is the unique real number

x such that F (x) = q. So, the quantile of (4.4) is given by solving F (xq) = q, thus

yielding

xq = α

[
−1

λ

{
log

(
1−

[
1− log

(
1− q

1
ω

)]−1
η

)}]−1
β

(4.5)

From Equation (4.5) it is clear that the quantile is tractable(in closed form) and

simulation can be performed fairly easily on this distribution since a random sam-

ple can be generated from (4.5) by using p as uniform random number.

In survival data analysis, the data are often skewed and oftentimes the median

maybe preferable to mean as a measure of centrality. From (4.5) we can obtain

the median of OKIW distribution as follows by substituting q =
1

2
to get

Median = α

−1

λ

log

1−

[
1− log

(
1− 1

2

1
ω

)]−1
η



−1
β

(4.6)

4.1.2 Survival Function, PDF and Hazard Rate Function of

OKIW

In biomedical applications and insurance problems, it is often common to use

the survival function to describe the distribution of survival time. If the random

variable X denotes survival time and FX(x) represents the CDF or the probability

of failure by time x, then the survival function is defined as

SX(x) = P(X > x) = 1− FX(x).

23



That is, the survival function is the probability of survival beyond time x. Survival

function is used to predict the quantiles of the survival time,e.g., the median

survival time (say, x50) or mean residual life time maybe of interest. The survival

function of X ∼ OKIW is given by

S(x;ϕ) = 1−

1− e
1−
{

1−e(−λ(αx )β)
}−ηω (4.7)

and the PDF of OKIW follows from Equation (4.2) and (3.4) and is given by

f(x;ϕ) = βηλωαβx−(β+1)

1− e
1−
{

1−e(−λ(αx )β)
}−ηω−1

e
1−
[
1−e−λ(αx )β

]−η
−λ(αx )

β

×
[
1− e−λ(

α
x )

β]−η−1

(4.8)

where x > 0;ϕ = α, λ, β, η, ω; α > 0, λ > 0, β > 0, η > 0, ω > 0, and λ, α are scale

parameters and β, η, ω are shape parameters. The graph of the density function

for various values of the parameters is given in Figure 4.2.

The plots indicate that the OKIW PDF (Figure 4.2) can be decreasing or right

skewed or symmetric(approximately), exponentially bounded tail, fat tail with

highly flexible kurtosis, hence capable of handling variety of data from insurance

and finance, survival analysis, biomedical data, reliability analysis.
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Figure 4.2: Plot of OKIW density for some parameters values.

The hazard function, h(x), is the instantaneous rate at which events occur given

no previous events (instantaneous failure rate), where

h(x) = lim
∆x→0

Pr(x < X ≤ x+ ∆x|X > x)

∆x
=
f(x)

S(x)
.

25



The hazard rate function follows from Equation (4.3) and is thus given by

h(x;ϕ) =

βηλωαβx−(β+1)

1− e
1−
{

1−e(−λ(αx )β)
}−ηω−1

e
1−
[
1−e−λ(αx )β

]−η
−λ(αx )

β

1−

1− e
1−
{

1−e(−λ(αx )β)
}−ηω [1− e−λ(αx )

β](η+1)

(4.9)

where x > 0 and ϕ = {α, λ, β, η, ω}.

The graphs of the hazard rate function for different values of the parameters

(Figure 4.3) exhibits various shapes such as monotonically increasing, bathtub

shape, constant and increasing-decreasing almost linearly, monotonically decreas-

ing, constant and exponential increasing, and upside down bathtub shapes. These

are very attractive features that render the OKIW distribution suitable for mod-

elling monotonic and non-monotonic hazard behaviours which are more likely to

be encountered in practical situations like reliability analysis, human mortality

and biomedical applications, thus enhancing its adaptability to fit diverse survival

data.

4.1.3 Special Models

Sub-models of OKIW distribution for selected values of the parameters are pre-

sented below.

1. Reducing IW we obtain Odd inverse exponential (for β = 1) with pdf given

by

fOIE(x;ϕ, ω) = ηλωαx−2

[
1− e1−

{
1−e−λ(αx )

}−η]ω−1

e
1−
[
1−e−λ(αx )

]−η
−λ(αx )

[
1− e−λ(

α
x )
]−η−1

2. Reducing KW, we obtain:
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Figure 4.3: Plot of the hazard function for some parameters values.

27



(a) (for η = 1), Odd exponentiated inverse Weibull with pdf given by

fOEIW (x;ϕ, ω) = βλωαβx−(β+1)

[
1− e

1−
{

1−e−λ(αx )β
}−1]ω−1

e
1−
[
1−e−λ(αx )β

]−1

−λ(αx )
β

×
[
1− e−λ(

α
x )

β]−2

(b) for (β = 1, η = 1), Odd exponentiated inverse exponential with pdf

given by

fOEIE(x;ϕ, ω) = λωαx−2

[
1− e1−

{
1−e−λ(αx )

}−1
]ω−1

e
1−
[
1−e−λ(αx )

]−1
−λ(αx )

×
[
1− e−λ(

α
x )
]−2

.

4.2 Statistical Properties

4.2.1 Moments

Moments of a distribution are important in statistical inference. They are used

to study the most important features and characteristics of a distribution (e.g.,

measures of central tendency, measures of dispersion, skewness and kurtosis). In

this subsection, we derive the rth moments of the OKIW(ϕ) distribution.

Proposition 4.2.1. If X ∼ OKIW (ϕ), where ϕ = {α, β, λ, η, ω}, then the rth

non-central moment of X is given by

µ
′

r =
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j(i+ 1)j
(
ω − 1

i

)
e−(i+1)

ηωλ
r
βαr(k + 1)( r

β
−1)Γ(k + jη + η + 1)Γ(1− r

β
)

j!k!Γ(jη + η + 1)
.

Proof. The rth moment of a random variable X with pdf f(x;ϕ) is defined by

µ
′

r =

∫ ∞
0

xrf(x;ϕ)dx. (4.10)
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substituting from (4.8) into (4.10), we get

µ
′

r =

∫ ∞
0

xrβηλωαβx−(β+1)

1− e
1−
{

1−e(−λ(αx )β)
}−ηω−1

e
1−
[
1−e−λ(αx )β

]−η
−λ(αx )

β

×
[
1− e−λ(

α
x )

β]−η−1

dx. (4.11)

Since 0 < 1− e
1−
{

1−e(−λ(αx )β)
}−η

< 1, we have by binomial expansion

1− e
1−
{

1−e(−λ(αx )β)
}−ηω−1

=
∞∑
i=0

(
ω − 1

i

)
(−1)ie

i−i
[
1−e−λ(αx )

β
]−η

Substituting back into the integral above, we have

µ
′

r =

∫ ∞
0

βηλωαβxrx−(β+1)

∞∑
i=0

(
ω − 1

i

)
(−1)ie

i−i
[
1−e−λ(αx )

β
]−η

× e
1−
[
1−e−λ(αx )β

]−η
−λ(αx )

β [
1− e−λ(

α
x )

β]−η−1

dx.

Grouping exponential terms and applying power series expansion yields

e
−i
[
1−e−λ(αx )

β
]−η
e
−
[
1−e−λ(αx )β

]−η
= e

−(i+1)
[
1−e−λ(αx )

β
]−η

=
∞∑
j=0

(−1)j(i+ 1)j

j!

×
[
1− e−λ(

α
x )

β]−jη
,

so,

µ
′

r =

∫ ∞
0

βηλωαβxrx−(β+1)

∞∑
i=0

(
ω − 1

i

)
(−1)iei

∞∑
j=0

(−1)j(i+ 1)j

j!

[
1− e−λ(

α
x )

β]−jη
×

[
1− e−λ(

α
x )

β]−η−1

e1−λ(αx )
β

dx. (4.12)

By generalised binomial expansion for negative powers, we have

[
1− e−λ(

α
x )

β]−jη [
1− e−λ(

α
x )

β]−η−1

=
∞∑
k=0

Γ(k + jη + η + 1)

k!Γ(jη + η + 1)
e−λk(

α
x )

β

.
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Hence, the integral becomes

µ
′

r =

∫ ∞
0

βηλωαβxrx−(β+1)

∞∑
i=0

(
ω − 1

i

)
(−1)ie−(i+1)

∞∑
j=0

(−1)j(i+ 1)j

j!

×
∞∑
k=0

Γ(k + jη + η + 1)

k!Γ(jη + η + 1)
e−λ(k+1)(αx )

β

dx. (4.13)

Setting u = λ(k + 1)αβx−β ⇒ du
dx

= (−β)λαβ(k + 1)x−(β+1) and

λ(k + 1)αβx−β|0 =∞ and λ(k + 1)αβx−β|∞ = 0 and x =
[

u
λαβ(k+1)

]−1
β , thus,

µ
′

r = MD

∫ 0

∞

[
u

λαβ(k + 1)

]−r
β

x−(β+1)e−u
du

(−β)λαβ(k + 1)x−(β+1)
⇒

µ
′

r =
MD

βαβλ(k + 1)

[
αβλ(k + 1)

] r
β

∫ ∞
0

u
−r
β e−udu =

MD

βαβλ(k + 1)

[
αβλ(k + 1)

] r
β Γ(1− r

β
),

r < β,

by the definition of gamma function in the form Γ(φ) =
∫∞

0
uφ−1e−udu where

M = βηλωαβ and D =
∑∞

i=0

(
ω−1
i

)
(−1)ie−(i+1)

∑∞
j=0

(−1)j(i+1)j

j!

∑∞
k=0

Γ(k+jη+η+1)
k!Γ(jη+η+1)

.

Subsituting back M and D in the equation above and simplifying we have

µ
′

r =
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j(i+ 1)j
(
ω − 1

i

)
e−(i+1)ηωλ

r
βαr(k + 1)( r

β
−1)Γ(k + jη + η + 1)

j!k!Γ(jη + η + 1)

×
Γ(1− r

β
)

j!k!Γ(jη + η + 1)
.

This completes the proof .

4.2.2 Moment Generating Functions

The expected values E(X), E(X2), E(X3), · · · , and E(Xr) are called the mo-

ments. The mean µ = E(X) and the variance σ2 = V ar(X) = E(X2) − µ2,

which are functions of the moments, are sometimes difficult to find. Moment-
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generating functions are special functions used to find the moments and func-

tions of moments such as mean and variance of a random variable in a much

simpler way and also aid in identifying which probability mass function or PDF

a random variable X follows. Besides, they provide an easy way of characterizing

the distribution of the sum of independent random variables and provide tools

for dealing with the distribution of the sum of a random number of independent

random variables.They also play a central role in the study of branching processes

in stochastic processes and genetics.

Definition 4.2.1. The moment generating function(MGF) associated with a con-

tinuous random variable X, if it exists, is a function MX : R → [0,∞] defined

by

MX(t) = E
[
etX
]

=

∫ +∞

−∞
etxf(x)dx,

where DMX
= {t : MX(t) < ∞} and the integral absolutely converges for some

interval of t in the neighborhood of 0 for −h < t < h.

Proposition 4.2.2. If X ∼ OKIW (ϕ), where ϕ = {α, β, λ, η, ω}, then the

MGF of X is given by

MX(t) =
∞∑
r=0

∞∑
i=0

∞∑
j=0

∞∑
k=0

tr(−1)i+j(i+ 1)j
(
ω − 1

i

)
e−(i+1)

×
ηωλ

r
βαr(k + 1)( r

β
−1)Γ(k + jη + η + 1)Γ(1− r

β
)

j!k!r!Γ(jη + η + 1)
.

Proof. From the foregoing definition, we have

MX(t) = E
[
etX
]

=

∫ +∞

−∞
etxf(x)dx.
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That is,

MX(t) =

∫ +∞

0

etxβηλωαβx−(β+1)

1− e
1−
{

1−e(−λ(αx )β)
}−ηω−1

× e
1−
[
1−e−λ(αx )β

]−η
−λ(αx )

β [
1− e−λ(

α
x )

β]−η−1

dx.

By power series expansion of MGF, we have

MX(t) =
∞∑
r=0

tr

r!
µ
′

r =
∞∑
r=0

tr

r!

∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j(i+ 1)j
(
ω − 1

i

)
e−(i+1)

×
ηωλ

r
βαr(k + 1)( r

β
−1)Γ(k + jη + η + 1)Γ(1− r

β
)

j!k!Γ(jη + η + 1)
,

and

∴MX(t) =
∞∑
r=0

∞∑
i=0

∞∑
j=0

∞∑
k=0

tr(−1)i+j(i+ 1)j
(
ω − 1

i

)
e−(i+1)

×
ηωλ

r
βαr(k + 1)( r

β
−1)Γ(k + jη + η + 1)Γ(1− r

β
)

j!k!r!Γ(jη + η + 1)
,

r < β.

This completes the proof.

4.2.3 Distribution of Order Statistics

Order statistics are key tools in non-parametric statistics and inference. They re-

sult from transformation that involves the ordering of an entire set of observations

on a random variable. Since order statistics have wide applications in many areas

of statistics, it is important to derive some commonly required order statistics

distributions for the OKIW distribution.

LetX1, X2, · · · , Xn be iid forming a simple random sample of size n fromOKIW (ϕ)

distribution with cumulative distribution function F (x;ϕ) and PDF f(x;ϕ). Let

X1:n ≤ · · · ≤ Xn:n denote the order statistics obtained from the sample. The PDF
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of sth order statistic, for s = 1, · · · , n, is given by

fs:n(x;ϕ) =
1

B(s, n− s+ 1)
[F (x;ϕ)]s−1 [1− F (x;ϕ)]n−s f(x;ϕ) (4.14)

where B(., .) denotes a beta function. Since 0 < F (x;ϕ) < 1 for x > 0, we have

[1− F (x;ϕ)]n−s =
n−s∑
m=0

(
n− s
m

)
(−1)m[F (x;ϕ)]m (4.15)

Thus, substituting Equation (4.16) into Equation (4.15), we obtain

fs:n(x;ϕ) =
1

B(s, n− s+ 1)
f(x;ϕ)

n−s∑
m=0

(
n− s
m

)
(−1)m[F (x;ϕ)]m+s−1. (4.16)

And finally substituting Equation (4.4) and (4.8) into (4.17), we obtain

fs:n(x;ϕ) =
βηλωαβx−(β+1)

B(s, n− s+ 1)

1− e
1−
{

1−e(−λ(αx )β)
}−ηω−1

× e
1−
[
1−e−λ(αx )β

]−η
−λ(αx )

β [
1− e−λ(

α
x )

β]−η−1

×
n−s∑
m=0

(
n− s
m

)
(−1)m

1− e
1−
{

1−e(−λ(αx )β)
}−ηω(m+s−1)

.

4.2.4 Distribution of Extreme Order Statistics

LetX1, X2, · · · , Xn be iid forming a simple random sample of size n fromOKIW (ϕ)

distribution with cumulative distribution function F (x;ϕ) and PDF f(x;ϕ). Let

X1:n ≤ · · · ≤ Xn:n denote the order statistics obtained from the sample. The PDF

of the largest order statistic is

fXn(x) = n [FX(x;ϕ)]n−1 fX(x;ϕ). (4.17)
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Utilising Equation (4.4) and (4.8) in (4.18) and simplifying, we obtain the PDF

of the largest order statistic

fXn(x) = nβηλωαβx−(β+1)

1− e
1−
{

1−e(−λ(αx )β)
}−ηωn−1

× e
1−
[
1−e−λ(αx )β

]−η
−λ(αx )

β [
1− e−λ(

α
x )

β]−η−1

.

The PDF of the smallest order statistic is defined by

fX1(x) = n [1− FX(x;ϕ)]n−1 fX(x;ϕ). (4.18)

Since 0 < F (x;ϕ) < 1 for x > 0, we have by binomial expansion

[1− FX(x;ϕ)]n−1 =
n−1∑
t=0

(
n− 1

t

)
(−1)t[F (x;ϕ)]t.

And so

fX1(x) = n
n−1∑
t=0

(
n− 1

t

)
(−1)t[F (x;ϕ)]tfX(x;ϕ). (4.19)

Utilising Equation (4.4) and (4.8) in (4.20) and simplifying, we obtain the PDF

of the smallest order statistic

fX1(x) = nβηλωαβx−(β+1)

n−1∑
t=0

(
n− 1

t

)
(−1)t

1− e
1−
{

1−e(−λ(αx )β)
}−ηωt

×

1− e
1−
{

1−e(−λ(αx )β)
}−ηω−1

e
1−
[
1−e−λ(αx )β

]−η
−λ(αx )

β [
1− e−λ(

α
x )

β]−η−1

.

4.2.5 Entropy

Entropy is an index for measuring variation or uncertainty of a random variable.

It is an important concept in many fields of science especially theory of communi-

cation, physics and reliability. Two popular entropy measures are Rényi entropy
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(Rényi, 1961) and Shannon entropy (Shannon, 1951). A large value of the entropy

indicates a greater uncertainty in the data. Rényi entropy is defined as follows .

If a random variable X has a pdf f(.), then the v order Renyi entropy is defined

by

ER(v) =
1

1− v
log

[∫ ∞
0

f v(x)dx

]
(4.20)

where v > 0 and v 6= 1. The Shanon entrophy is a special case of the Rényi

entrophy when v → 1 and is given by E[− log(f(x))].

Proposition 4.2.3. If X ∼ OKIW (ϕ), where ϕ = {α, β, λ, η, ω}, then its

Rényi entropy, ER(v), is given by

ER(v) =
1

1− v

ln

(ηω)vβv−1λv−1αvβ−1
(
λαβ(v + k)

) 1
β
{−v(β+1)+β+1}

(v + k)


+

1

1− v

(
ln

(
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
v(ω − 1)

i

)
(v + i)j

j!
e(v+i) Γ (k + v(η + 1) + jη)

k!Γ (v(η + 1) + jη)

))

+
1

1− v

(
ln

(
Γ

(
1− 1

β
{−v(β + 1) + β + 1}

)))
.

Proof. From Equation(4.21), we have that

∫ ∞
0

f v(x)dx =

∫ ∞
0

(βηλω)vαvβx−v(β+1)

1− e
1−
{

1−e(−λ(αx )β)
}−ηv(ω−1)

× e
v

(
1−
[
1−e−λ(αx )β

]−η
−λ(αx )

β

) [
1− e−λ(

α
x )

β]−v(η+1)

dx. (4.21)

Since 0 < 1− e
1−
{

1−e(−λ(αx )β)
}−η

< 1, we have by binomial expansion for positive

integer powers

1− e
1−
{

1−e(−λ(αx )β)
}−ηv(ω−1)

=
∞∑
i=0

(
v(ω − 1)

i

)
(−1)ie

i−i
[
1−e−λ(αx )

β
]−η
,
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So substituting back into the integral above, we have

∫ ∞
0

fγ(x)dx =

∫ ∞
0

(βηλω)vαvβx−v(β+1)

∞∑
i=0

(
v(ω − 1)

i

)
(−1)ie

i−i
[
1−e−λ(αx )

β
]−η

× e
v

(
1−
[
1−e−λ(αx )β

]−η
−λ(αx )

β

) [
1− e−λ(

α
x )

β]−v(η+1)

dx. (4.22)

Grouping the exponent terms and applying power series expansion, we obtain

e
i−i
[
1−e−λ(αx )

β
]−η
e
v

(
1−
[
1−e−λ(αx )β

]−η
−λ(αx )

β

)
= e(v+i)e−vλ(

α
x )

β

e
−(v+i)

[
1−e−λ(αx )

β
]−η

= e(v+i)e−vλ(
α
x )

β

×
∞∑
j=0

(−1)j(v + i)j

j!

[
1− e−λ(

α
x )

β]−jη
, .(4.23)

So,

∫ ∞
0

fγ(x)dx =

∫ ∞
0

(βηλω)vαvβx−v(β+1)

∞∑
i=0

(
v(ω − 1)

i

)
(−1)ie(v+i)e−vλ(

α
x )

β

×
∞∑
j=0

(−1)j(v + i)j

j!

[
1− e−λ(

α
x )

β]−jη [
1− e−λ(

α
x )

β]−v(η+1)

dx.(4.24)

Now, by generalised binomial expansion for negative powers, we have

[
1− e−λ(

α
x )

β]−jη [
1− e−λ(

α
x )

β]−v(η+1)

=
∞∑
k=0

Γ(k + v(η + 1) + jη)

k!Γ(v(η + 1) + jη)
e−kλ(

α
x )

β

.(4.25)

Hence, substituting back and regrouping exponent terms,the integral becomes

∫ ∞
0

fγ(x)dx =

∫ ∞
0

(βηλω)vαvβ
∞∑
i=0

(
v(ω − 1)

i

)
(−1)ie(v+i)

∞∑
j=0

(−1)j(v + i)j

j!

×
∞∑
k=0

Γ(k + v(η + 1) + jη)

k!Γ(v(η + 1) + jη)
x−v(β+1)e−λ(v+k)(αx )

β

dx. (4.26)

Letting u = λ(v + k)αβx−β ⇒ du = (−β)λαβ(v + k)x−(β+1)dx and
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λ(v + k)αβx−β|0 =∞ and λ(v + k)αβx−β|∞ = 0 and x =
[

u
λαβ(v+k)

]−1
β , thus,

∫
f v(x)dx = MD

∫ 0

∞
x−v(β+1)e−u

du

(−β)λαβ(v + k)x−(β+1)

⇒
∫
f v(x)dx =

MD−

(v + k)

∫ ∞
0

x−v(β+1)+β+1e−udu

⇒
∫
f v(x)dx =

MD−

(v + k)

∫ ∞
0

[
u

λαβ(v + k)

]−1
β
{−v(β+1)+β+1}

e−udu

⇒
∫
f v(x)dx =

MD−
(
λαβ(v + k)

) 1
β
{−v(β+1)+β+1}

(v + k)

∫ ∞
0

u
−1
β
{−v(β+1)+β+1}e−udu

where D = (βηλω)vαvβ and D− = D
βλαβ

= (ηω)vβv−1λv−1αvβ−1 and

M =
∞∑
i=0

(
v(ω − 1)

i

)
(−1)ie(v+i)

∞∑
j=0

(−1)j(v + i)j

j!

∞∑
k=0

Γ(k + v(η + 1) + jη)

k!Γ(v(η + 1) + jη)
.

So, invoking the definition of gamma function in the form Γ(φ) =
∫∞

0
uφ−1e−udu,

we obtain

∫
f v(x)dx =

MD−
(
λαβ(v + k)

) 1
β
{−v(β+1)+β+1}

(v + k)
Γ

(
1− 1

β
{−v(β + 1) + β + 1}

)

or

∫
f v(x)dx =

(ηω)vβv−1λv−1αvβ−1
(
λαβ(v + k)

) 1
β
{−v(β+1)+β+1}

(v + k)

×
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
v(ω − 1)

i

)
(v + i)j

j!
e(v+i) Γ (k + v(η + 1) + jη)

k!Γ (v(η + 1) + jη)

× Γ

(
1− 1

β
{−v(β + 1) + β + 1}

)
,

1

β
{−v(β + 1) + β + 1} < 1.
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Consequently,

ln

(∫
f v(x)dx

)
= ln

(ηω)vβv−1λv−1αvβ−1
(
λαβ(v + k)

) 1
β
{−v(β+1)+β+1}

(v + k)


+ ln

(
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
v(ω − 1)

i

)
(v + i)j

j!
e(v+i) Γ (k + v(η + 1) + jη)

k!Γ (v(η + 1) + jη)

)

+ ln

(
Γ

(
1− 1

β
{−v(β + 1) + β + 1}

))
.

∴ ER(v) =
1

1− v

(
ln

(∫
f v(x)dx

))

=
1

1− v

ln

(ηω)vβv−1λv−1αvβ−1
(
λαβ(v + k)

) 1
β
{−v(β+1)+β+1}

(v + k)


+

1

1− v

(
ln

(
∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)i+j
(
v(ω − 1)

i

)
(v + i)j

j!
e(v+i) Γ (k + v(η + 1) + jη)

k!Γ (v(η + 1) + jη)

))

+
1

1− v

(
ln

(
Γ

(
1− 1

β
{−v(β + 1) + β + 1}

)))
.

This completes the proof.

4.3 Estimation of Model Parameters
In this subsection, we present estimates of the parameters of the model via method

of maximum likelihood estimation. The elements of the score function are pre-

sented. There are no closed form solutions to the nonlinear equations obtained by

setting the elements of the score function to zero.

4.3.1 The Maximum Likelihood Estimators

LetX = (X1, X2, · · · , Xn)T be a random sample from OKIW distribution with un-

known parameter vector Θ = (α, β, λ, η, ω)T , then the likelihood function L(X,Θ)

is defined as

L(X; Θ) =
n∏
i=1

f(xi; Θ).
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Substituting from (4.8), we obtain

L(X; Θ) =
n∏
i=1

βηλωαβx
−(β+1)
i

1− e
1−

1−e

(
−λ( α

xi )
β
)
−η

ω−1

× e
1−
[

1−e−λ(
α
xi )

β
]−η
−λ
(
α
xi

)β [
1− e−λ

(
α
xi

)β]−η−1

, (4.27)

or

L(X; Θ) = (βηλωαβ)n
n∏
i=1

x
−(β+1)
i

1− e
1−

1−e

(
−λ( α

xi )
β
)
−η

ω−1

× e
1−
[

1−e−λ(
α
xi )

β
]−η
−λ
(
α
xi

)β [
1− e−λ

(
α
xi

)β]−η−1

.

The log-likelihood function for Θ is

ln(L(X; Θ)) = n ln(βηλωαβ)− (β + 1)
n∑
i=1

lnxi − (η + 1)
n∑
i=1

ln

(
1− e−λ

(
α
xi

)β)

+ (ω − 1)
n∑
i=1

ln

1− e
1−

1−e

(
−λ( α

xi )
β
)
−η

+
n∑
i=1

(
1−

(
1− e−λ

(
α
xi

)β)−η
− λ

(
α

xi

)β)
., (4.28)

By maximising the log-likelihood function above, we obtain the components of the
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score function vector U(Θ) = ∂ lnL
∂α

, ∂ lnL
∂β

, ∂ lnL
∂λ

, ∂ lnL
∂η

, ∂ lnL
∂ω

which are given by:

∂ lnL

∂α
=

nβ

α
+ βλ

n∑
i=1

ηe
−λ
(
α
xi

)β (
1− e−λ

(
α
xi

)β)−(η+1) (
α
xi

)β−1

−
(
α
xi

)β−1

xi

(
1−

(
1− e−λ

(
α
xi

)β)−η
− λ

(
α
xi

)β)

− βηλ(ω − 1)
n∑
i=1

e
1−
(

1−e−λ(
α
xi )

β
)−η

−λ
(
α
xi

)β (
1− e−λ

(
α
xi

)β)−(η+1) (
α
xi

)β−1

xi

1− e
1−

1−e

(
−λ( α

xi )
β
)
−η

− βλ(η + 1)
n∑
i=1

e
−λ
(
α
xi

)β (
α
xi

)β−1

xi

(
1− e−λ

(
α
xi

)β) , (4.29)

∂ lnL

∂ω
=
n

ω
+

n∑
i=1

ln

1− e
1−

1−e

(
−λ( α

xi )
β
)
−η , (4.30)

∂ lnL

∂η
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n
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i=1

ln

(
1− e−λ

(
α
xi

)β)
+

n∑
i=1

(
1− e−λ

(
α
xi

)β)−η
ln

(
1− e−λ

(
α
xi

)β)
1−

(
1− e−λ

(
α
xi

)β)−η
− λ

(
α
xi

)β

− (ω − 1)
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i=1

e
1−
(

1−e−λ(
α
xi )

β
)−η (

1− e−λ
(
α
xi

)β)−η
ln

(
1− e−λ

(
α
xi

)β)

1− e
1−
(

1−e−λ(
α
xi )

β
)−η ,(4.31)
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∂ lnL
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n
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xi

)β (
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(
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)−η ,(4.32)

∂ lnL

∂β
=

n

β
+ n ln(α)−
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− λη(ω − 1)
n∑
i=1


e

1−
(

1−e−λ(
α
xi )

β
)−η

−λ
(
α
xi

)β (
1− e−λ

(
α
xi

)β)−(η+1)

ln
[
α
xi

] (
α
xi

)β

1− e
1−

1−e

(
−λ( α

xi )
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)
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 ,(4.33)
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The normal equations whose simultaneously solutions give the MLEs are:

nβ

α
+ βλ

n∑
i=1

ηe
−λ
(
α
xi

)β (
1− e−λ

(
α
xi
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α
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(
α
xi
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xi
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(
α
xi
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α
xi

)β) −
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(
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−
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−λ
(
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)β (
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xi
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1− e−λ

(
α
xi

)β) = 0, (4.34)

n
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+

n∑
i=1

ln
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(
−λ( α

xi )
β
)
−η = 0, (4.35)
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(
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α
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β
)−η = 0, (4.36)
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 = 0, (4.38)

The MLE of (α, β, λ, η), and ω can be obtained by solving numerically(via itera-

tive methods as is demonstrated in the application to the data sets) the normal

equations

∂ lnL

∂α
= 0,

∂ lnL

∂β
= 0,

∂ lnL

∂λ
= 0,

∂ lnL

∂η
= 0,

∂ lnL

∂ω
= 0

, thus yielding the ML estimate: Θ̂ = {α̂, β̂, λ̂, η̂, ω̂}.
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4.4 Monte Carlo Simulation Study
In this section, a simulation study is conducted to assess the performance (stabil-

ity of point estimates) of OKIW distribution by examining the average bias and

root mean square error of the maximum likelihood estimates for each parameter.

Various simulations are conducted for different sample sizes and different param-

eter values. Equation (4.5) (Quantile) is used to generate random data from the

OKIW distribution. That is, if Q ∼ Unif(0, 1), then

Xi = α

[
−1

λ

{
log

(
1−

[
1− log

(
1−Q

1
ω
i

)]−1
η

)}]−1
β

.

The following steps were followed:

(1) Specify the sample size(s) n and the values of the parameters β, λ, ω, α, η;

(2) Generate Qi ∼ Unif(0, 1), i = 1, 2, · · · , n;

(3) Set

Xi = α

[
−1

λ

{
log

(
1−

[
1− log

(
1−Q

1
ω
i

)]−1
η

)}]−1
β

;

(4) Compute the MLEs of the five parameters;

(5) Repeat steps 2-3, N times

(6) Compute the mean square error (MSE) for each parameter.

The simulation study is repeated for N = 1500 iterations each with sample size

n = 50, 150, 300, 500, 600 and parameter values in set I : β = 2.5, λ = 1, ω =

5, α = 15, η = 0.5 and II : β = 0.25, λ = 1, ω = 8, α = 20, η = 0.5. Two

quantities are computed in the study namely average bias and root mean square

error (RMSE) as follows:

(a) Average bias of the MLE Θ̂ of the parameter Θ = {β, λ, ω, α, η} :

1

N

N∑
i=1

(Θ̂−Θ).
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(b) Root mean squared error (RMSE) of the MLE Θ̂ of the parameter Θ =

{β, λ, ω, α, η} : √√√√ 1

N

N∑
i=1

(Θ̂−Θ)2.

Table 4.1: Monte Carlo simulation study results
I II

Paramter n Average Bias RMSE Average Bias RMSE
β 50 0.00234923 1.254459 0.5164315 0.248549

150 0.223251 1.649059 0.1151803 0.235575
300 0.3311303 1.26418 0.1193271 0.207821
500 0.3507965 1.190819 0.1143479 0.196312
600 0.3075173 1.158524 0.1133413 0.180956

η 50 1.09536 1.979973 0.8198106 1.726021
150 0.5398698 1.141238 0.1854606 0.644092
300 0.2940589 0.7577926 0.05933698 0.310956
500 0.1550613 0.45176 0.00615733 0.300049
600 0.2240075 0.70721827 -0.0176586 0.207272

λ 50 2.957456 5.444899 8.967035 13.286160
150 0.6784766 1.903525 4.117874 6.093303
300 0.4062774 1.219227 2.915989 4.751907
500 0.2391422 1.212782 1.735717 2.900594
600 0.2367967 1.08309 1.531613 2.506491

ω 50 -1.179363 6.627073 -4.178481 8.678087
150 0.7065778 7.084176 -0.9368763 8.474572
300 -0.2239991 5.670298 -1.718957 8.244601
500 -0.0842186 5.030306 -2.183191 7.488534
600 -0.3626967 4.456074 -2.334901 6.110951

α 50 9.743556 21.3734 32.72563 233.448000
150 10.00698 18.98498 59.83609 157.671000
300 7.357111 14.15756 55.73701 83.912370
500 5.017567 9.498253 36.87842 69.012460
600 5.977159 12.36388 33.28421 63.288320

The Average Bias and RMSE values of the parameters β, λ, ω, α and η for different

sample sizes are presented in Table 4.1. From the results, it is clear that as the

sample size n increases, the RMSEs, on average, decreases. It is also observed that

for all the parametric values, the average biases decrease with increasing sample

size n (overall trend).
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4.5 Applications to Survival Data
In this section, four real different data sets are used to illustrate the flexibility of

the model in the modelling of survival data as well as compare it with competing

models namely EKIW (exponentiated KIW( Rodrigues et al., 2016) and EPLG

(exponentiated power Lindley geometric (Alizadeh et al., 2016) distributions. We

fit the density functions of the OKIW distribution and the EKIW. The pdf of

EKIW and EPLG distributions are given by

fEKIW (x) = βηλθαβx−(β+1)e−λ(
α
x )

β [
1− e−λ(

α
x )

β]η−1
[
1−

{
1− e

(
−λ(αx )

β
)}η]θ−1

and

fEPLG(x) =

αβ(1−θ)λ2xβ−1

λ+1
(1 + xβ)e−λx

β
[
1−

(
1 + λxβ

λ+1

)
e−λx

β
]α−1

(
1− θ

[
1−

(
1 + λxβ

λ+1

)
e−λxβ

]α)2 ,

respectively. For each data set, the estimates of the parameters of the OKIW

and EKIW distributions and information criterion statistics are computed. The

maximum likelihood estimates of the OKIW and EKIW models’ parameters are

computed using the nonlinear optimisation function in R known as the Limited-

Memory Quasi-Newton Code for Bound-Constrained Optimization (L-BFGS-B)

and the log-likelihood function evaluated at the MLEs. The technique maximizes

the log-likelihood function via the subroutine mle2 using the bbmle package in R

(Bolker, 2014) and uses a wide range of initial values. The process often leads to

more than one maximum, thus in such cases, the largest maxima is chosen as the

maximum likelihood estimates. In cases where no maximum is identified for the

chosen initial values, a new set of initial values are used and the optimisation is

repeated untill a maximum is obtained.

Finally, we plot the histogram of the data sets and estimate of probability densities

of OKIW and EKIW distributions.

46



4.5.1 Kevlar 49/Epoxy Strands Failure Times Data

This data set consists of 101 observations corresponding to the failure times (in

hours) (i.e.,time until rupture of 49) of Kevlar 49/epoxy strands with pressure at

90%. Theses data were originally given in Barlow et al. [1984], and were anal-

ysed by Cooray and Ananda [2008].The summary of key descriptive statistics of

the data is given in Table 4.2. The maximum likelihood estimates of the pa-

Table 4.2: Descriptive statistics for the Kelvar Data
min. max. median mean var. sd CV skewness kurtosis
0.01 7.890 0.8 1.025 1.25299 1.11937 1.09223 2.95725 13.3798

rameters of OKIW and EKIW distributions are given in Table 4.3 along with

the corresponding standard errors, p-values, −2log-likelihod statistics, Akaike In-

formation Criterion (AIC), corrected Akaike Information Criterion (AICC) and

Bayesian Information Criterion (BIC). The results based on the smaller values of

the statistics: AIC, AICC, and BIC show that the OKIW distribution provides a

significantly better fit than the EKIW model.

Table 4.3: Table for MLEs of OKIW and EKIW Models.

Plots of the estimated probability density functions for OKIW and EKIW and

histogram for the kelvar data are given in Figure 4.4. The plots further indicate

that the OKIW distribution is superior to EKIW distribution in terms of emprical

model fitting to survival data.
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Figure 4.4: Histogram and estimated densities for Kelvar data.

4.5.2 Strength of the Glass Fibres Data

These data represent the strength of 1.5cm glass fibers, measured at National phys-

ical laboratory, England (Smith and Naylor, 1987). The data are: 0.55, 0.93, 1.25, 1.36, 1.49,

1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66,

1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24,

0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51,

1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89.

These data are analysed in Alizadeh et al. [2016]. The summary of key descriptive

statistics of the data is given in Table 4.4 below.

Table 4.4: Descriptive statistics for strength of glass fibres data
min. max. median mean var. sd. CV skewness kurtosis
0.55 2.24 1.59 1.507 0.10506 0.32413 0.06972 -0.87858 0.80019

The maximum likelihood estimates of the parameters of OKIW and EKIW dis-

tributions are given in Table 4.5 along with the corresponding standard errors,

p-values, −2log-likelihod statistics, Akaike Information Criterion(AIC), corrected

Akaike Information Criterion (AICC) and Bayesian Information Criterion (BIC).
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The results based on the smaller values of the statistics: AIC, AICC, and BIC

show that the OKIW distribution provides a significantly better fit than the EKIW

but not as good as EPLG model.

Table 4.5: Table for MLEs of OKIW and EKIW Models.

Plots of the estimated probability density functions for OKIW and EKIW and

histogram for the strength of glass fibres data are given in Figure 4.5. The plots

further indicate that the OKIW distribution is superior to EKIW distributions in

term of empirical model fitting to glass fibres data.

Figure 4.5: Histogram and estimated densities for strength of glass fibres data.
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Consequently, from the values of the statistics in Table 4.5 and from Figures 4.5,

we conclude that OKIW distribution gives the better fit for the glass fibre data

than EKIW.

4.5.3 Guinea Pigs Data

These data represent the survival times (in days) of 72 guinea pigs infected with

virulent tubercle bacilli, observed and reported by Bjerkedal [1960] and analysed

by Alizadeh et al. [2016]. The data are:

10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 112,

113, 115, 116, 120, 121, 122, 122, 124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163, 163,

168, 171, 172, 176, 183, 195, 196, 197, 202, 213, 215, 216, 222, 230, 231, 240, 245, 251, 253,

254, 254, 278, 293, 327, 342, 347, 361, 402, 432, 458, 555.

The summary of key descriptive statistics of the data is given in Table 4.6.

The maximum likelihood estimates of the parameters of OKIW and EKIW dis-

Table 4.6: Descriptive statistics for the guinea pigs data
min. max. median mean var. sd. CV skewness kurtosis
0.1 5.55 1.495 1.768 1.07029 1.03455 0.58509 1.31401 1.85338

tributions are given in Table 4.7 along with the corresponding standard errors,

p-values, −2log-likelihod statistics, Akaike Information Criterion (AIC), corrected

Akaike Information Criterion (AICC) and Bayesian Information Criterion (BIC).

The results based on the smaller values of the statistics: AIC, AICC, and BIC

show that the OKIW distribution provides a significantly better fit than the EKIW

and EPLG models.

Table 4.7: Table for MLEs of OKIW and EKIW Models.
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Plots of the estimated probability density functions for OKIW and EKIW and

histogram for the strength of glass fibres data are given in Figure 4.6. The plots

further indicate that the OKIW distribution is superior to EKIW distribution in

terms of empirical model fitting to survival data.

Figure 4.6: Histogram and estimated densities for guinea pigs data.

Consequently, from the values of the statistics in Table 4.7 and from Figures 4.6,

we conclude that the OKIW distribution gives the better fit for the guinea pigs

data than EPLG and EKIW.

4.5.4 Bladder Cancer Patients Data

This data set consists of data of cancer patients. The data represents the remission

times (in months) of a sample of 128 bladder cancer patients obtained from Lee

and Wang [2003]. The summary of key descriptive statistics of the data is given

in Table 4.8. The maximum likelihood estimates of the parameters of OKIW

Table 4.8: Descriptive statistics for Blader Cancer Patients data
min. max. median mean var. sd. CV skewness kurtosis
0.08 79.05 6.395 9.365 110.43220 10.50867 1.12210 1.31401 1.85338

and EKIW distributions are given in Table 4.9 along with the corresponding
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standard errors, p-values, −2log-likelihod statistics, Akaike Information Criterion

(AIC), corrected Akaike Information Criterion (AICC) and Bayesian Information

Criterion (BIC). The results based on the smaller values of the statistics: AIC,

AICC, and BIC show that the OKIW distribution provides a better fit than the

EKIW model.

Table 4.9: Table for MLEs of OKIW and EKIW Models.

Plots of the estimated probability density functions for OKIW and EKIW and

histogram for the strength of glass fibres data are given in Figure 4.7. The plots

further indicate that the OKIW distribution is superior to EKIW distribution in

terms of empirical model fitting to bladder cancer patients data.

Figure 4.7: Histogram and estimated densities for Bladder Cancer Patients data.
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From the values of the statistics in Table 4.9 and from Figure 4.7, we conclude

that the OKIW distribution gives a better fit for the Bladder Cancer Patients data

than EKIW.
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CHAPTER 5

CONCLUSIONS AND

RECOMMENDATIONS

5.1 Conclusions
Statistical lifetime probability distributions are fundamental concepts in data mod-

elling in a host of application areas such as reliability engineering, survival analysis,

biomedical research, insurance and social sciences. Data arise from dynamic proce-

ses. This means that new statistical models with greater capability and versatility

are often required in order to appropriately characterise given data.

This study proposes a new five-parameter lifetime model, called the Odd Ku-

maraswamy inverse Weibull distribution (OKIW), and study its mathematical and

statistical properties. The model hazard function exhibits versatile behaviours:

increasing, decreasing, J-shaped, reversed-J shaped, unimodal and upside-down

bathtub. These are very attractive features that render the OKIW distribution

suitable for modelling monotonic and nonmonotonic hazard behaviours. Special

models, sub-models of the proposed model, are introduced namely Odd inverse

exponential, Odd exponentiated inverse Weibull, and Odd exponentiated inverse

exponential. The PDF also has varied shapes suitable for modelling right-skewed,

left-skewed, and approximately symmetric survival data and also survival data

with highly varied kurtosis.

We obtain point estimates of the parameters using maximum likelihood estimation.

A Monte Carlo simulation study is carried out to examine the stability of the

maximum likelihood estimators (MLEs) of the parameters in terms of the average

biases and root mean square errors. The study finds that MLEs are asymptotically
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consistent and unbiased. Applications of the model to real survival data show

emprically its flexibility and usefulness in modeling various types of biomedical

and reliability engineering data and that the model offers a more superior fit than

the competing exponentiated Kumaraswamy inverse Weibull distribution. Hence,

it is expected that OKIW distribution may attract wider applications in survival

analysis, reliability analysis, insurance, among others.

5.2 Recommendations
In this thesis, we illustrate the applicability and flexibility of the proposed model

using complete samples of survival data in the estimation of model parameters.

However, survival times of some individuals of interest might not be fully observed

due to different reasons: either the survival study stops before full survival times

of all individuals can be observed; a subject drops out of a study, or a subject

is lost to follow-up, subjects survives beyond the time of the study, etc. These

phenomena are pervasive in biomedical research particularly in clinical trials and

generate censored survival data. Therefore, subsequent further research should

consider application of the proposed model to censored survival data and carry

out model parameters estimation using maximum likelihood method implemented

via expectation-maximization or estimate model parameters by Bayesian method

and assess estimators’ stability by simulation.

Moreover, in myraid of applications in biomedical research, the lifetimes of items

of interest are affected by covariates such as cholesterol level, weight, blood pres-

sure among others. Parametric regression models to estimate univariate survival

functions for censored data are commonly utilized to yield estimates of quantities

of interest. Hence, based on the OKIW density function, a linear regression model

for censored data linking the response variable of interest and the covariates may

be proposed.
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A.0.1 R Codes for Optimisation

library(AdequacyModel)

library(bbmle)

x<−data

logf<−function(beta,eta,lambda,omega,alpha){−sum(log(beta∗eta∗

lambda∗omega∗(alpha^beta)∗x^(−beta−1)∗

(1−exp(1−(1−exp(−lambda∗(alpha/x)^beta))^(−eta)))^(omega−1)∗

exp((1−(1−exp(−lambda∗(alpha/x)^beta))^(−eta))−(lambda∗(alpha

/x)^beta))∗

(1−exp(−lambda∗(alpha/x)^beta))^(−eta−1)))

}

goodnessOfFit<−mle2(logf,start=list(beta=beta,eta=eta,lambda=

lambda,omega=omega,alpha=alpha), method="BFGS") # # list

contains initialising optim. values

summary(goodnessOfFit)

vcov(goodnessOfFit) ## checking the existence of variance−covariance

matrix

AIC(goodnessOfFit) ## Computing AIC statistics

###

###

## Plotting for estimated pdfs and histogram for each given data set

Data<−data

hist(Data,probability = T, main="",xlab="x",ylab="Density")

library(AdequacyModel)

library(bbmle)

x<−data

logf<−function(x,beta,eta,lambda,omega,alpha){

f11=beta∗eta∗lambda∗omega∗(alpha^beta)∗x^(−beta−1)
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f22=(1−exp(1−(1−exp(−lambda∗(alpha/x)^beta))^(−eta)))^(omega

−1)

f33=exp((1−(1−exp(−lambda∗(alpha/x)^beta))^(−eta))−(lambda∗(

alpha/x)^beta))

f44=(1−exp(−lambda∗(alpha/x)^beta))^(−eta−1)

y=f11∗f22∗f33∗f44

}

## parameters in function argument represent MLEs for parameters for

OKIW

curve(logf,add=T,col="red",lty=1)

# Plotting estimate of EKIW PDF on same histogram

library(AdequacyModel)

library(bbmle)

x<−data

logg<−function(beta,eta,lambda,omega,alpha){

−sum(log(beta∗eta∗lambda∗omega∗(alpha^beta)∗x^(−beta−1)∗

exp(−lambda∗(alpha/x)^beta)∗

(1−exp(−lambda∗(alpha/x)^beta))^(eta−1)∗(1−(1−exp(−lambda∗(

alpha/x)^beta))^eta)^(omega−1)))

}

## #parameters in function argument represent MLEs for parameters

for EKIW

curve(logg,add=T,col="blue4",lty=2)

legend(locator(1),

inset=.05,

cex = 1,

title="Legend",

c("OKIW","EKIW"),

horiz=F,
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lty=c(1,5),

lwd=c(2,2),

col=c("red","blue4"), #for chosen colors of lines of estimated

desnities

bg="grey96",

text.font=3)

###
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A.0.2 R Codes for Monte Carlo Simulation

#### define quantile and negative log−likelihood

quantile=function(beta,eta,lambda,omega,alpha,u){

result<−alpha/((((−1)/lambda)∗(log(1−(1−log(1−u^(1/omega)))

^(−(1/eta)))))^(1/beta))

return(result)

}

OKIW<−function(par){

−sum(log(par[1]∗par[2]∗par[3]∗par[4]∗(par[5]^par[1])∗x^(−par

[1]−1)∗

(1−exp(1−(1−exp(−par[3]∗(par[5]/x)^par[1]))^(−par[2])))^(par

[4]−1)∗

exp((1−(1−exp(−par[3]∗(par[5]/x)^par[1]))^(−par[2]))−(par[3]∗(

par[5]/x)^par[1]))∗

(1−exp(−par[3]∗(par[5]/x)^par[1]))^(−par[2]−1)))

}

######### Algorithm for the Monte−Carlo simulation study

library(numDeriv)

library(Matrix)

beta=beta ## Choices for initial values

eta=eta

lambda=lambda

omega=omega

alpha=alpha

n1=c(n1,n2,n3,n4,n5)

for (j in 1:length(n1)){

n=n1[j]

N=N0 # number of iterations
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mle_lambda<−c(rep(0,N))

mle_omega<−c(rep(0,N))

mle_beta<−c(rep(0,N))

mle_eta<−c(rep(0,N))

mle_alpha<−c(rep(0,N))

LC_lambda<−c(rep(0,N))

UC_lambda<−c(rep(0,N))

LC_omega<−c(rep(0,N))

UC_omega<−c(rep(0,N))

LC_beta<−c(rep(0,N))

UC_beta<−c(rep(0,N))

LC_eta<−c(rep(0,N))

UC_eta<−c(rep(0,N))

LC_alpha<−c(rep(0,N))

UC_alpha<−c(rep(0,N))

count_lambda=0

count_omega=0

count_beta=0

count_eta=0

count_alpha=0

temp=1

HH1<−matrix(c(rep(2,25)),nrow=5,ncol=5)

HH2<−matrix(c(rep(2,25)),nrow=5,ncol=5)

for ( i in 1:N)

{

print(i)

flush .console()

repeat{

x<−c(rep(0,n))
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#Generate a random variable from uniform distribution

u<−0

u<−runif(n,min=0,max=1)

for (k in 1:n){

x[k]<−quantile(beta,eta,lambda,omega,alpha,u[k])

}

#Maximum likelihood estimation

mle.result<−nlminb(c(beta,eta,lambda,omega,alpha),OKIW,lower=0,

upper=Inf)

temp=mle.result$convergence

if (temp==0){

temp_beta<−mle.result$par[1]

temp_eta<−mle.result$par[2]

temp_lambda<−mle.result$par[3]

temp_omega<−mle.result$par[4]

temp_alpha<−mle.result$par[5]

HH1<−hessian(OKIW,c(temp_beta,temp_eta,temp_lambda,temp_

omega,temp_alpha))

if ( sum(is.nan(HH1))==0 & (diag(HH1)[1]>0) &

(diag(HH1)[2]>0) & (diag(HH1)[3]>0) & (diag(HH1)[4]>0)

& (diag(HH1)[5]>0) ){

HH2<−solve(HH1)

#print(det(HH1))

}

else{

temp=1}

}

if ((temp==0) & (diag(HH2)[1]>0) & (diag(HH2)[2]>0)

& (diag(HH2)[3]>0) & (diag(HH2)[4]>0) &
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(diag(HH2)[5]>0) & (sum(is.nan(HH2))==0)){

break

}

else{

temp=1}

}

temp=1

mle_beta[i]<−mle.result$par[1]

mle_eta[i]<−mle.result$par[2]

mle_lambda[i]<−mle.result$par[3]

mle_omega[i]<−mle.result$par[4]

mle_alpha[i]<−mle.result$par[5]

HH<−hessian(OKIW,c(mle_beta[i],mle_eta[i],mle_lambda[i],mle_

omega[i],mle_alpha[i]))

H<−solve(HH)

LC_beta[i]<−mle_beta[i]−qnorm(0.975)∗sqrt(diag(H)[1])

UC_beta[i]<−mle_beta[i]+qnorm(0.975)∗sqrt(diag(H)[1])

if ( (LC_beta[i]<=beta) & (beta<=UC_beta[i])){

count_beta=count_beta+1

}

LC_eta[i]<−mle_eta[i]−qnorm(0.975)∗sqrt(diag(H)[2])

UC_eta[i]<−mle_eta[i]+qnorm(0.975)∗sqrt(diag(H)[2])

if ( (LC_eta[i]<=eta) & (eta<=UC_eta[i])){

count_eta=count_eta+1

}

LC_lambda[i]<−mle_lambda[i]−qnorm(0.975)∗sqrt(diag(H)[3])

UC_lambda[i]<−mle_lambda[i]+qnorm(0.975)∗sqrt(diag(H)[3])

if ( (LC_lambda[i]<=lambda) & (lambda<=UC_alpha[i])){

count_lambda=count_lambda+1
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}

LC_omega[i]<−mle_omega[i]−qnorm(0.975)∗sqrt(diag(H)[4])

UC_omega[i]<−mle_omega[i]+qnorm(0.975)∗sqrt(diag(H)[4])

if ( (LC_omega[i]<=omega) & (omega<=UC_omega[i])){

count_omega=count_omega+1

}

LC_alpha[i]<−mle_alpha[i]−qnorm(0.975)∗sqrt(diag(H)[5])

UC_alpha[i]<−mle_alpha[i]+qnorm(0.975)∗sqrt(diag(H)[5])

if ( (LC_alpha[i]<=alpha) & (alpha<=UC_alpha[i])){

count_alpha=count_alpha+1

}

}

#Calculate Average Bias

ABias_beta<−sum(mle_beta−beta)/N

ABias_eta<−sum(mle_eta−eta)/N

ABias_lambda<−sum(mle_lambda−lambda)/N

ABias_omega<−sum(mle_omega−omega)/N

ABias_alpha<−sum(mle_alpha−alpha)/N

print(cbind(ABias_beta,ABias_eta,ABias_lambda,ABias_omega,

ABias_alpha))

#Calculate RMSE

RMSE_lambda<−sqrt(sum((lambda−mle_lambda)^2)/N)

RMSE_omega<−sqrt(sum((omega−mle_omega)^2)/N)

RMSE_beta<−sqrt(sum((beta−mle_beta)^2)/N)

RMSE_eta<−sqrt(sum((eta−mle_eta)^2)/N)

RMSE_alpha<−sqrt(sum((alpha−mle_alpha)^2)/N)

print(cbind(RMSE_beta,RMSE_eta,RMSE_lambda,RMSE_omega,

RMSE_alpha))

#Converge Probability
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CP_lambda<−count_lambda/N

CP_omega<−count_omega/N

CP_beta<−count_beta/N

CP_eta<−count_eta/N

CP_alpha<−count_alpha/N

print(cbind(CP_beta,CP_eta,CP_lambda,CP_omega,CP_alpha))

#Average Width

AW_lambda<−sum(abs(UC_lambda−LC_lambda))/N

AW_omega<−sum(abs(UC_omega−LC_omega))/N

AW_beta<−sum(abs(UC_beta−LC_beta))/N

AW_eta<−sum(abs(UC_eta−LC_eta))/N

AW_alpha<−sum(abs(UC_alpha−LC_alpha))/N

print(cbind(AW_beta,AW_eta,AW_lambda,AW_omega,AW_alpha

))

}

## End
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A.0.3 R Codes for Plots of CDF and PDF and Hazard Func-

tion

#### CDF OF OKIW

F=(1−exp(1−(1−exp(−lambda∗(alpha/x)^beta))^(−eta)))^omega

#### PDF of OKIW

f1=function(x,beta,eta,lambda,omega,alpha){

f11=beta∗eta∗lambda∗omega∗(alpha^beta)∗x^(−beta−1)

f22=(1−exp(1−(1−exp(−lambda∗(alpha/x)^beta))^(−eta)))

^(omega−1)

f33=exp((1−(1−exp(−lambda∗(alpha/x)^beta))^(−eta))−(

lambda∗(alpha/x)^beta))

f44=(1−exp(−lambda∗(alpha/x)^beta))^(−eta−1)

y=f11∗f22∗f33∗f44

return(y)

}

f1 (1.5,75,1.45,4.50,7.5,25)

#

#

##### OKIW CDF PLOTS ######

F1=(1−exp(1−(1−exp(−5.5∗(2/x)^1.5))^(−1)))^5

curve((1−exp(1−(1−exp(−5.5∗(2/x)^1.5))^(−1)))^5, from=0,to

=120,xlab="x",ylab="F(x)",col="red",lty=5)

F2=(1−exp(1−(1−exp(−3.5∗(3.5/x)^1))^(−1)))^5

curve((1−exp(1−(1−exp(−3.5∗(3.5/x)^1))^(−1)))^5, from=0,to

=120,xlab="x",ylab="F(x)",col="blue4",lty=1, add=T)

F3=(1−exp(1−(1−exp(−6.5∗(10/x)^2))^(−1)))^5

curve((1−exp(1−(1−exp(−6.5∗(10/x)^2))^(−1)))^5, from=0,to=120,

xlab="x",ylab="F(x)",col="magenta4",lty=2,add=T)

69



#

legend(locator(1),

inset=.05,

cex = 0.5,

c(expression(paste(alpha,"=",2,~beta,"=",1.5,~lambda,"=",5.5,~eta

,"=",1,~omega,"=",5)), expression(paste(alpha,"=",3.5,~beta,"=

",1,~lambda,"=",3.5,~eta,"=",1,~omega,"=",5)),expression(paste

(alpha,"=",10,~beta,"=",2,~lambda,"=",6.5,~eta,"=",1,~omega,"

=",5))),

horiz=F,

lty=c(5,1,2),

lwd=c(2,2,2),

col=c("red","blue4","magenta4"), #for chosen colors of lines of

estimated desnities

bg="white",

text.font=5)

#

#

###### OKIW PDF PLOTS ######

f1=function(x,beta,eta,lambda,omega,alpha){

f11=beta∗eta∗lambda∗omega∗(alpha^beta)∗x^(−beta−1)

f22=(1−exp(1−(1−exp(−lambda∗(alpha/x)^beta))^(−eta)))

^(omega−1)

f33=exp((1−(1−exp(−lambda∗(alpha/x)^beta))^(−eta))−(

lambda∗(alpha/x)^beta))

f44=(1−exp(−lambda∗(alpha/x)^beta))^(−eta−1)

y=f11∗f22∗f33∗f44

return(y)

}
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f1 (26,75,65,4.50,70.5,25)

#

#

f1=function(x){

f11=0.75∗0.1∗0.8∗0.15∗(0.1^0.75)∗x^(−0.75−1)

f22=(1−exp(1−(1−exp(−0.8∗(0.1/x)^0.75))^(−0.1)))

^(0.15−1)

f33=exp((1−(1−exp(−0.8∗(0.1/x)^0.75))^(−0.1))−(0.8∗(0.1/

x)^0.75))

f44=(1−exp(−0.8∗(0.1/x)^0.75))^(−0.1−1)

y=f11∗f22∗f33∗f44

}

curve(f1,from=0,to=100,xlab="x",ylab="f(x)",col="red",lty=5,ylim=

c(0,0.0455))

#

f2=function(x){

g2=0.85∗0.6∗0.15∗7.5∗(25^0.85)∗x^(−0.85−1)

g3=(1−exp(1−(1−exp(−0.15∗(25/x)^0.85))^(−0.6)))^(7.5−1)

g4=exp((1−(1−exp(−0.15∗(25/x)^0.85))^(−0.6))−(0.15∗(25/

x)^0.85))

g5=(1−exp(−0.15∗(25/x)^0.85))^(−0.6−1)

y=g2∗g3∗g4∗g5

}

curve(f2,from=0,to=100,xlab="x",ylab="f(x)",col="darkgreen",lty=1,

add=T,ylim=c(0,0.0455))

#

#

f3=function(x){

h1=0.85∗0.6∗0.35∗7.5∗(25^0.85)∗x^(−0.85−1)
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h2=(1−exp(1−(1−exp(−0.35∗(25/x)^0.85))^(−0.6)))^(7.5−1)

h3=exp((1−(1−exp(−0.35∗(25/x)^.85))^(−0.6))−(0.35∗(25/x

)^0.85))

h4=(1−exp(−0.35∗(25/x)^0.85))^(−0.6−1)

y=h1∗h2∗h3∗h4

}

curve(f3,from=0,to=100,xlab="x",ylab="f(x)",col="purple",lty=2,

add=T,ylim=c(0,0.0455))

#

#

f4=function(x){

h11=0.85∗1.08∗0.35∗7.5∗(25^0.85)∗x^(−0.85−1)

h22=(1−exp(1−(1−exp(−0.35∗(25/x)^0.85))^(−1.08)))

^(7.5−1)

h33=exp((1−(1−exp(−0.35∗(25/x)^.85))^(−1.08))−(0.35∗(25

/x)^0.85))

h44=(1−exp(−0.35∗(25/x)^0.85))^(−1.08−1)

y=h11∗h22∗h33∗h44

}

curve(f4,from=0,to=100,xlab="x",ylab="f(x)",col="mediumblue",lty

=4, add=T,ylim=c(0,0.0455))

#

#

f5=function(x){

k1=2.2∗0.6∗0.72∗7.5∗(25^2.2)∗x^(−2.2−1)

k2=(1−exp(1−(1−exp(−0.72∗(25/x)^2.2))^(−0.6)))^(7.5−1)

k3=exp((1−(1−exp(−0.72∗(25/x)^2.2))^(−0.6))−(0.72∗(25/x

)^2.2))

k4=(1−exp(−0.72∗(25/x)^2.2))^(−0.6−1)
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y=k1∗k2∗k3∗k4

}

curve(f5,from=0,to=100,xlab="x",ylab="f(x)",col="deepskyblue",lty

=6, add=T,ylim=c(0,0.0455))

legend(locator(1),

inset=.05,

cex = 0.5,

c(expression(paste(alpha,"=",0.1,~beta,"=",0.75,~lambda,"=",0.8,~

eta,"=",0.1,~omega,"=",0.15)), expression(paste(alpha,"=",25,~

beta,"=",0.85,~lambda,"=",0.15,~eta,"=",0.6,~omega,"=",7.5)),

expression(paste(alpha,"=",25,~beta,"=",0.85,~lambda,"="

,0.35,~eta,"=",0.6,~omega,"=",7.5)),expression(paste(alpha,"="

,25,~beta,"=",0.85,~lambda,"=",0.35,~eta,"=",1.08,~omega,"="

,7.5)),expression(paste(alpha,"=",25,~beta,"=",2.2,~lambda,"="

,0.72,~eta,"=",0.6,~omega,"=",7.5))),

horiz=F,

lty=c(5,1,2,4,6) ,

lwd=c(2,2,2,2,2),

col=c("red","darkgreen","purple","mediumblue","deepskyblue"), #for

chosen colors of lines of estimated desnities

bg="white",

text.font=5)

#

# #########OKIW HAZARD PLOTS ########

H=function(x,beta,eta,lambda,omega,alpha){

f11=beta∗eta∗lambda∗omega∗(alpha^beta)∗x^(−beta−1)

f22=(1−exp(1−(1−exp(−lambda∗(alpha/x)^beta))^(−eta)))

^(omega−1)

f33=exp((1−(1−exp(−lambda∗(alpha/x)^beta))^(−eta))−(
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lambda∗(alpha/x)^beta))

f44=(1−exp(−lambda∗(alpha/x)^beta))^(−eta−1)

F=(1−exp(1−(1−exp(−lambda∗(alpha/x)^beta))^(−eta)))^

omega # F1 is CDF

y=(f11∗f22∗f33∗f44)/(1−F) # 1−F1=Survival

}

#

par(mfrow=c(2,2)) # To plot them bundled together

H1=function(x){

f11=1.5∗0.1∗0.1∗2.0∗(50^1.5)∗x^(−1.5−1)

f22=(1−exp(1−(1−exp(−0.1∗(50/x)^1.5))^(−0.1)))^(2.0−1)

f33=exp((1−(1−exp(−0.1∗(50/x)^1.5))^(−0.1))−(0.1∗(50/x)

^1.5))

f44=(1−exp(−0.1∗(50/x)^1.5))^(−0.1−1)

F1=(1−exp(1−(1−exp(−0.1∗(50/x)^1.5))^(−0.1)))^2.0 # F1

is CDF

y=(f11∗f22∗f33∗f44)/(1−F1) # 1−F1=Survival

}

curve(H1,from=0,to=120,xlab="x",ylab="h(x)",col="blue",lty=1,ylim

=c(0,0.0020))

#

#

H2=function(x){

g1=1.5∗0.15∗0.15∗12∗(3.5^1.5)∗x^(−1.5−1)

g2=(1−exp(1−(1−exp(−0.15∗(3.5/x)^1.5))^(−0.15)))^(12−1)

g3=exp((1−(1−exp(−0.15∗(3.5/x)^1.5))^(−0.15))−(0.15∗(3.5

/x)^1.5))

g4=(1−exp(−0.15∗(3.5/x)^1.5))^(−0.15−1)
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F2=(1−exp(1−(1−exp(−0.15∗(3.5/x)^1.5))^(−0.15)))^12 #

F2 is CDF

y=(g1∗g2∗g3∗g4)/(1−F2) # 1−F2=Survival

}

curve(H2,from=0,to=120,xlab="x",ylab="h(x)",col="deepskyblue",lty

=6, ylim=c(0,0.0020),add=T)

#

legend(locator(1),

inset=.05,

cex = 0.5,

c(expression(paste(alpha,"=",50,~beta,"=",1.5,~lambda,"=",0.1,~

eta,"=",0.1,~omega,"=",2.0)),expression(paste(alpha,"=",3.5,~

beta,"=",1.5,~lambda,"=",0.15,~eta,"=",0.15,~omega,"=",12))),

horiz=F,

lty=c(1,6),

lwd=c(2,2),

col=c("blue","deepskyblue"), #for chosen colors of lines of estimated

desnities

bg="white",

text.font=5)

#

#

H3=function(x){

g11=0.5∗0.55∗0.15∗2.5∗(25^0.5)∗x^(−0.5−1)

g22=(1−exp(1−(1−exp(−0.15∗(25/x)^0.5))^(−0.55)))

^(2.5−1)

g33=exp((1−(1−exp(−0.15∗(25/x)^0.5))^(−0.55))−(0.15∗(25

/x)^0.5))
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g44=(1−exp(−0.15∗(25/x)^0.5))^(−0.55−1)

F3=(1−exp(1−(1−exp(−0.15∗(25/x)^0.5))^(−0.55)))^2.5 #

F3 is CDF

y=(g11∗g22∗g33∗g44)/(1−F3) # 1−F3=Survival

}

curve(H3,from=0,to=120,xlab="x",ylab="h(x)",col="red",lty=2,ylim

=c(0,0.25))

#

#

H4=function(x){

k11=0.86∗5.78∗3.28∗2.5∗(33.6^0.86)∗x^(−0.86−1)

k22=(1−exp(1−(1−exp(−3.28∗(33.6/x)^0.86))^(−5.78)))

^(2.5−1)

k33=exp((1−(1−exp(−3.28∗(33.6/x)^0.86))^(−5.78))−(3.28∗

(33.6/x)^0.86))

k44=(1−exp(−3.28∗(33.6/x)^0.86))^(−5.78−1)

F4=(1−exp(1−(1−exp(−3.28∗(33.6/x)^0.86))^(−5.78)))^2.5

# F4 is CDF

y=(k11∗k22∗k33∗k44)/(1−F4) # 1−F4=Survival

}

curve(H4,from=0,to=120,xlab="x",ylab="h(x)",col="deepskyblue",lty

=1,ylim=c(0,0.25), add=T)

#

legend(locator(1),

inset=.05,

cex = 0.5,

c(expression(paste(alpha,"=",25,~beta,"=",0.5,~lambda,"=",0.15,~
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eta,"=",0.55,~omega,"=",2.5)),expression(paste(alpha,"=",33.6,~

beta,"=",0.86,~lambda,"=",3.28,~eta,"=",5.78,~omega,"=",2.5))),

horiz=F,

lty=c(2,1),

lwd=c(2,2),

col=c("red","deepskyblue"), #for chosen colors of lines of estimated

desnities

bg="white",

text.font=5)

#

H5=function(x){

k1=1.5∗0.1∗0.5∗5∗(25^1.5)∗x^(−1.5−1)

k2=(1−exp(1−(1−exp(−0.5∗(25/x)^1.5))^(−0.1)))^(5−1)

k3=exp((1−(1−exp(−0.5∗(25/x)^1.5))^(−0.1))−(0.5∗(25/x)

^1.5))

k4=(1−exp(−0.5∗(25/x)^1.5))^(−0.1−1)

F5=(1−exp(1−(1−exp(−0.5∗(25/x)^1.5))^(−0.1)))^5 # F5 is

CDF

y=(k1∗k2∗k3∗k4)/(1−F5) # 1−F5=Survival

}

curve(H5,from=0,to=120,xlab="x",ylab="h(x)",col="magenta4",lty

=5)

#

legend(locator(1),

inset=.05,

cex = 0.5,

c(expression(paste(alpha,"=",25,~beta,"=",1.5,~lambda,"=",0.5,~

eta,"=",0.1,~omega,"=",5))),
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horiz=F,

lty=c(5),

lwd=c(2),

col=c("magenta4"), #for chosen colors of lines of estimated densities

bg="white",

text.font=5) ## Bol Atem ## End
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