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Abstract 

Probability distributions are very useful models for characterising 
inherent variability in lifetime data. Modified forms of Weibull 
distribution are widely used in survival data analysis due to their 
versatility and relative simplicity. In this study, a new odd 
Kumaraswamy inverse Weibull distribution is developed and its 
mathematical properties are derived. The model parameters are 
estimated using maximum likelihood estimation and a simulation to 
assess the performance of maximum likelihood estimators of the 



Bol A. M. Atem, George O. Orwa and Levi N. Mbugua 310 

parameters is carried out. The model is then applied to several survival 
data sets to illustrate its flexibility. Applications of the model to 
survival data empirically prove its flexibility and usefulness in 
modeling various types of biomedical and reliability data and its 
superiority over other lifetime distributions. Thus, the model may 
attract wider applications in survival analysis, reliability analysis, and 
insurance. 

1. Introduction 

Probability distributions are very useful models for characterising 
variability in lifetime data. Weibull distribution is popular in survival 
analysis due to its versatility to model lifetime data which exhibit monotone 
hazard rates (increasing, decreasing or constant hazard rate). But, in many 
practical situations, classical Weibull distribution fails to provide adequate 
fits to real life survival data such as machine life cycle, human mortality, and 
biomedical data which exhibit non-monotonic hazard rates. Thus, more 
flexible forms of Weibull distribution such as the inverse Weibull 
distribution have been proposed and applied to unimodal survival data, and 
consequently several new techniques for generating new versatile modified 
Weibull distributions by adding more parameters have been proposed to 
achieve non-monotonic shapes. 

Some recent generalisations include four-parameter beta inverse Weibull 
distribution [6] and modified inverse Weibull distribution [7]. Baharith et al. 
[2] extended the inverse Weibull distribution to beta generalised inverse 
Weibull distribution. Pararai et al. [8] proposed a new generalisation of 
inverse Weibull distribution to obtain a three-parameter gamma inverse 
Weibull distribution via the gamma-exponentiated exponential generator 
[10]. However, due to complexities of beta-G distribution and gamma-G 
since they involve special functions such as beta functions and incomplete 
gamma, researchers prefer to deal with Kumaraswamy distribution which has 
similar properties as beta-G but has advantage in terms of tractability. 
Generalised distributions from Kumaraswamy generator include 
Kumaraswamy inverse Weibull (KIW) distribution [12] and a five-parameter 
exponentiated Kumaraswamy inverse Weibull (EKIW) distribution [11]. 
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Motivated by the advantages of compounded Weibull distributions with 
respect to having hazard functions characterised by monotonic and non-
monotonic shapes such as bathtub and unimodality, we propose and study a 
new distribution called odd KIW distribution, a generalisation of KIW. The 
model inherits desirable properties from Kumaraswamy distribution and the 
odd generalised exponential (OGE) family of distributions [14] such as 
monotonic and non-monotonic shapes as well as enhanced flexibility of 
kurtosis and possibility of developing heavy-tailed distributions for 
modelling survival data. 

The rest of the paper is organised as follows. Section 2 presents the odd 
KIW distribution, its density, survival and hazard functions as well as 
quantiles and plots of these quantities. Section 3 presents derivations of odd 
KIW mathematical properties. Model parameters estimation and simulation 
are presented in Sections 4 and 5, respectively. Finally, Section 6 deals with 
application of the model to survival data while Section 7 concludes the study. 

2. The Odd Kumaraswamy Inverse Weibull Distribution 

If a random variable ( ),,~ βαWeibullX  then the CDF and PDF of the 

inverse Weibull distribution are, respectively, given by 

 ( ) 0,0,0,exp,; >β>α>⎟
⎠
⎞⎜

⎝
⎛ α−=βα

β
xxxG  (1) 

and 

 ( ) ( ) .0,0,0,exp,; 1 >β>α>⎟
⎠
⎞⎜

⎝
⎛ α−βα=βα

β
+β−β xxxxg  (2) 

The CDF of Kumaraswamy inverse Weibull (KIW) distribution [12], a 
generalisation of (1), is given by 

 ( ) ,exp11;
ηβ
⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛ αλ−−−=ψ xxF  (3) 

where { }.,,, ηβλα=ψ  Let ( )ζ;xG  be any baseline CDF of any distribution 
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which depends on parameter(s) ζ, then the survival function is given by 
( ) ( ).;1; ζ−=ζ xGxG  The CDF of OGE-family of distributions [14] is 

defined by 

 ( ) ( )
( )

,0,,;0,
;
;exp1,,; >θζω>⎟

⎠
⎞

⎜
⎝
⎛

ζ
ζ

θ−−=ζθω
ω

x
xG
xGxF  (4) 

where ,0>θ  0>ω  are additional scale and shape parameters, respectively. 
The PDF corresponding to (4) is given by 

( ) ( )
( )

( )
( )

( )
( )

,
;
;exp1

;
;exp

;
;,,;

1

2

−ω

⎟
⎠
⎞

⎜
⎝
⎛

ζ
ζ

θ−−
ζ
ζ

θ−
ζ

ζθω
=ζθω

xG
xG

xG
xG

xG
xgxf  (5) 

where ( )ζ;xg  is the corresponding baseline PDF. 

So, we define a new five-parameter distribution dubbed odd generalised 
exponentiated KIW distribution (henceforth odd KIW or OKIW). The CDF 
of OKIW follows from (4) and (3) by taking ( )ζ;xG  to be equation (3) and 

( )ζ;xg  to be the PDF corresponding to (3) with { }ηβλα=ζ ,,,  and also 

taking 1=θ  in (4) so that we utilise a standard OGE-family generator. 
Consequently, the CDF of OKIW becomes 

 ( ) [ {
( ( ) )

} ] ,0,1,; 11 >−=ωζ ω−− η−
βαλ−

xexF
xe  (6) 

where ,0,0,0,0 >η>β>λ>α  and .0>ω  Here, λ, α are scale parameters 

and β, η, ω are shape parameters. 

2.1. Quantile and median of OKIW distribution 

The OKIW quantile function is obtained by solving ( ) ,qxF q =  thus, 

from (6), yielding 

 .1log11log1

1
1

1
β
−

η
−

ω

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎪
⎪
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⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−−

λ
−

α= qxq  (7) 
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From (7) we can obtain the median of OKIW distribution by substituting 

2
1=q  to get 

 .2
11log11log1

1
1

1
β
−

η
−

ω

⎥
⎥
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⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥

⎦

⎤

⎢
⎢
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⎟
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⎜
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−−−

λ
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2.2. Survival function, PDF and hazard rate function of OKIW 

The survival function of ( )ϕOKIWX ~  is given by 

 ( ) [ { } ]ω−− η−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ β
⎟
⎠
⎞⎜

⎝
⎛ αλ−

−−=ϕ
x

eexS 1111;  (9) 

and the PDF of OKIW follows from equations (5) and (3) and is given by 

( ) ( )[ { } ] 1111 1; −ω−−+β−β η−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ β
⎟
⎠
⎞⎜

⎝
⎛ αλ−

−βηλωα=ϕ
x

eexxf  

[ ]
[

( )
] 111

1 −η−λ−⎟
⎠
⎞⎜

⎝
⎛ αλ−−− β

β
η−

β
⎟
⎠
⎞⎜

⎝
⎛ αλ−

−× x
a

xe
ee

x

 (10) 

and the hazard rate function is thus given by 

( )
( )[ { } ]

[ ]

[ { } ] [ ]( )

,
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111111

+η⎟
⎠
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β
η−⎟

⎟
⎠
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⎜
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⎛ β
⎟
⎠
⎞⎜

⎝
⎛ αλ−

β
η−

β
⎟
⎠
⎞⎜

⎝
⎛ αλ−

η−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ β
⎟
⎠
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⎝
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−−−

−βηλωα
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xe

xee
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x
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 (11) 

where 0>x  and { }.,,,, ωηβλα=ϕ  
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Figure 1. Plot of the OKIW PDF for some parameters values. 

The graphs of hazard rate function for different values of the parameters 
exhibit various shapes such as monotone, non-monotone, unimodality and 
upside down bathtub shapes. These are very attractive features that render the 
OKIW distribution suitable for modelling monotonic and non-monotonic 
hazard behaviours which are more likely to be encountered in practical 
situations like reliability analysis, human mortality and biomedical 
applications, thus enhancing its adaptability to fit diverse survival data. 
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Figure 2. Plot of the OKIW hazard rate for some parameters values. 

3. Mathematical Properties 

3.1. Moments 

Moments of a statistical distribution are critical in any statistical analysis 
since they are used to study characteristics of a distribution which include 
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measures of location and dispersion, skewness and kurtosis. The rth moment 
of the OKIW distribution is derived. 

Proposition 3.1. If ( ),~ ϕOKIWX  where { },,,,, ωηλβα=ϕ  then the 

rth non-central moment is given by 

( ) ( ) ( )1

0 0 0

1
11 +−

∞

=

∞

=

∞

=

+∑∑∑ ⎟
⎠
⎞

⎜
⎝
⎛ −ω

+−=μ′ i

i j k

jji
r e

i
i  

( ) ( )

( ) .1!!

111 1

+η+ηΓ

⎟
⎠
⎞⎜

⎝
⎛

β
−Γ+η+η+Γ+αηωλ

×

⎟
⎠
⎞⎜

⎝
⎛ −
ββ

jkj

rjkk
rr

r

 

Proof. The rth moment of a random variable X with PDF ( )ϕ;xf  is 

defined by 

 ( )∫
∞

ϕ=μ′
0

.; dxxfxr
r  (12) 

Substituting from (10) into (12), we get 

( )[ { } ]∫
∞ −ω−−+β−β η−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ β
⎟
⎠
⎞⎜

⎝
⎛ αλ−

−βηλωα=μ′
0

1111 1
x

er
r exx  

[ ] .1 111
dxee xxe x

−η−⎟
⎠
⎞⎜

⎝
⎛ αλ−⎟

⎠
⎞⎜

⎝
⎛ αλ−−−

ββ
η−

β
⎟
⎠
⎞⎜

⎝
⎛ αλ−

−×  (13) 

Since { } ,110 11 <−<
η−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ β
⎟
⎠
⎞⎜

⎝
⎛ αλ−

−−
x

ee  we have by binomial expansion 
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∞ ∞
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⎥
⎥
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⎢
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⎠
⎞

⎜
⎝
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1
1 1

1

i

xeii
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r e
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dxee xxxe
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⎞⎜

⎝
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⎝
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⎥
⎦

⎤

⎢
⎢
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⎡
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⎠
⎞⎜

⎝
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ββη−β
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Grouping exponential terms and applying power series expansion yields 

[ ] ( ) ( ) [ ]∑
∞

=

η−⎟
⎠
⎞⎜

⎝
⎛ αλ−

−−⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ α−−

β
η−

β
⎟
⎠
⎞⎜

⎝
⎛ αλ−

η−β
λ−

−
+−

=
0

1
1

,1!
11

j

jx
jj

exei
ej

iee
x

 

so, 

( ) ( ) ( ) ( )∫ ∑ ∑
∞ ∞

=

∞

=

+β−β +−
−⎟

⎠
⎞

⎜
⎝
⎛ −ω

βηλωα=μ′
0 0 0

1
!

111
1

i j

jj
iir

r j
ie

i
xx  

[ ] [ ] .11
11 dxeee xxjx

βββ
⎟
⎠
⎞⎜

⎝
⎛ αλ−−η−⎟

⎠
⎞⎜

⎝
⎛ αλ−η−⎟

⎠
⎞⎜

⎝
⎛ αλ−

−−×  (14) 

By generalised binomial expansion for negative powers, we have 

[ ] [ ] ( )
( )∑

∞

=

⎟
⎠
⎞⎜

⎝
⎛ αλ−−η−⎟

⎠
⎞⎜

⎝
⎛ αλ−η−⎟

⎠
⎞⎜

⎝
⎛ αλ−

βββ

+η+ηΓ
+η+η+Γ=−−

0

1 .1!
111

k

xkxjx ejk
jkee  

Hence, the integral becomes 

( ) ( ) ( ) ( ) ( )∫ ∑ ∑
∞ ∞

=

∞

=

+−+β−β +−
−⎟

⎠
⎞

⎜
⎝
⎛ −ω

βηλωα=μ′
0 0 0

11
!

111
1

i j

jj
iir

r j
ie

i
xx  

( )
( )

( )
∑
∞

=

⎟
⎠
⎞⎜

⎝
⎛ α+λ−

β

+η+ηΓ
+η+η+Γ×

0

1
.1!

1

k

xk
dxejk

jk  (15) 

Setting 

( ) ( ) ( ) ( )111 +β−ββ−β +λαβ−=⇒α+λ= xkdx
duxku  

and 

( )
,

1

1
β
−

β ⎥
⎦

⎤
⎢
⎣

⎡

+λα
=

k
ux  
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thus, 

( )
[ ( )] ∫

∞ −β
−

β
β

β
+λα

+λβα
=μ′

0
1

1
dueuk

k
MD u

rr
r  

( )
[ ( )] ,,11

1
β<⎟

⎠
⎞⎜

⎝
⎛

β
−Γ+λα

+λβα
= β

β
β

rrk
k
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by the definition of gamma function in the form ( ) ∫
∞ −−φ=φΓ
0

1 ,dueu u  where 

ββηλωα=M  and 

( ) ( ) ( ) ( ) ( )
( )∑ ∑ ∑∞

=
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⎠
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⎝
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=
0 0 0

1 .1!
1

!
111

1
i j k
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j
ie

i
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Substituting back M and D in the equation above and simplifying, we have 
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⎠
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⎛
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⎠
⎞⎜
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ββ
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jkk

rr
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This completes the proof. ~ 

3.2. Moment generating functions 

Moment generating functions (MGFs) are special functions used to find 
moments and functions of moments of a random variable and also in 
identifying its distribution function by invoking the uniqueness of MGFs. 

Proposition 3.2. If ( ),~ ϕOKIWX  where { },,,,, ωηλβα=ϕ  then the 

MGF of X is given by 
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i
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( ) ( )
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Proof. By the definition of MGF, we have 

( ) [ ] ( )∫
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Invoking the power series expansion of MGF, we have 
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and hence 
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where .β<r  This completes the proof. ~ 

3.3. Distribution of order statistics 

Order statistics are fundamental tools in non-parametric statistics and 
inference. Let nXXX ...,,, 21  be iid forming a simple random sample of 

size n from ( )ϕOKIW  distribution with CDF ( )ϕ;xF  and PDF ( ).; ϕxf  Let 

nnn XX ::1 ≤≤  denote the order statistics obtained from the sample. The 

PDF of sth order statistic, for ,...,,1 ns =  is given by 
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( ) ( ) ( )[ ] ( )[ ] ( ),;;1;1,
1; 1

: ϕϕ−ϕ
+−

=ϕ −− xfxFxFsnsBxf sns
ns  (16) 

where ( )..,B  denotes a beta function. Since ( ) 1;0 <ϕ< xF  for ,0>x  we 

have 
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⎠
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Thus, substituting equation (17) into equation (16), we obtain 
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Finally substituting equations (6) and (10) into (18), we obtain 
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3.4. Entropy 

An entropy is a measure of variation or lack of predictability of a random 
variable X. The most common entropy measures are Shannon and Rényi [9]. 
If X has a pdf ( ),.f  then the v order Rényi entropy is defined by 
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R  (19) 

where 0>v  and .1≠v  The Shannon entropy is given by ( )( )[ ].ln xf−E  It 

is a special case of Rényi entropy when .1→v  



The Odd Kumaraswamy Inverse Weibull Distribution … 321 

Proposition 3.3. If ( ),~ ϕOKIWX  where { },,,,, ωηλβα=ϕ  then its 

Rényi entropy, ( ),vER  is given by 
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Proof. From equation (19), we have 
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Grouping the exponent terms and applying power series expansion, then 
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substituting back into the integral, we obtain 
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Now, by generalised binomial expansion for negative powers, we have 
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Hence, substituting back and regrouping exponent terms, the integral 
becomes 
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where ( ) βαβηλω= vvD  and ( ) 111 −β−−
β

− αλβηω=
βλα

= vvvvDD  and 
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So, invoking the definition of gamma function in the form ( ) =φΓ  
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This completes the proof. ~ 

4. Estimation of Model Parameters 

In this section, we present estimates of the parameters of OKIW 
distribution using maximum likelihood estimation. The elements of the score 
function are presented. 

The maximum likelihood estimators 

MLEs are important point estimators in statistical inference. We estimate 
the MLEs of the model parameters from complete samples. 

Let ( )TnXXX ...,,, 21=X  be a random sample from OKIW distribution 

with unknown parameter vector ( ) ,,,,, Tωηλβα=Θ  then the likelihood 

function ( )Θ,XL  is defined as 
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By maximising the log-likelihood function, we obtain the components of the 
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Since there are no closed form solutions to the nonlinear equations obtained 
by setting the score function elements to zero, the MLEs of α, β, λ, η, and ω 
can be obtained by solving numerically (via iterative methods such as a 
Newton-Raphson algorithm) the normal equations 
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thus yielding the ML estimate: { }.ˆ,ˆ,ˆ,ˆ,ˆˆ ωηλβα=Θ  

5. Simulation Study 

In this section, a simulation study is conducted to assess the performance 
of OKIW distribution by examining the average bias and root mean square 
error of the maximum likelihood estimates for each parameter. We conduct 
various simulations for different sample sizes and different parameter values. 
Equation (7) is used to generate random data from the OKIW distribution. 
That is, if ( ),1,0~ UnifQ  then 

{ ( [ ( )] )} .1log11log1
1

11 β
−

η
−

ω
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−

λ
−

α= ii QX  

The simulation study is repeated for 1500=N  times each with sample size 
500,300,150,50=n  and parameter values in set ,5.2: =βI  ,1=λ  

,5=ω  ,15=α  5.0=η  and ,25.0: =βII  ,1=λ  ,8=ω  ,20=α  .5.0=η  

We compute: 

(a) Average bias of the MLE Θ̂  of the parameter { }:,,,, ηαωλβ=Θ  

( )∑
=

−
N

i
N

1
.ˆ1 ΘΘ  

(b) Root mean squared error (RMSE) of the MLE Θ̂  of the parameter 
{ }:,,,, ηαωλβ=Θ  
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( ) .ˆ1

1

2∑
=

−
N

i
N ΘΘ  

The average bias and RMSE values of the parameters β, λ, ω, α and η 
for different sample sizes are presented in Table 1. From the results, it can be 
seen that as the sample size n increases, the RMSEs decrease and also that 
for all the parametric values, average biases decrease with increasing sample 
size n. Thus, the MLEs together with their asymptotic results can be utilized 
in constructing confidence intervals even for fairly small sample sizes. 

Table 1. Monte Carlo simulation study results 
  I II 

Parameter n Average Bias RMSE Average Bias RMSE 

β 50 0.00234923 1.254459 0.05164315 0.248549 

 150 0.223251 1.649059 0.1151803 0.235575 
 300 0.3311303 1.26418 0.1193271 0.207821 
 500 0.3507965 1.190819 0.1143479 0.196312 

η 50 1.09536 1.979973 0.8198106 1.726021 

 150 0.5398698 1.141238 0.1854606 0.644092 
 300 0.2940589 0.7577926 0.05933698 0.310956 
 500 0.1550613 0.45176 0.00615733 0.300049 

λ 50 2.957456 5.444899 8.967035 13.286160 

 150 0.6784766 1.903525 4.117874 6.093303 
 300 0.4062774 1.219227 2.915989 4.751907 
 500 0.2391422 1.212782 1.735717 2.900594 

ω 50 –1.179363 6.627073 –4.178481 8.678087 

 150 0.7065778 7.084176 –2.183191 8.474572 
 300 –0.2239991 5.670298 –1.718957 8.244601 
 500 –0.0842186 5.030306 –0.9368763 7.488534 

α 50 9.743556 21.3734 32.72563 233.448000 

 150 10.00698 18.98498 36.87842 157.671000 
 300 7.357111 14.15756 55.73701 83.912370 
 500 5.017567 9.498253 59.83609 69.012460 
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6. Applications to Survival Data 

In this section, we use three real different data sets to illustrate the 
flexibility of OKIW distribution in the modelling of survival data as well as 
compare it with EKIW (exponentiated Kumaraswamy inverse Weibull) and 
EPLG (exponentiated power Lindley geometric [1]) distributions. The PDFs 
of EKIW and EPLG distributions are given by 

( ) ( ) [ ] 11 1 −η⎟
⎠
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respectively. 

For each data set, we compute the estimates of the parameters of OKIW 
and EKIW distributions. The MLEs of the OKIW and EKIW parameters are 
computed by maximising the log-likelihood function via the nonlinear 
optimisation function nlm in R. After estimating models parameters, we also 
compute the information-criterion statistics: Akaike information criterion 

( ( )),ˆln22 LpAIC −=  corrected Akaike information criterion ( AICAICC =  

( )
( )),1

12
−−
++ pn

pp  and Bayesian information criterion ( ( ) ( )),ˆln2ln LnpBIC −=  

where ( )Θ̂ˆ LL =  is the value of the likelihood function evaluated at the 

parameter estimates, n is the number of observations, and p is the number of 
estimated parameters. The standard errors for parameters are useful in 
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constructing confidence intervals for the parameters. When comparing 
models, the model with the smallest AIC is considered to be the best fit 
model for a given data set. We then plot the histogram of the data sets and 
estimated probability density functions of OKIW and EKIW distributions. 

6.1. Kevlar 49/epoxy strands failure times data 

This data set consists of 101 observations corresponding to the failure 
times (in hours) (time until rupture) of Kevlar 49/epoxy strands with pressure 
at 90%. Theses data were originally given in [3], and analysed in [5]. The 
maximum likelihood estimates of the parameters of OKIW and EKIW 
distributions are given in Table 2 along with standard errors, –2 log-
likelihood, AIC, AICC and BIC. The results show that OKIW provides a 
better fit than EKIW model. 

Table 2. MLEs estimates of OKIW and EKIW for Kevlar data 
 MLEs estimates of the parameters  Statistics 

Distribution β η λ ϕ α –2 log L AIC AICC BIC 

OKIW 0.14300 45.95447 2.95200 1.07503 10.88135 206.00350 216.00350 216.63508 229.07910 
Std. errors 0.03691 0.00340 0.09331 0.50853 0.00367     

          
 β η λ θ α     

EKIW 0.28257 132.73000 2.71820 0.30503 17.20000 209.48030 219.48030 220.11188 232.55590 
Std. errors 0.05396 0.00114 0.19954 0.12880 0.00891     

Plots of the estimated PDFs of OKIW and EKIW and histogram of the 
data are given in Figure 3. The plots further indicate that OKIW is superior to 
EKIW in terms of empirical model fitting. 
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Figure 3. Histogram and estimated densities for Kevlar data. 

6.2. Strength of the glass fibres data 

This data set represents the strength of 1.5cm glass fibres, recorded in a 
laboratory [13] and is analysed in [1]. The maximum likelihood estimates of 
the parameters of OKIW and EKIW distributions are given in Table 3 along 
with standard errors, –2 log-likelihood, AIC, AICC and BIC. The results 
show that OKIW distribution provides a better fit than EKIW model but not 
as good as EPLG model for these data. 

Table 3. MLEs estimates of OKIW and EKIW for glass fibres 
 MLEs estimates of the parameters  Statistics 

Distribution β η λ ϕ α –2 log L AIC AICC BIC 

OKIW 0.73504 74.65615 1.04537 1.17434 12.14228 33.04560 43.00456 44.05719 53.76127 
Std. errors 0.17243 0.31757 0.73751 0.50496 10.75254     

          
 β η λ θ α     

EKIW 1.47210 19.13500 0.01645 0.71991 57.89700 61.97205 63.02468 72.68772 61.97205 
Std. errors 0.30800 0.00139 0.01603 0.40493 0.00006     

          
 β - λ θ α     

EPLG* 0.9173 - 3.08735 0.94201 0.69931 23.88 31.88 - 40.45 
Note:* MLEs estimates as in Alizadeh et al. [1] 
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Plots of the estimated PDFs of OKIW and EKIW and histogram of the 
data are given in Figure 4. The plots further indicate that the OKIW is 
superior to EKIW in terms of empirical model fitting. 

 

Figure 4. Histogram and estimated densities for strength of glass fibres data. 

6.3. Guinea pigs data 

This data set represents the survival times (in days) of 72 guinea pigs 
infected with virulent tubercle bacilli, reported by [4] and analysed by [1]. 
The maximum likelihood estimates of the parameters of OKIW and EKIW 
distributions are given in Table 4 along with standard errors, –2 log-
likelihood, AIC, AICC and BIC. The results show that OKIW provides a 
better fit than EKIW and EPLG models. 
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Table 4. MLEs estimates of OKIW and EKIW for guinea pigs 
 MLEs estimates of the parameters  Statistics 

Distribution β η λ ϕ α –2 log L AIC AICC BIC 

OKIW 0.18836 22.74434 1.69122 3.88360 40.12850 189.054 198.9712 199.88029 210.43733 
Std. errors 0.06235 0.18773 0.20959 2.93846 0.02005     

          
 β η λ θ α     

EKIW 0.40794 84.10154 1.19373 0.90356 49.01261 190.8867 200.66930 201.57839 212.27003 
Sid. errors 0.10228 0.00248 0.26919 0.56982 0.00274     

          
 β - λ θ α     

EPLG* 4.34313 - 0.23122 0.99998 6.7385 849.25 857.2500 - 866.3500 
Note:* MLEs estimates as in Alizadeh et al. [1] 

Plots of the estimated PDFs of OKIW and EKIW and histogram for the 
data are given in Figure 5. The plots further indicate that the OKIW is 
superior to EKIW. 

 

Figure 5. Histogram and estimated densities for guinea pigs data. 

7. Conclusion 

In this study, we propose a new five-parameter lifetime model, called the 
OKIW distribution, and study its mathematical and statistical properties. The 
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model hazard function exhibits versatile behaviours: decreasing, increasing, 
J-shaped, reversed-J shaped, unimodal and upside-down bathtub. The PDF 
also has varied shapes suitable for modelling right-skewed, left-skewed, and 
approximately symmetric survival data and also survival data with highly 
varied kurtosis. We obtain point estimates of the parameters using maximum 
likelihood estimation. A simulation study is carried out to examine the 
performance of the MLEs in terms of the average biases and root mean 
square errors. It is established that MLEs and their asymptotic results can be 
utilized in constructing confidence intervals even for fairly small sample 
sizes. Applications of the model to real survival data prove empirically its 
flexibility and usefulness in modeling various types of biomedical and 
reliability data and that the model offers a more superior fit than EKIW 
distribution. Thus, we anticipate that OKIW distribution may attract wider 
applications in survival analysis, reliability analysis and insurance. 
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