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ABSTRACT

In this study we have proposed a modified ratio type estimator for population variance of

the study variable y under simple random sampling without replacement making use of

coefficient of kurtosis and median of an auxiliary variable x. The estimator’s properties

have been derived up to first order of Taylor’s series expansion. The efficiency conditions

are derived theoretically under which the proposed estimator performs better than existing

estimators. Empirical studies have been done using real populations to demonstrate the

performance of the developed estimator in comparison with the existing estimators. The

proposed estimator as illustrated by the empirical studies performs better than the existing

estimators under some specified conditions i.e. it has the smallest Mean Squared Error and

the highest Percentage Relative Efficiency. The proposed estimator is therefore suitable to

be applied to situations in which the variable of interest has a positive correlation with the

auxiliary variable.

viii



CHAPTER 0NE

1 INTRODUCTION

1.1 Background of the study

It is notable that the appropriate use of auxiliary information in probability sampling de-

signs yields considerable reduction in the variance of the estimators of population parameters

namely, population mean, median,variance,regression coefficient and population correlation

coefficient. Cochran (1940) was the first to show the contribution of known auxiliary in-

formation in improving the efficiency of the estimator of the population mean Ȳ in survey

sampling.

In this study we are interested in the estimation of population variance using known auxil-

iary information under simple random sampling without replacement(SRSWOR) sampling

scheme. The precision of estimators under this situation is always increased, the ratio, prod-

uct and regression estimators gives better outcome than those of simple random sampling.

Variance estimation has become a priority as many surveys require that the quality of the

statistics be assessed. Sampling variance which is an estimate of the population variance

is a key indicator of quality in sample surveys and estimation. Variance helps the user to

draw more accurate conclusions about the statistics produced and it is also important for

the design and estimation phases of surveys.

However due to the complexity of the methods used for the design and analysis of the survey

like the sampling design, weighting, and the type of estimators involved the calculations are

not straightforward.

Variance estimation in sample survey is crucial for future surveys either for determination of

sample size or stratification. Usually in the estimation of the finite population mean survey

data is used, however in many situations the mean may not be an appropriate average since
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it fluctuates from large to small observations or outliers in a set of data. Hence the need for

the population variance to overcome the difficulty.

On regular instances we encounter surveys in which an auxiliary variable x is relatively cheap

(with regard to time and money) to observe than the study variable y. Use of auxiliary in-

formation can increase the precision of an estimator when the study variable y is highly

correlated with auxiliary variable x. In reality such situations do occur when information is

available in the form of auxiliary variable, which is highly correlated with study variable, for

example:

(a) Sex and height of the persons,

(b) Amount of milk produced and a particular breed of the cow,

(c) Amount of yield of wheat crop and a particular variety of wheat etc.

(d) Number of trees in an orchard and the yield of fruits.

Many authors have come up with more precise estimators by employing prior knowledge

of certain population parameter(s). For instance Searls (1964) used coefficient of variation

of study variable at estimation stage. In practice however, this coefficient of variation is

seldom known. Motivated by Searls (1964) work, Sen (1978), Sisodia and Dwivedi (1981)

and Upadhyaya and Singh (1984) used the known coefficient of variation of the auxiliary

variable for estimating population mean of study variable in ratio method of estimation.

Reasoning along the same path Hirano et al. (1973) used the prior value of coefficient of

kurtosis in estimating the population variance of the study variable y.

Kurtosis in most cases is not reported or used in many research articles, in spite of the fact

that virtually speaking every statistical package provides a measure of kurtosis. This maybe

attributed to the likelihood that kurtosis is not well understood or its importance in various

aspects of statistical analysis has not been explored fully. Kurtosis can simply be expressed
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as

κ =
E(x− µ)4

(E(x− µ)2)2
=
µ4

σ4

where E is the expectation operator, µ is the mean, µ4 is the fourth moment about the mean

and σ is the standard deviation.

Median being the middlemost value in a distribution (when the values are arranged in ascend-

ing or descending order) has the advantage of being less affected by the outliers and skewed

data, thus is preferred to the mean especially when the distribution is not symmetrical. We

can therefore utilize the median and the coefficient of kurtosis of the auxiliary variable to

derive a more precise ratio type estimator for population variance.

1.2 Problem Statement

The theory and applications of survey sampling have grown tremendously in the last 7

decades. Many authors have considered the estimation of population variance, from the

initial works of Evans (1951), Hansen et al. (1953), Isaki (1983), Das and Tripathi (1978),

Srivastava and Jhajj (1980), Upadhyaya and Singh (1983), Upadhyaya and Singh (1999),

Singh (2001), Singh et al. (2003), Kadilar and Cingi (2006), Gupta and Shabbir (2008),

Grover (2010), Singh et al. (2011), Khan and Shabbir (2013a), and recently Yadav et al.

(2016). High number of surveys are now carried out every year in the various governmen-

tal agencies, the private sector and the academic community, both in Kenya and the entire

world at large. For instance the nationwide surveys about health care, economic activity,

poverty(people’s wellbeing), energy usage and unemployment; market researches and public

opinion surveys; and surveys associated with academic research studies.

In the current world, survey sampling touch almost every field of scientific study, including

demography, education, energy, transportation, health care, economics, forestry, sociology,

politics and so on. In fact it is not an exaggeration to say that much of the data undergoing
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any form of statistical analysis are collected in surveys. It is imperative to note that as

the number and uses of sample surveys increase, so is the need for methods of analyzing

and interpreting the resulting data. A central requirement for nearly all forms of analysis

and indeed the prime requirement of good survey practice, is that measure of precision be

provided for each estimate derived from the survey data.

The most common and widely used measure of precision is the variance of the survey estima-

tor. In reality however, population variances are always not known but must be estimated

from the survey data themselves. The problem of constructing such estimate of the popula-

tion variance which is more efficient using both the coefficient of kurtosis and median has not

been explored. As a result of the necessity to offer solutions to fill the gap in methodological

problems encountered in the estimation of population variance of the study variable, this

study is undertaken utilizing the population coefficient of kurtosis and the median of the

auxiliary variable.

1.3 Justification of the study

The approach employed in the development of proposed estimator is numerical studies and

existing literature. We not only propose a theoretically more efficient population variance

estimator but also test its efficiency using real data from natural population existing in

literature; as a consequence of a number of factors that a good estimator for the population

variance estimator should possess; numerical studies strengthens, ”puts flesh on the bones”

of a survey estimator.
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1.4 Objectives of the study

1.4.1 General Objective

The main objective of this study is to estimate the population variance using the coefficient

of kurtosis and median of an auxiliary Variable under simple random sampling.

1.4.2 Specific Objectives

The above general objective is accomplished by fulfilling the following research objectives:

1. To develop a modified ratio type population variance estimator using the coefficient of

kurtosis and median of the auxiliary variable.

2. To evaluate the bias and Mean Squared Error (MSE) of the proposed modified ratio type

population variance estimator.

3. To perform empirical study to assess the performance of the proposed estimator vis-a-vis

the existing estimators using Percentage Relative Efficiencies (PREs).

1.5 Significance of the study

The mathematical results obtained in this study adds value and knowledge to the field of

sample surveys, a new more efficient modified ratio type population variance estimator has

been developed making useful use of coefficient of kurtosis and the median of the auxiliary

variable. Further to the society considering the fact that mathematics plays an important

role in our day to day activities that involve statistical analyses. The greater demand for

more precision in the use of survey data justifies the need to develop more efficient estimators

with high precision. Thus, using the approach of estimation derived from this study achieves

better results than the existing estimators.
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1.6 The Scope of the study

This study focused on estimation of population variance under simple random sampling

utilizing the knowledge of known coefficient of kurtosis and median of the auxiliary variable.

Assuming simple random sampling, Bias and Mean squared error has been obtained up to

first order of approximations. Efficiency comparison of existing and proposed modified ratio

type population variance estimators using the MSEs has been implemented on the data from

the natural populations existing in the literature using percent relative efficiency (PRE).
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CHAPTER TWO

2 LITERATURE REVIEW

2.1 Existing Population Variance Estimators

In this section we have reviewed some of the existing estimators available in literature which

will help in the construction and development of the proposed estimator. When there is no

auxiliary information the usual unbiased estimator to the population variance of the study

variable is

t1 = s2
y (1)

Population variance, S2
y estimation using auxiliary information was considered by Isaki

(1983), and proposed ratio type population variance estimator, given by

t2 = s2
y

S2
x

s2
x

(2)

Usage of prior value of coefficient of kurtosis in estimating population variance of study

variable y was first done by Hirano et al. (1973). Later, the coefficient of kurtosis was used

by Sen (1978), Upadhyaya and Singh (1984), Searls and Intarapanich (1990) in the estimation

of population mean of study variable.

Srivastava and Jhajj (1980), proposed a general class of ratio type estimators for estimating

the finite population variance S2
y as

Ŝ2
SJ = s2G(u, v) (3)

where u = x̄
X̄

, v = s2x
S2
x

and G(u, v) is a function of u and v such that

(i) The point (u, v) assumes a value in a closed convex subset R2 of two dimensional real

space containing the point (1, 1).

(ii) The function G(u, v) is continuous and bounded in R2
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(iii) G(1, 1) = 1

(iv) The first and second order partial derivatives of G(u, v) exist and are continuous and

bounded in R2.

We note that all ratio or product type estimators of population variance considered by Das

and Tripathi (1978) and Kaur and Singh (1982) are special cases of class of estimators of

Srivastava and Jhajj (1980). The knowledge of coefficient of kurtosis of a variable under

study is seldom available. However, the coefficient of kurtosis of an auxiliary variable can be

obtained easily.

In order to have the survey estimate for population mean Ȳ of the study variable y for

instance assuming the knowledge of population mean X̄ of the auxiliary variable x we have

the well known ratio estimator.

ˆ̄YR = ȳ(
X̄

x̄
) (4)

where ȳ and x̄ are the unweighted sample mean of the variable y and x respectively. The

Bias and MSE of ˆ̄YR to first order approximation are given by

B( ˆ̄YR) = θȲ C2
x(1−K)

MSE( ˆ̄YR) = θȲ 2[C2
y + C2

x(1− 2K)]

where θ = 1− n
N

, K = ρ(Cy

Cx
), Cy and Cx are coefficients of variation of y and x respectively

and ρ is the correlation coefficient between y and x.

Prasad and Singh (1990) considered a ratio type for estimating the finite population variance

by improving on the Isaki’s estimator(1983) in terms of bias and precision.

Singh (1991) considered a general class of estimators for estimating the finite population

variance S2
y and defined his estimator, Ŝ2

S91 as

Ŝ2
S91 = s2

yG(u, v) (5)

where u = x̄
x̄∗

, v = s2x
s2∗x

and G(u, v) is a parametric function satisfying the following regularity

conditions:

(i) G(1, 1) = 1
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(ii) The first and second order partial derivatives of G with respect to u and v exist and are

continuous and known constants.

Upadhyaya and Singh (1999) using the known information on both S2
x and κx suggested

modified ratio type population variance estimator for S2
y as

t3 = s2
y[
S2
x + κx
s2
x + κx

] (6)

Upadhyaya and Singh (2001) utilized the mean of the auxiliary variable and proposed the

following modified ratio estimator of population variance

Ŝ2
U01 = s2

y[
X̄

x̄
] (7)

Singh et al. (2004) assuming known coefficient of kurtosis κx and using the transformation

µi = xi+κx,(i=1,2,....,N) suggested the following modified ratio estimator for the population

mean Ȳ as

ˆ̄YM = ȳ(
X̄ + κx
x̄+ κx

) (8)

To first order approximation the bias and MSE of ˆ̄YM was obtained by letting ȳ = Ȳ (1 + ξ0),

x̄ = X̄(1+ξ1) so that E(ξ0)=E(ξ1)=0 and V (ξ0) = 1−f
n
C2
y , V (ξ1) = 1−f

n
C2
x and Cov(ξ0, ξ1) =

1−f
n
ρCyCx. Assumption is made that the sample size n is large enough to make |ξ0| and

|ξ1| < 1 so as to validate the first degree approximation i.e. the terms involving ξ0 and/or ξ1

having powers greater than two will be negligible. Then

ˆ̄YM = Ȳ (1 + ξ0)(1 + λξ1)−1 (9)

where λ = X̄
x̄+κx

. Suppose that |λξ1| < 1 so that (1 + λξ1)−1 converges. Then the Bias and

MSE of ˆ̄YM to first degree of approximation, respectively are given by

Bias( ˆ̄YM) =
1− f
n

Ȳ λC2
x(λ−K) (10)

MSE( ˆ̄YM) =
1− f
n

Ȳ 2[C2
y + λC2

x(λ− 2K)] (11)
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Arcos et al. (2005) also came up with another type of modified ratio estimator that improved

on Isaki’s estimator (1983) which is less biased and more precise than the previous existing

estimators, given by

Ŝ2
Ar = s2

y + c(S2
x − s2

x) + d(X̄ − x̄) (12)

Kadilar and Cingi (2006) suggested four modified ratio type variance estimators using known

values of coefficient of variation variation Cx and coefficient of kurtosis κx of an auxiliary

variable X as follows

t4 = s2
y{
S2
x − Cx
s2
x − Cx

} (13)

t5 = s2
y{
S2
x − κx
s2
x − κx

} (14)

t6 = s2
y{
S2
xκx − Cx
s2
xκx − Cx

} (15)

t7 = s2
y{
S2
xCx − κx
s2
xCx − κx

} (16)

Singh et al. (2011) improved Bahl and Tuteja (1991) exponential ratio type estimator for the

population mean defined as, Ȳ = ȳ exp[ X̄−x̄
X̄+x̄

] and proposed the following exponential ratio

type estimator for the population variance as:

Ŝ2
S11 = s2

yexp
S2
x − s2

x

S2
x + s2

x

(17)

Using the known value of population median Mx of the auxiliary variable x Subramani and

Kumarapandiyan (2012a) have suggested the modified ratio type estimator of the population

variance S2
y of study variable as

t8 = s2
y{
S2
x +Mx

s2
x +Mx

} (18)

Subramani and Kumarapandiyan (2012b) have proposed the modified ratio type estimators

of population variance S2
y using the known quartiles of the auxiliary variable x as

t9 = s2
y{
S2
x +Q1

s2
x +Q1

} (19)

t10 = s2
y{
S2
x +Q3

s2
x +Q3

} (20)
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Motivated by Kadilar and Cingi (2006) and Subramani and Kumarapandiyan (2012a), Sub-

ramani and Kumarapandiyan (2013) considered the estimation of finite population variance

using known coefficient of variation and median of an auxiliary variable, proposed an esti-

mator, given as:

t11 = s2
y[
CxS

2
x +Mx

Cxs2
x +Mx

] (21)

Khan and Shabbir (2013b) gave a ratio type estimator of population variance using coefficient

of correlation and upper quartile of auxiliary variable x. The problem herein was built on

Isaki’s known parameter variance estimator. The estimator postulated is given as:

t12 = s2
y

[
S2
xρxy +Q3

s2
xρxy +Q3

]
(22)

Khan (2015) proposed an improved modified ratio type estimator for finite population vari-

ance using the transformation of variables.

Ŝ2
K15 = s2

y[α{2− (
S2
x + κx
S2
x + κx

)}+ (1− α){2− (
S2
x + κx
S2
x + κx

)}] (23)

The mean squared error of his proposed estimator is less than the mean squared errors of

previously suggested existing estimators meaning that it got some good gain in efficiency.

Yadav et al. (2016) considered an efficient dual to ratio and product estimator of the popu-

lation variance, making use of the coefficient of kurtosis and mean of the auxiliary variable

and proposed the following improved ratio type estimator of the population variance

Ŝ2
Y 16 = s2

y[
x̄∗ + αX̄

X̄ + αx̄∗
] (24)

where α is a suitably chosen characterizing constant and is obtained by minimizing the MSE

of the proposed estimator tY and x̄∗ = NX̄−nx̄
N−n = (1 + g)X̄ − gx̄, g = n

N−n .

Bhat et al. (2017) estimated variance using Tri-mean(TM) and semi-quartile range of the aux-

iliary variable x, defined as TM = Q1+2Mx+Q3

4
and Qa = Q3+Q1

2
respectively. The estimator

is given by:

t13 = s2
y

[
S2
x + (TM +Qa)

s2
x + (TM +Qa)

]
(25)
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2.2 Statistical Properties(Bias and MSE)

First, we define the notations we are using in this section:

µrs = 1
N−1

Σn
i=1(yi − ȳ)r(xi − x̄)s, λrs = µrs

µ
r
2
20µ

s
2
02

. Thus we note the following;

µ20 = S2
y , µ02 = S2

x, and µ11 = Sxy; λ22 = µ22
µ20µ02

, λ21 = µ21

µ20µ
1
2
02

such that;

Cy =
S2
y

Ȳ 2 = µ20
Ȳ 2 coefficient of variation for the study variable y, Cx = S2

x

X̄2 = µ02
X̄2 coefficient

of variation for the auxiliary variable x and ρxy = Sxy

SxSy
= µ11√

µ20
√
µ02

coefficient of correlation

between x and y, κ(y) = λ40 = µ40
µ220

coeffcient of kurtosis for the study variable, κ(x) = λ04 = µ04
µ202

coefficient of kurtosis for the auxiliary variable and Mx population median of the auxiliary

variable.

The bias and variance of t1 to first order approximation are given by:

Bias(t1) =
1− f
n

S2
y{(κx − 1)Ψ1(Ψ1 −

λ22 − 1

κx − 1
)} = 0 (26)

MSE(t1) = V ar(t1) =
1− f
n

S4
y{(κy − 1) + (κx − 1)Ψ1(Ψ1 − 2(

λ22 − 1

κx − 1
))}

=
(1− f)

n
S4
y(κy − 1)

(27)

where Ψ1 = 0

Prasad and Singh (1990) obtained the bias and Mean Squared Error of Isaki’s estimator, to

first order of approximation as follows

Bias(t2) =
1− f
n

S2
y{(κx − 1)Ψ2(Ψ2 −

λ22 − 1

κx − 1
)} =

(1− f)

n
S2
y [(κx − 1)− (λ22 − 1)] (28)

MSE(t2) =
1− f
n

S4
y{(κy − 1) + (κx − 1)Ψ2(Ψ2 − 2(

λ22 − 1

κx − 1
))}

=
(1− f)

n
S4
y [(κy − 1) + (κx − 1)− 2(λ22 − 1)]

(29)

where Ψ2 = 1

Upadhyaya and Singh (1999) estimator using the known information on both S2
x and κx

obtained the bias and MSE of their estimator t3 to first order of approximation

Bias(t3) =
1− f
n

S2
y [({κx − 1})Ψ3(Ψ3 −

λ22 − 1

κx − 1
)] (30)
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MSE(t3) =
1− f
n

S4
y [{κy − 1}+ {κx − 1}Ψ3(Ψ3 − 2(

λ22 − 1

κx − 1
))] (31)

where Ψ3 = S2
x

S2
x+κx

Upadhyaya and Singh (2001) obtained the bias and MSE of their modified ratio type popu-

lation variance Ŝ2
U01 estimator up to first order approximations

Bias(Ŝ2
U01) =

1− f
n

S2
y [C

2
x − λ21Cx] (32)

MSE(Ŝ2
U01) =

1− f
n

S4
y [(λ40 − 1) + C2

x − 2λ21Cx] (33)

Kadilar and Cingi (2006), derived the biases and MSE of their four modified ratio type

variance estimators to first order approximations to get;

Bias(t4) =
1− f
n

S2
y(κx − 1){Ψ4(Ψ4 −

λ22 − 1

κx − 1
)} (34)

MSE(t4) =
1− f
n

S4
y{(κy − 1) + Ψ4(κx − 1)(Ψ4 − 2(

λ22 − 1

κx − 1
))} (35)

Bias(t5) =
1− f
n

S2
y(κx − 1){Ψ5(Ψ5 − (

λ22 − 1

κx − 1
))} (36)

MSE(t5) =
1− f
n

S4
y{(κy − 1) + Ψ5(κx − 1)(Ψ5 − 2(

λ22 − 1

κx − 1
))} (37)

Bias(t6) =
1− f
n

S2
y(κx − 1){Ψ6(Ψ6 − (

λ22 − 1

κx − 1
))} (38)

MSE(t6) =
1− f
n

S4
y{(κy − 1) + Ψ6(κx − 1)(Ψ6 − 2(

λ22 − 1

κx − 1
))} (39)

Bias(t7) =
1− f
n

S2
y(κx − 1){Ψ7(Ψ7 − (

λ22 − 1

κx − 1
))} (40)

MSE(t7) =
1− f
n

S4
y{(κy − 1) + Ψ7(κx − 1)(Ψ7 − 2(

λ22 − 1

κx − 1
))} (41)

where;

Ψ4 = S2
x

S2
x−Cx

; Ψ5 = S2
x

S2
x−κx

; Ψ6 = S2
xκx

S2
xκx−Cx

; Ψ7 = S2
xCx

S2
xCx−κx .

Subramani and Kumarapandiyan (2013) obtained the bias and MSE of their estimator t8 to

first order approximation as:

Bias(t8) = 1−f
n
S2
y(κx − 1){Ψ8(Ψ8 − (λ22−1

κx−1
))}

MSE(t8) = 1−f
n
S4
y{(κy − 1) + Ψ8(κx − 1)(Ψ8 − 2(λ22−1

κx−1
))}
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where, Ψ8 = S2
x

S2
x+Mx

.

This estimator is more efficient in terms of bias and mean squared error than the traditional

ratio type and preceding modified ratio type population variance estimators under specified

conditions.

Subramani and Kumarapandiyan (2012b) in their proposed modified ratio type population

variance estimators using the known quartiles of the auxiliary variable x (upper and lower

quartile Q3 and Q1 respectively) came up with the bias and MSE of their estimators t9 and

t10 as follows

Bias(t9) = 1−f
n
S2
y(κx − 1){Ψ9(Ψ9 − (λ22−1

κx−1
))}

MSE(t9) = 1−f
n
S4
y{(κy − 1) + Ψ9(κx − 1)(Ψ9 − 2(λ22−1

κx−1
))}

Bias(t10) = 1−f
n
S2
y(κx − 1){Ψ10(Ψ10 − (λ22−1

κx−1
))}

MSE(t10) = 1−f
n
S4
y{(κy − 1) + Ψ10(κx − 1)(Ψ10 − 2(λ22−1

κx−1
))}

where Ψ9 = S2
x

S2
x+Q1

and Ψ10 = S2
x

S2
x+Q3

.

The modified ratio type estimator by Subramani and Kumarapandiyan (2013) taking moti-

vation from Kadilar and Cingi (2006) and Subramani and Kumarapandiyan (2012a) obtained

bias and MSE of their proposed population variance estimator that utilizes the coefficient of

variation and median of auxiliary variable as follows:

Bias(t11) =
1− f
n

S2
y(κx − 1){Ψ11(Ψ11 − (

λ22 − 1

κx − 1
))} (42)

MSE(t11) =
1− f
n

S4
y{(κy − 1) + Ψ11(κx − 1)(Ψ11 − 2(

λ22 − 1

κx − 1
))} (43)

where Ψ11 = CxS2
x

CxS2
x+Mx

.

The bias and MSE of t12 to first order of approximations is given by:

Bias(t12) =
1− f
n

S2
y

[
(κx − 1)Ψ12

(
Ψ12 −

(
λ22 − 1

κx − 1

))]
(44)

MSE(t12) =
1− f
n

S4
y

[
(κy − 1) + Ψ12(κx − 1)

(
Ψ12 − 2

(
λ22 − 1

κx − 1

))]
(45)

where Ψ12 = S2
xρxy

S2
xρxy+Q3

.

Yadav et al. (2016) derived the bias and MSE of their efficient dual to ratio and product
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estimator of the population variance, Ŝ2
Y 16 to first order approximations as

Bias(Ŝ2
Y 16) = −1− f

n
S2
y [Fgλ21Cx +

Fα

1 + α
g2C2

x] (46)

where F = 1−α
1+α

MSE(Ŝ2
Y 16) =

1− f
n

S4
y [(λ40 − 1) + F 2g2C2

x − 2Fgλ21Cx] (47)

which is minimum for F = λ21
gCx

and the minimum mean squared error of tY for this optimum

value of F is,

MSEmin(Ŝ2
Y 16) =

1− f
n

S4
y [(λ40 − 1)− λ2

21] (48)

The Bias and MSE of t13 to first order of approximations is given by:

Bias(t13) =
1− f
n

S2
y

[
(κx − 1)Ψ13

(
Ψ13 −

(
λ22 − 1

κx − 1

))]
(49)

MSE(t13) =
1− f
n

S4
y

[
(κy − 1) + Ψ13(κx − 1)

(
Ψ13 − 2

(
λ22 − 1

κx − 1

))]
(50)

where Ψ13 = S2
x

S2
x+TM+Qa

2.3 Empirical studies

The performance of proposed modified ratio type variance estimator is always assessed by

many authors using empirical studies comparing it with the traditional and existing modified

ratio type variance estimators.

Subramani and Kumarapandiyan (2013) used real data from the Italian Bureau for Envi-

roment Protection (APAT) 2004 Report on Waste 2004 to assess the performance of their

estimator. Their results showed that the bias and mean squared error of their proposed

estimator is less than the biases and mean squared errors of the traditional and existing

estimators.

Khan and Shabbir (2013a) considered two natural populations from the literature of survey

to perform efficiency comparison of their proposed estimator with the existing estimators.
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Population 1 from Das (1988) and population 2 from (Cochran, 1977, p.325). They conclude

out of their empirical studies that their estimator under optimizing conditions was more

efficient than the existing estimators.

2.4 Taylor’s Linearization Method

Applying the Taylor Linearization method, non-linear statistics are approximated by linear

forms of the observations (by taking the first-order terms in an appropriate Taylor-series

expansion). Second or even higher-order approximations could be developed by extending

the Taylor series expansion. However, in practice, the first-order approximation usually yields

satisfactory results, with the exception of highly skewed populations Wolter (2007).

After applying Taylor’s approximation, standard variance estimation techniques can then

be applied to the linearized statistic. This implies that Taylor Linearization is not ‘in itself’

method for variance estimation, it simply provides approximate linear forms of the statistics of

interest (e.g. a weighted total) and then other methods should be deployed for the estimation

of variance itself (either analytic or approximate ones).

Taylor linearization method is a widely applied method because it is quite straightforward

for any case where an estimator already exists for totals. However, the Taylor linearization

variance estimator is a biased estimator. Its bias stems from its tendency to underestimate

the true value and it depends on the size of the sample and the complexity of the estimated

parameter. Though, if the statistic is fairly simple, like the weighted sample mean, the bias is

negligible even for small samples, while it becomes nil for large samples Sarndal et al. (1992).

On the other hand for a complex estimator for a parameter like the variance, large samples

are needed for the bias to be small.

It is the most popular method of variance estimation for complex statistics such as ratio

and regression estimators and logistic regression coefficient estimators. Generally applicable

to any sampling design that permits unbiased variance estimation for linear estimators. Its
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advantage is that it is computationally simpler and more compatible with many existing

programs and softwares than the resampling methods such as the jackknife.
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CHAPTER THREE

3 METHODOLOGY

Consider a finite population V = {V1, V2, V3, ..., VN} of N distinct identifiable units. Let Y be

our study variable and X be its corresponding auxiliary variable. Suppose we take a random

sample of size n from this bivariate population (Y,X) that is (yi, xi), for i = 1, 2, 3, ..., n using

a Simple Random Sampling Without Replacement (SRSWOR) method. Let Ȳ and X̄ be

the population means of the study and auxiliary variable respectively and their corresponding

sample means be ȳ and x̄.

This study considers the problem of estimating the population variance,defined as S2
y =

1
N−1

ΣN
i=1(Yi− Ȳ )2 and uses auxiliary information to improve the efficiency of the population

variance estimator.

We define the following notations that we will make use of throughout the thesis. For the

population observations we have;

Ȳ = 1
N

ΣN
i=1Yi, X̄ = 1

N
ΣN
i=1Xi, S2

y = 1
N−1

ΣN
i=1(Yi − Ȳ )2,

S2
x = 1

N−1
ΣN
i=1(Xi − X̄)2, Sxy = 1

N−1
ΣN
i=1(Yi − Ȳ )(Xi − X̄).

Also we define the following from the sample observations:

ȳ = 1
n
Σn
i=1yi, x̄ = 1

n
Σn
i=1xi, s2

y = 1
n−1

Σn
i=1(yi − ȳ)2,

s2
x = 1

n−1
Σn
i=1(xi − x̄)2, sxy = 1

n−1
Σn
i=1(yi − ȳ)(xi − x̄).

In general, we recall the following parameters we defined in section (2.2):

µrs = 1
N−1

Σn
i=1(yi − ȳ)r(xi − x̄)s, λrs = µrs

µ
r
2
20µ

s
2
02

. Thus we note the following;

µ20 = S2
y , µ02 = S2

x, and µ11 = Sxy; λ22 = µ22
µ20µ02

, λ21 = µ21

µ20µ
1
2
02

such that;

Cy =
S2
y

Ȳ 2 = µ20
Ȳ 2 coefficient of variation for the study variable y, Cx = S2

x

X̄2 = µ02
X̄2 coefficient

of variation for the auxiliary variable x and ρxy = Sxy

SxSy
= µ11√

µ20
√
µ02

coefficient of correlation

between x and y, κ(y) = λ40 = µ40
µ220

coeffcient of kurtosis for the study variable, κ(x) = λ04 = µ04
µ202

coefficient of kurtosis for the auxiliary variable and Mx population median of the auxiliary
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variable.

3.1 Linearity of Expectation

Following the works of Karr (1993) we have

Theorem 1

Let X and Y be random variables. We have that

E(X + Y ) = E(X) + E(Y ) (51)

and note that true for any X and Y even when they are dependent.

Proof

We first show that

E(X + Y ) =
∞∑

i=−∞

∞∑
j=−∞

(i+ j)P{X = i, Y = j} (52)

E(X + Y ) =
∞∑

K=−∞

K.P{X + Y = K} (53)

=
∞∑

K=−∞

K.(
∞∑

i=−∞

P{X = i, Y = K − i}) (54)

=
∞∑

i=−∞

K.(
∞∑

k=−∞

P{X = i, Y = K − i}) (55)

setting K − i = j ⇒ K = j + i

=
∞∑

i=−∞

(i+ j)(
∞∑

j=−∞

P{X = i, Y = j}) (56)

We now have

E(X + Y ) =
∞∑

i=−∞

(i+ j)(
∞∑

j=−∞

P{X = i, Y = j}) (57)

=
∞∑

i=−∞

∞∑
j=−∞

i.P{X = i, Y = j}+
∞∑

i=−∞

∞∑
j=−∞

j.P{X = i, Y = j} (58)
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Considering the first part of equation (58)

∞∑
i=−∞

∞∑
j=−∞

i.P{X = i, Y = j} =
∞∑

i=−∞

i.

∞∑
j=−∞

P{X = i, Y = j}︸ ︷︷ ︸ (59)

=
∞∑

i=−∞

i.P{X = i, Y = j} (60)

= E(X) (61)

and the second part of equation (58)

∞∑
i=−∞

∞∑
j=−∞

j.P{X = i, Y = j} =
∞∑

i=−∞

j.(
∞∑

j=−∞

P{X = i, Y = j}︸ ︷︷ ︸) (62)

=
∞∑

i=−∞

j.P{X = i, Y = j} (63)

= E(Y ) (64)

Therefore

E(X + Y ) =
∞∑

i=−∞

∞∑
j=−∞

(i+ j)P{X = i, Y = j} (65)

=
∞∑

i=−∞

∞∑
j=−∞

i.P{X = i, Y = j}+
∞∑

i=−∞

∞∑
j=−∞

j.P{X = i, Y = j} (66)

= E(X) + E(Y ) (67)

3.2 Expected value of the ratio of correlated random variables

Consider random variables m and n which are correlated. Suppose we defined them as

m = E(m) +m∗

n = E(n) + n∗
(68)

by simply interchanging variablesm and n with new variablesm∗ and n∗ hence still measuring

the same things; we have just shifted the axes so that 0 is the expected value (for instance if
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the expected number of descendants is 2, then we measure the actual number by how much

it differs from 2; if the individual ends up just leaving just 1 descendant, then m∗=-1).

We note that E(m
n

) is undefined for any nonzero probability that n = 0. Therefore we

calculate E(m
n
|n 6= 0), the expected value of the ratio conditional on n not equaling zero.

This condition makes complete sense in evolutionary theory; since n = 0 iff the population

goes extinct- hence the case where the result become undefined.

Using the definitions in equation (68) we can write:

E
(m
n
|n 6= 0

)
= E

(
E(m) +m∗
E(n) + n∗

)
= E

(
E(m)

E(n)

[1 + m∗
E(m)

]

[1 + n∗
E(n)

]

)
(69)

Noting that the expected values E(m) and E(n) are not random variables we can remove

outside the expectation on the right hand side of equation (69) yielding:

E
(m
n
|n 6= 0

)
=
E(m)

E(n)
E

(
1 + m∗

E(m)

1 + n∗
E(n)

)
=
E(m)

E(n)
E

[(
1 +

m∗
E(m)

)(
1 +

n∗
E(n)

)−1
]

(70)

Multiplying out the terms in the square brackets yields:

E
(m
n
|n 6= 0

)
=
E(m)

E(n)
E

[(
1 +

n∗
E(n)

)−1
]

+
1

E(n)
E

[
m ∗

(
1 +

n∗
E(n)

)−1
]

(71)

By the definition of harmonic mean E( 1
n
) = 1

H(n)
, where H(n) is the harmonic mean of n.

We can use equation (70) to find E( 1
n
) by setting m = 1 (so that E(m) = 1 and m∗ = 0).

Thus we will obtain:

E
(m
n
|n 6= 0

)
≡ 1

H(n)
=

1

E(n)
E

[(
1 +

n∗
E(n)

)−1
]

(72)

We can rewrite now the right hand side of equation (71) by using equation (72)

E
(m
n
|n 6= 0

)
=
E(m)

H(n)
+

1

E(n)
E

[
m ∗

(
1 +

n∗
E(n)

)−1
]

(73)

Now we have to deal with the term E

[
m ∗

(
1 + n∗

E(m)

)−1
]
. Provided that n∗ < E(n) i.e.

n < 2E(n), we can expand
(

1 + n∗
E(n)

)−1

as a Taylor series in n∗. If we define:

fn∗ =

(
1 +

n∗
E(n)

)−1

(74)
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Taylor’s theorem will yield:

fn∗ = 1 +
∞∑
i=1

(−1)i
n∗i

E(n)i
(75)

Importantly we note that the use of Taylor’s theorem is not applicable in all cases. Precisely,

equation (74) does not converge to equation (75) if n∗ ≥ E(n), hence in such situations we

fall back and use the calculus of finite differences.

When we can apply the Taylor expansion in equation (75), we will have:

E

[
m ∗

(
1 +

n∗
E(n)

)−1
]

= E

[
m ∗+

∞∑
i=1

(−1)i
m ∗ b∗i

E(n)i

]
(76)

From the definitions of m∗ and n∗ in equation (68), we know that E(m∗) = 0, E(m ∗ n∗) =

cov(m,n) and in general, E(m∗n∗i) is the mixed central moment defined as E[m− E(m)][n− E(n)]i,

which can simply use the notation 〈〈n,im〉〉. Hence we can now write equation (76) as

E

[
m ∗

(
1 +

n∗
E(n)

)−1
]

=
∞∑
i=1

(−1)i
〈〈n,im〉〉
E(n)i

(77)

Substituting equation (77) into equation (73) gives the equation for the expected value of

the ratio:

E
(m
n
|n 6= 0

)
=
E(m)

H(n)
+
∞∑
i=1

(−1)i
〈〈n,im〉〉
E(n)i+1

(78)

For other situations, it is useful to have a result in which the first term does not involve the

harmonic mean. To do this we simply substitute the series in equation (75) directly into the

far right hand part of equation (70). Denoting the ith central moment of n by 〈〈in〉〉, so that

〈〈1n〉〉 = 0. Thus

E
(m
n
|n 6= 0

)
=
E(m)

E(n)
+
∞∑
i=1

(−1)i
E(m)〈〈in〉〉+ 〈〈n,im〉〉

E(n)i+1
(79)

3.3 Taylor’s approximation method

Suppose we have an estimator Z = g(X, Y ) a function of two variables. Suppose that we can

measure X and determine its population parameters such as mean and variance but really be

interested in Y which is related to X in some way. We might be interested to know V ar(Y )
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at least approximately in order to assess the accuracy of indirect measurement process. Since

we cannot in general find E(y) = µy and V ar(Y ) = σy from E(X) = µx and V ar(X) = σx

unless the function g is linear. As in our case of estimating the population variance we involve

ratio which is non-linear so let us suppose g is non-linear thus we have to linearize.

Using Taylors’ series expansion of g about µ = (µx, µy) in order to approximate the mean or

variance of Z. To first order

Z = g(X, Y ) ≈ g(µ) + (X − µx)
∂g(µ)

∂x
+ (Y − µy)

∂g(µ)

∂y
(80)

The notation ∂g(µ)
∂y

and ∂g(µ)
∂x

means that the partial derivative is evaluated at the point

(µx, µy).

Z having been expressed approximately equal to a linear function of X and Y . The mean

and variance of this linear function are easily calculated to be

E(Z) ≈ µ and

V ar(Z) = σ2
x(
∂g(µ)
∂x

)2 + σ2
y(
∂g(µ)
∂y

) + 2σxy(
∂g(µ)
∂x

)(∂g(µ)
∂y

)

Illustration

Using Isaki (1983) ratio type population variance estimator for our illustration

tR = s2
y

S2
x

s2
x

Let us define

ξ0 =
s2y
S2
y
− 1, ξ1 = s2x

S2
x
− 1, ξ2 = ȳ

Ȳ
− 1, ξ3 = x̄

X̄
− 1, ξ4 = sxy

Sxy
− 1 such that

E(ξ0) = E(ξ1) = E(ξ2) = E(ξ3) = E(ξ4) = 0 and

E(ξ2
2) = (1−f

n
)C2

y , E(ξ2
3) = (1−f

n
)C2

x, E(ξ2ξ3) = (1−f
n

)ρxyCyCx.

Expressing the estimator tR in terms of ξ0 and ξ1 can easily be written as

tR = S2
y(1 + ξ0)(1 + ξ1)−1 = S2

y(1 + ξ0)(1− ξ1 + ξ2
1 + ...) = S2

y [1 + ξ0− ξ1 + ξ2
1 − ξ0ξ1 + ...] (81)

To the first order of Taylor’s approximations we have;

E(ξ2
0) = (1−f

n
)(λ40 − 1), E(ξ2

1) = (1−f
n

)(λ04 − 1),
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E(ξ2
4) = (1−f

n
)(λ22
ρ2xy
− 1), E(ξ2ξ0) = (1−f

n
)Cyλ30, E(ξ2ξ1) = (1−f

n
)Cyλ12, E(ξ2ξ4) = (1−f

n
)Cy

λ21
ρxy

,

E(ξ3ξ0) = (1−f
n

)Cxλ21, E(ξ3ξ1) = (1−f
n

)Cxλ03,

E(ξ3ξ4) = (1−f
n

)Cx
λ12
ρxy

, E(ξ0ξ1) = (1−f
n

)(λ22 − 1), E(ξ0ξ4) = (1−f
n

)(λ31
ρxy
− 1), and E(ξ1ξ4) =

(1−f
n

)(λ13
ρxy
− 1), where f is the finite population correction (f.p.c) factor. Thus we have the

following theorems as stated by Singh (2003)

Theorem 2

Bias upto order O(n−1) in the estimator of tR is

Bias(tR) =
1− f
n

S2
y(λ04 − λ22) (82)

Proof

Taking the expectation on both sides of (81) we have

E(tR) = S2
yE[1 + ξ0 − ξ1 + ξ2

1 − ξ0ξ1] = S2
y [1 + (1−f

n
)(λ04 − 1)− (λ22 − 1)]

and using the result B(tR) = E(tR)− S2
y we have (82).

Theorem 3

The MSE of the estimator tR up to first order of approximations is

MSE(tR) = (
1− f
n

)S4
y [λ40 + λ04 − 2λ22] (83)

Proof

We have

MSE(tR) = E(tR − S2
y)

2

≈ E[S2
y(1 + ξ0 − ξ1 + ξ2

1 − ξ0ξ1 + ...)− S2
y ]

2

≈ S4
yE(ξ0 − ξ1)2

= S4
yE[ξ2

0 + ξ2
1 − 2ξ0ξ1]

= 1−f
n
S4
y [(λ40 − 1) + (λ04 − 1)− 2(λ22 − 1)].
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3.4 Proposed Estimator

Motivated by the works of Khan and Shabbir (2013a), Upadhyaya and Singh (1999), Singh

et al. (2004), Subramani and Kumarapandiyan (2013), Kadilar and Cingi (2006), and Yadav

et al. (2016) in the improvement of the performance of the population variance estimator of

the study variable using known population parameters of an auxiliary variable. We propose

the following modified ratio type estimator for the population variance S2
y using known values

of population coefficient of kurtosis κx and median Mx of an auxiliary variable.

Ŝ2
PM = s2

y{
S2
xκx +M2

x

s2
xκx +M2

x

} (84)

To obtain the bias and the MSE of our proposed estimator Ŝ2
PM ,

We define s2
y = S2

y(1 + ξ0) and s2
x = S2

x(1 + ξ1) or ξ0 =
s2y
S2
y
− 1 and ξ1 = s2x

S2
x
− 1 such that

E(ξ0) = E(
s2y
S2
y
) − E(1) = 0 and E(ξ1) = E( s

2
x

S2
x
) − E(1) = 0 and to the first degreee of

approximations we have

E(ξ2
0) = 1−f

n
(λ40 − 1), E(ξ2

1) = 1−f
n

(λ04 − 1), E(ξ0ξ1) = 1−f
n

(λ22 − 1).

The above expectations are obtained following the works of Sukhatme (1944), Sukhatme and

Sukhatme (1970), Srivastava and Jhajj (1981), Tracy (1984) and Withers and Nadarajah

(2014).

Now expressing Ŝ2
PM in terms of ξ′s we have

Ŝ2
PM = S2

y(1 + ξ0){ κxS2
x+M2

x

κxS2
x(1+ξ1)+M2

x
}

= S2
y(1 + ξ0)(1 + %∗ξ1)−1 (85)

where %∗ = κxS
2
x(κxS

2
x+M2

x)−1, we assume that |%∗ξ1| < 1 so that (1+%∗ξ1)−1 is expandable.

Expanding the right hand side of (85) and multiplying out we have

Ŝ2
PM = S2

y(1 + ξ0)(1− %∗ξ1 + %∗2ξ2
1 ...)

= S2
y(1 + ξ0 − %∗ξ1 − %∗ξ0ξ1 + %∗2ξ2

1 + %∗2ξ0ξ
2
1 − ...)

Neglecting terms of ξ′s having power greater than two we have
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Ŝ2
PM
∼= S2

y(1 + ξ0 − %∗ξ1 − %∗ξ0ξ1 + %∗2ξ2
1) or

Ŝ2
PM − S2

y
∼= S2

y(ξ0 − %∗ξ1 − %∗ξ0ξ1 + %∗2ξ2
1) (86)

Taking the expectation on both sides of (86)

E(Ŝ2
PM − S2

y)
∼= E(S2

y(ξ0 − %∗ξ1 − %∗ξ0ξ1 + %∗2ξ2
1)) We get the bias of the estimator Ŝ2

PM to

the first degree of approximation as

Bias(Ŝ2
PM) =

1− f
n

S2
y(κx − 1)%∗{%∗ − (λ22 − 1)

(κx − 1)
} (87)

Squaring both sides of (86) and neglecting terms of ξ′s having power greater than two we

have

(Ŝ2
PM − S2

y)
2 ∼= S4

y(ξ
2
0 + %∗2ξ2

1 − 2%∗ξ0ξ1) (88)

Taking the expectation on both sides of (88)

E((Ŝ2
PM − S2

y)
2) ∼= E(S4

y(ξ
2
0 + %∗2ξ2

1 − 2%∗ξ0ξ1)) We get the ( ˆS2
PM) estimator’s Mean Squared

Error to first degree of approximation as

MSE(Ŝ2
PM) =

1− f
n

S4
y{(κy − 1) + %∗(κx − 1)(%∗ − 2

(λ22 − 1)

(κx − 1)
)} (89)

Theoretical Conditions for our Proposed Estimator

Consider our proposed estimator

Ŝ2
PM = s2

y{
S2
xκx +M2

x

s2
xκx +M2

x

} (90)

Suppose we rewrite it as

Ŝ2
PM =

m

n
(91)

i.e. we let m = s2
y(S

2
xκx + M2

x) and n = s2
xκx + M2

x and invoke the condition in finding the

expectation of a ratio of correlated random variables in equation (69).

We note that E(Ŝ2
PM) = E(m

n
) is undefined if there is any nonzero probability that n = 0.
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Thus we will calculate E(m
n
|n 6= 0) the expected value of the ratio, conditional n not equaling

zero. This means that

κxs
2
x +M2

x 6= 0 (92)

in order for our proposed estimator to be applicable.
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3.5 Expressions for Bias and Mean Squared Errors of the Pro-

posed and Existing Estimators

Table 1: Summary of Expressions of Statistical Properties (Bias and Mean Squared Er-

rors(MSE))

ESTIMATOR BIAS(.) MEAN SQUARED ERROR(MSE)

s2
y

1−f
n
S2
y{(κx − 1)Ψ1(Ψ1 − λ22−1

κx−1
)} 1−f

n
S4
y{(κy − 1) + (κx − 1)Ψ1(Ψ1 − 2(λ22−1

κx−1
))}

s2
y(
S2
x

s2x
) 1−f

n
S2
y{(κx − 1)Ψ2(Ψ2 − λ22−1

κx−1
)} 1−f

n
S4
y{(κy − 1) + (κx − 1)Ψ2(Ψ2 − 2(λ22−1

κx−1
))}

s2
y(
S2
x+κx
s2x+κx

) 1−f
n
S2
y [({κx − 1})Ψ3(Ψ3 − λ22−1

κx−1
)] 1−f

n
S4
y [{κy − 1}+ {κx − 1}Ψ3(Ψ3 − 2(λ22−1

κx−1
))]

s2
y(
S2
x−Cx

s2x−Cx
) 1−f

n
S2
y(κx − 1){Ψ4(Ψ4 − λ22−1

κx−1
)} 1−f

n
S4
y{(κy − 1) + Ψ4(κx − 1)(Ψ4 − 2(λ22−1

κx−1
))}

s2
y(
S2
x−κx
s2x−κx

) 1−f
n
S2
y(κx − 1){Ψ5(Ψ5 − (λ22−1

κx−1
))} 1−f

n
S4
y{(κy − 1) + Ψ5(κx − 1)(Ψ5 − 2(λ22−1

κx−1
))}

s2
y(
S2
xκx−Cx

s2xκx−Cx
) 1−f

n
S2
y(κx − 1){Ψ6(Ψ6 − (λ22−1

κx−1
))} 1−f

n
S4
y{(κy − 1) + Ψ6(κx − 1)(Ψ6 − 2(λ22−1

κx−1
))}

s2
y(
S2
xCx−κx
s2xCx−κx ) 1−f

n
S2
y(κx − 1){Ψ7(Ψ7 − (λ22−1

κx−1
))} 1−f

n
S4
y{(κy − 1) + Ψ7(κx − 1)(Ψ7 − 2(λ22−1

κx−1
))}

s2
y(
S2
x+Mx

s2x+Mx
) 1−f

n
S2
y(κx − 1){Ψ8(Ψ8 − (λ22−1

κx−1
))} 1−f

n
S4
y{(κy − 1) + Ψ8(κx − 1)(Ψ8 − 2(λ22−1

κx−1
))}

s2
y(
S2
x+Q1

s2x+Q1
) 1−f

n
S2
y(κx − 1){Ψ9(Ψ9 − (λ22−1

κx−1
))} 1−f

n
S4
y{(κy − 1) + Ψ9(κx − 1)(Ψ9 − 2(λ22−1

κx−1
))}

s2
y(
S2
x+Q3

s2x+Q3
) 1−f

n
S2
y(κx − 1){Ψ10(Ψ10 − (λ22−1

κx−1
))} 1−f

n
S4
y{(κy − 1) + Ψ10(κx − 1)(Ψ10 − 2(λ22−1

κx−1
))}

s2
y(
S2
xCx+Mx

s2xCx+Mx
) 1−f

n
S2
y(κx − 1){Ψ11(Ψ11 − (λ22−1

κx−1
))} 1−f

n
S4
y{(κy − 1) + Ψ11(κx − 1)(Ψ11 − 2(λ22−1

κx−1
))}

s2
y

[
S2
xρxy+Q3

s2xρxy+Q3

]
1−f
n
S2
y

[
(κx − 1)Ψ12

(
Ψ12 −

(
λ22−1
κx−1

))]
1−f
n
S4
y

[
(κy − 1) + Ψ12(κx − 1)

(
Ψ12 − 2

(
λ22−1
κx−1

))]
s2
y

[
S2
x+(TM+Qa)
s2x+(TM+Qa)

]
1−f
n
S2
y

[
(κx − 1)Ψ13

(
Ψ13 −

(
λ22−1
κx−1

))]
1−f
n
S4
y

[
(κy − 1) + Ψ13(κx − 1)

(
Ψ13 − 2

(
λ22−1
κx−1

))]
s2
y{

S2
xκx+M2

x

s2xκx+M2
x
} 1−f

n
S2
y(κx − 1)%∗{%∗ − (λ22−1)

(κx−1)
} 1−f

n
S4
y{(κy − 1) + %∗(κx − 1)(%∗ − 2 (λ22−1)

(κx−1)
)}

In general the Bias and MSE of existing modified ratio estimators tj, j = 1, 2, ..., 13 is

Bias(tj) = 1−f
n
S2
y(κx − 1){Ψj(Ψj − (λ22−1

κx−1
))}

MSE(tj) = 1−f
n
S4
y [(κy − 1) + Ψj(κx − 1)(Ψj − 2(λ22−1

κx−1
))]

where

Ψ1 = 0; Ψ2 = 1; Ψ3 = S2
x

S2
x+κx

; Ψ4 = S2
x

S2
x−Cx

; Ψ5 = S2
x

S2
x−κx

;

Ψ6 = S2
xκx

S2
xκx−Cx

; Ψ7 = S2
xCx

S2
xCx−κx ; Ψ8 = S2

x

S2
x+Mx

; Ψ9 = S2
x

S2
x+Q1

;

Ψ10 = S2
x

S2
x+Q3

; Ψ11 = CxS2
x

CxS2
x+Mx

; Ψ12 = S2
xρxy

S2
xρxy+Q3

; Ψ13 = S2
x

S2
x+TM+Qa

.
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CHAPTER FOUR

4 RESULTS AND DISCUSSION

4.1 Theoretical Evaluation

The theoretical conditions under which the proposed modified ratio type estimators Ŝ2
PM

is more efficient than the other existing estimators tj, j = 1, 2, ..., 13, from MSE of tj, j =

1, 2, ..., 13 given to first degree of approximation in general as

MSE(tj) =
1− f
n

S4
y [(κy − 1) + Ψj(κx − 1)(Ψj − 2(

λ22 − 1

κx − 1
))] (93)

Using equation (89) and (93) we have that MSE(Ŝ2
PM) < MSE(tj),

if %∗(%∗ − 2(λ22−1
κx−1

)) < Ψj(Ψj − 2(λ22−1
κx−1

))

4.2 Numerical Studies

Using the data from Population I (Source:(Murthy, 1967, p.228)), Population II (source:(Daroga

and Chaudhary, 1986, p.177)) and Population III (source:(Cochran, 1977, p.152)). We assess

the performance of the proposed estimator when simple random sampling without replace-

ment (SRSWOR) scheme is used with that of sample variance and existing estimators.We

apply the proposed and existing estimators to this data set and the data summaries are given

below:

Population I(Dataset in Appendix I)

X= Fixed capital

Y= output of 80 factories

N = 80, n = 20 X̄ = 11.265, Ȳ = 51.826,

S2
x = 71.504, S2

y = 336.979, Sxy = 146.068,

λ04 = κx = 2.866, λ40 = κy = 2.267, λ22 = 2.221,
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ρxy = 0.941, Cy = 0.354, Cx = 0.751

Mx = 10.300 Q1 = 5.150 Q3 = 16.975

TM = 10.68125, Qa = 11.0625.

Population II

X = acreage under wheat crop in 1973

Y = acreage under wheat crop in 1974 ,

N = 70, n = 25 X̄ = 175.2671, Ȳ = 96.700,

S2
x = 19840.7508, S2

y = 3686.1898,

λ04 = κx = 7.0952, λ40 = κy = 4.7596, λ22 = 4.6038,

ρxy = 0.7293, Cy = 0.6254, Cx = 0.8037

Mx = 72.4375 Q1 = 80.1500 Q3 = 225.0250.

TM = 112.5125, Qa = 152.5875.

Population III(Data Set in Appendix II)

X = Total number of inhabitants in the 196 cities in 1920

Y = Total number of inhabitants in the 196 cities in 1930 ,

N = 49, n = 20 X̄ = 98.6765, Ȳ = 116.1633,

S2
x = 10603.0063, S2

y = 9767.0922,

λ04 = κx = 5.9878, λ40 = κy = 4.9245, λ22 = 4.6977,

ρxy = 0.6904, Cy = 0.8508, Cx = 1.0435

Mx = 64.0000 Q1 = 43.0000 Q3 = 120.0000

TM = 72.75, Qa = 81.5.
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Using these summary values to obtain the Bias and MSE of the existing estimators and our

proposed estimator we have

4.2.1 Bias and Mean Squared Errors

Table 2: Bias and Mean Squared Errors(MSE) of Existing and Proposed Estimators for

Population Variance

Population I Population II Population III

ESTIMATOR BIAS(.) MSE BIAS(.) MSE BIAS(.) MSE

t1 = s2
y 0 5395.289 0 1313625.261 0 11078650

t2 = s2
y(
S2
x

s2x
) 8.151 3276.421 236.154 924946.481 372.873 4282126

t3 = s2
y(
S2
x+κx
s2x+κx

) 6.956 2740.349 235.656 924324.375 371.849 4278020

t4 = s2
y(
S2
x−Cx

s2x−Cx
) 8.512 3006.373 236.187 925017.011 373.051 4282843

t5 = s2
y(
S2
x−κx
s2x−κx

) 9.518 3186.399 236.445 925569.577 373.898 4286246

t6 = s2
y(
S2
xκx−Cx

s2xκx−Cx
) 8.279 2965.067 236.159 924956.421 372.903 4282246

t7 = s2
y(
S2
xCx−κx
s2xCx−κx ) 10.002 3275.722 236.517 925721.916 373.856 4286074

t8 = s2
y(
S2
x+Mx

s2x+Mx
) 4.530 2377.418 233.201 918641.426 362.038 4238932

t9 = s2
y(
S2
x+Q1

s2x+Q1
) 6.126 2609.91 232.889 917976.121 365.567 4252936

t10 = s2
y(
S2
x+Q3

s2x+Q3
) 2.934 2181.488 227.099 905689.896 352.748 4202378

t11 = s2
y(
S2
xCx+Mx

s2xCx+Mx
) 3.656 2314.033 232.485 917116.922 362.485 4240702

t12 = s2
y

[
S2
xρxy+Q3

s2xρxy+Q3

]
2.715 2158.326 223.826 898785.405 343.983 4168313.595

t13 = s2
y

[
S2
x+(TM+Qa)
s2x+(TM+Qa)

]
2.034 2093.625 225.523 902361.029 347.151 4180578.085

Ŝ2
PM = s2

y{
S2
xκx+M2

x

s2xκx+M2
x
} 0.708 1993.270 207.653 865134.030 268.201 3892407

From the above table Mean Squared Errors it is clear that our proposed modified ratio type

population variance estimator Ŝ2
PM has the least Mean Squared Error(MSE).
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4.2.2 Efficiency Comparison

The performance of the proposed modified ratio type variance estimator evaluated against the

usual unbiased estimator s2
y and the existing estimators tj, j = 1, 2, ..., 13 using real popula-

tion from (Murthy, 1967, p.228), (source:Daroga and Chaudhary (1986)) and (source:(Cochran,

1977, p.152)).

We have computed the Percent Relative Efficiencies (PREs) of the estimators tj, j = 1, 2, ..., 13

using the formulae

PRE(tj, s
2
y) =

MSE(s2
y)

MSE(tj)
× 100 (94)

= {
(1−f)
n
S4
y(κy − 1)

1−f
n
S4
y [{κy − 1}+ {κx − 1}Ψj(Ψj − 2(λ22−1

κx−1
))]
} × 100 (95)

=
(κy − 1)

[{κy − 1}+ {κx − 1}Ψj(Ψj − 2(λ22−1
κx−1

))]
× 100 (96)

Then PRE for our proposed estimator is subsequently,

PRE(Ŝ2
PM , s

2
y) =

MSE(s2
y)

MSE(Ŝ2
PM)

× 100 (97)

=
(1−f)
n
S4
y(κy − 1)

1−f
n
S4
y{(κy − 1) + %∗(κx − 1)(%∗ − 2 (λ22−1)

(κx−1)
)}
× 100 (98)

=
(κy − 1)

{(κy − 1) + %∗(κx − 1)(%∗ − 2 (λ22−1)
(κx−1)

)}
× 100 (99)
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Using formula (96) and (99) we computed the Percent Relative Efficiencies and presented in

table 3 below

Percent Relative Efficiencies

Table 3: Percent Relative Efficiencies(PRE) of Existing and Proposed Estimators

ESTIMATOR POPULATION I POPULATION II POPULATION III

t1 100 100 100

t2 164.67 142.02 258.72

t3 196.88 142.12 258.97

t4 179.46 142.01 258.66

t5 169.32 141.93 258.47

t6 181.96 142.02 258.71

t7 164.71 141.90 258.48

t8 226.94 143.00 261.35

t9 206.72 143.10 260.49

t10 247.32 145.04 263.63

t11 233.16 143.23 261.25

t12 249.98 146.16 265.78

t13 257.70 145.58 265.00

Ŝ2
PM 270.68 151.84 284.622

From the findings summarized in the table above it is clear that our proposed estimator Ŝ2
PM

performed best, that is it has the highest PRE among all the other estimators.
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CHAPTER FIVE

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this study we have suggested a modified ratio type estimator of population variance S2
y

of the study variable y using known population parameters of the auxiliary variable x, the

coefficient of kurtosis and the median. The bias and mean squared error of the proposed es-

timator has been obtained to first order degree of approximation and consequently compared

with that of the usual unbiased estimator and the estimators due to Isaki (1983), Kadilar

and Cingi (2006),Subramani and Kumarapandiyan (2013), Subramani and Kumarapandiyan

(2012a), Subramani and Kumarapandiyan (2012b), Upadhyaya and Singh (1999) Khan and

Shabbir (2013b) and Bhat et al. (2017).

We have also assessed the performance of our proposed estimator using known natural pop-

ulation data sets and found out that the performance of our proposed estimator is better

than the other existing estimators for the data sets by comparing their Percent Relative Ef-

ficiencies. Based on the results of our studies, it is evident that our proposed estimator has

the highest Percent Relative Efficiency.

5.2 Recommendations

We recommend that our proposed estimator can be applied to practical applications, where

knowledge of population parameters of auxiliary variable positively correlated with study

variable is available. We further recommend that our proposed estimator can be improved

by extending the number of Taylor’s series terms to be more than order one or be protracted

to Stratified Sampling Scheme.
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