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Abstract

The Exponentiated Generalized Weibull distribution is a probability distribution which

generalizes the Weibull distribution, introducing two more shapes parameters to best

adjust the non-monotonic failure rate. The distribution was derived by Oguntunde et al.

in 2015 based on Codeiro et al.’s paper on the exponentiated generalized class of distri-

bution. The parameters of the new probability distribution function are estimated by the

maximum likelihood method under progressive type II censored data via Expectation

Maximization (EM) algorithm. The performance of estimators are investigated using

the Root Mean Square Error RMSE based on simulation for various degrees of censor-

ing and sample sizes. Application to real data is included. It is observed that RMSE

decreases with increasing sample size, and also with decreasing censored sample size.
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Chapter 1

Introduction

This chapter gives the background of the study by introducing the Weibull distribution,

the statement of the problem, justification of the study, the general and specific objec-

tives, scope of the study, significance of the study and definitions of key terms.

1.1 Background of study

The Weibull distribution, named after Waloddi Weibull (1951), is a continuous proba-

bility distribution. The Weibull distribution is a special case of the Generalized Extreme

Value (GEV) distribution in the same way as the Gumbel distribution or the Fréchet

distribution. The probability density function of the Weibull distribution with two pa-

rameters say α (shape parameter) and β (scale parameter) is given by:

f(x;α, β) =
α

β

(
x

β

)α−1

e−(x/β)α (1.1)

where x > 0, α > 0, β > 0.

The term Weibull distribution covers a whole family of distributions, some of them

appearing in physics as a consequence of certain hypotheses. This in particular is the
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case of the exponential distribution and the Rayleigh distribution. In fact by letting

α = 1 and β =
1

λ
in (1.1) we get the exponential distribution density function

f(x;λ) = λe−(λx) (1.2)

Likewise if α = 2 and β = b
√

2 we obtain the Rayleigh distribution density function

f(x; b) =
x

b2
e−(x2/2b2) (1.3)

The Weibull distribution is often used in the field of lifetime analysis, thanks to its

flexibility. In order to increase that flexibility many authors have proposed several gen-

eralisations of the Weibull distribution, like Mudholkar and Srivastava (1993) , Bour-

guignon et al. (2014), Alshawarbeh (2011), and also Oguntunde et al. (2015) who

introduced the Exponentiated Generalized Weibull (EGW) distribution.

1.2 Problem statement

Over the past years Weibull distribution has been used extensively to model survival

data due to its flexibility. However, some of the data that arise in survival analysis re-

quire distributions with non-monotonic failure rate, see for example Lai et al (2001). A

case in point is the human mortality cycle that exhibits a bathtub failure rate which is

non-monotonic. Weibull distribution is not useful for modeling phenomenon with non-

monotone failure rate, see for example Mahmoudi and Sepahdar (2013). This phene-

menon can be modelled adequately by the Exponentiated Generalized Weibull (EGW)

distribution developed by Oguntunde et al. (2015).

Procedure of survival analysis past any time-point usually becomes complicated due

to the presence of censored observations. Ignoring these censored observations results

in loss of potentially valuable information. It is therefore important to carry out a full
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survival analysis which will incorporate all the information contained in these censored

observations.

There is limited work on the maximum likelihood estimation for the parameters of the

Exponentiated Generalized Weibull under progressive type II censoring.

Therefore in this study we develop maximum likelihood estimators for the parameters

of the Exponentiated Generalized Weibull (EGW) distribution introduced by Oguntunde

et al. (2015) under progressive type II censored data.

1.3 Justification of the study

In Oguntunde et al. (2015), the Exponentiated Generalized Weibull distribution has

been defined and also some mathematical properties of the new distribution have been

investigated such as: the limiting behaviour of the probability density function and the

cumulative distribution function, the reliability analysis, expression of the moments, the

quantile function and the order statistics. These were done for full sample with no cen-

soring. Up to now nobody has attempted to obtain the Maximum Likelihood Estimators

of the Exponentiated Generalized Weibull (EGW) distribution under progressive type II

censored data.

1.4 Objective of the study

1.4.1 General objective

The general objective of this study was to develop maximum likelihood estimators for

the parameters of the Exponentiated Generalized Weibull distribution under progressive
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type II censored data.

1.4.2 Specific objectives

In order to achieve the main objective stated above we have the following specific ob-

jectives:

1. Derive the maximum likelihood estimators of the parameters of the Exponentiated

Generalized Weibull distribution under progressive type II censoring via EM algorithm.

2. Investigate the performance of the MLEs based on simulation for various degrees of

censoring and sample sizes using RMSE.

3. Apply the estimation procedure on real data.

1.5 The Scope of the study

The study only considered the maximum likelihood estimation of the Exponentiated

Generalized Weibull based on progressive type II censored data. In other words statisti-

cal inference on the parameters was not considered.

1.6 Significance of the study

The results of this study will go a long way in making Exponentiated Generalized

Weibull (EGW) to be applicable in situation where progressive type II censoring data

are encountered, thus contributing to knowledge in the are of survival and reliability

analysis.
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1.7 Definition of key terms

1.7.1 Lifetime analysis

A lifetime is defined as a positive random variable T , generally the time elapsing be-

tween two events.

Examples of events: death, breakdown, entry into unemployment, illness.

The Lifetime analysis is the study of the delay of the occurrence of the event under

study.

1.7.2 Censored data

It is data some of which are only known with a lower or upper bound and not a precise

value.

1.7.3 Type I censored data

The so-called Type I censoring describes the situation where a test ends at a certain pe-

riod, and we know that the remaining objects (individuals) have not yet failed.

For example, we start with 100 light bulbs and end the experience after a certain time.

In this case, the censored time is often fixed, and the number of failed objects (individ-

uals) is a random variable.

1.7.4 Type II censored data

The experiment continues until a fixed proportion of objects (individuals) has failed.

For example, we stop the experiment after exactly 50 light bulbs have failed.

In this case, the number of failed objects (individuals) is fixed, and time is a random

variable.
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1.7.5 Progressive type II censored data

This is a type II censoring in which at each failure a certain number of objects are

removed from the remaining data set.

1.7.6 Scale parameter

In Probability and Statistics Theory, a scale parameter is a parameter that governs the

flattening of a parametric family of probability distributions. It is mainly a multiplicative

factor.

1.7.7 Shape parameter

A shape parameter is a parameter of a probability distribution that is neither a posi-

tion parameter nor a scale parameter. Such a parameter governs only the shape of the

distribution.

1.7.8 Failure rate

The failure rate is an expression of the reliability of equipment and each of their com-

ponents. It is also called hazard rate or hazard function. It is the frequency at which a

component or system fails.

1.7.9 Bathtub shape

That is a shape that has steep sides with a flat bottom, describing a curve that has three

parts; decreasing part, constant part and increasing part.
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1.7.10 Baseline (parent) distribution

It is an existing distribution that is being generalized or modified. Here our baseline

distribution is the Weibull distribution.
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Chapter 2

Literature Review

This chapter focuses on reviewing the work done by previous researchers that are rele-

vant to the problem of study. The main goal of this chapter is to offer an overall view on

the approaches developed so far in the estimation of the parameters of generalized distri-

butions of the Weibull distribution based on censored data or complete data. This helps

to gain an insight of our research while avoiding repetition of the work and mistakes

already done by others.

2.1 The Weibull distribution

Various probability density functions have been proposed to perform statistical analysis

of lifetime data. The Weibull distribution is one of the most widely used distributions in

the analysis of lifetimes data. It was introduced by the French Mathematicians Maurice

René Fréchet (1928). Indeed in the 1920s Fréchet developed a distribution to which he

gave his name; Fréchet distribution, as an extreme value distribution. This distribution

is in fact equal to the reciprocal of the Weibull random variable. The work of Fréchet

was used by Rosin (1933). The latter applied it to describe the particle size distribution
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generated by grinding, milling and crushing operations of materials. This probability

distribution has been widely used as a probabilistic model in studies on lifetimes. Mud-

holkar and Srivastava (1993) introduced the exponentiated Weibull to analyse bathtub

failure rate data which we know cannot be handled well by the regular Weibull for its

monotonicity. Based on Type-I and Type-II generalized progressive hybrid censoring

schemes, Mudholkar and Srivastava derived the maximum likelihood estimators and

Bayes estimators for the unknown parameters of exponentiated Weibull lifetime model.

The approximate asymptotic variance-covariance matrix and approximate confidence

intervals based on the asymptotic normality of the classical estimators were obtained.

Independent non-informative types of priors are considered for the unknown parame-

ters to develop the Bayes estimators and corresponding Bayes risks under a squared

error loss function. Proposed estimators cannot be expressed in closed forms and can

be evaluated numerically by some suitable iterative procedure. Finally, one real data

set is analyzed for illustrative purposes. Also Zhang and Xie (2011) worked on bath-

tub failure data using the truncated Weibull. The characteristics and application of the

truncated Weibull distribution were studied in his paper. The distribution is applicable

to the situation where the test data are bounded in an interval because of test conditions,

cost and other restrictions. An important property of the truncated Weibull distribution

is that it can have bathtub-shaped failure rate function. In his paper, the parametric

analysis and parameter estimation methods of the distribution were investigated. Both

the graphical approach and the maximum likelihood estimation were considered. The

applicability of the distribution to modeling lifetime data was illustrated by an example

and the results of comparisons to other competitive models in modeling the given data

were also presented. Moreover, the possible application of the distribution to modeling

component or system failure was discussed. Ghnimi and Gasmi (2014) have given esti-
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mation of the parameters of the exponentiated Weibull and the additive Weibull, which

are two specific generalization of the Weibull. Their paper gives a study on the perfor-

mance of two specific modifications of the Weibull distribution which are the exponen-

tiated Weibull distribution and the additive Weibull distribution. These shows how the

Weibull distribution has been used since it has been proposed by the Swedish engineer

and mathematician Ernst Hjalmar Waloddi Weibull (1887-1979), the Weibull distribu-

tion is a probability distribution that is widely used to model lifetime data. Because

of its flexibility, some modifications of the Weibull distribution have been made from

several researches in order to best adjust the non-monotonic shapes.

2.2 The Exponentiated Generalized Weibull distribution

Cordeiro, et al. (2013) introduced the exponentiated generalized class of distribution

which is more general than the two classes of Lehmann (1953) alternative, it is a combi-

nation of the Lehmann type I and type II alternatives. Indeed, for any baseline (or parent)

distribution it is possible to define the corresponding Exponentiated Generalized family

of distribution. Cordeiro, et al. (2013) discussed four special models namely the Expo-

nentiated Generalized Fréchet, the Exponentiated Generalized Normal, the Exponenti-

ated Generalized Gamma and the Exponentiated Generalized Gumbel. They proposed a

new method of adding two parameters to a continuous distribution that extends the idea

first introduced by Lehmann and studied by Nadarajah and Kotz (2006). This method

leads to a new class of exponentiated generalized distributions that can be interpreted

as a double construction of Lehmann alternatives. Some special models are dis- cussed.

We derive some mathematical properties of this class including the ordinary moments,

generating function, mean deviations and order statis- tics. Maximum likelihood esti-
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mation is investigated and four applications to real data are presented. In Nadarajah

and Kotz (2016) paper, they introduced four more exponentiated type distributions that

generalize the standard gamma, standard Weibull, standard Gumbel and the standard

Fréchet distributions in the same way the exponentiated exponential distribution gener-

alizes the standard exponential distribution. A treatment of the mathematical properties

is provided for each distribution. Oguntunde et al. (2015) have discussed the special

case of the Exponentiated Generalized Weibull distribution by using the Weibull distri-

bution as baseline distribution. In his article, a generalization of the Weibull distribution

is being studied in some details. The new model is referred to as the Exponentiated

Generalized Weibull distribution. The aim is to increase the flexibility of the Weibull

distribution. Methods: The concepts introduced in the Exponentiated Generalized fam-

ily of distributions due to Cordeiro were employed. Findings: Some basic mathematical

properties of the resulting model were identified and studied in minute details. Mean-

while, estimation of model parameters was performed using the maximum likelihood

method. Application/Improvement: The Exponentiated Generalized Weibull distribu-

tion was presented as a competitive model that would be useful in modeling real life

situations with inverted bathtub failure rates. The proposed distribution has four param-

eters (three shape parameters and one scale parameter). The work of Oguntunde et al.

(2015) is limited on the mathematics properties of the distribution like the moments,

the limiting behaviour of the functions (pdf and cdf), the reliability analysis, and the

quantile function. However Oguntunde et al. (2015) did not derive the estimation of

the distribution parameters under censored data. In this study the MLEs of the new

distribution will be derived using progressive type II censored data via EM algorithm.
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2.3 The progressive type II censoring

Several researchers have worked on progressive censoring, see for example Herd (1956),

Cohen (1966), Mann (1969), and Thomas and Wilson (1972). In his PhD thesis Herd

defined what we call progressive type II censored data. The method of maximum like-

lihood is employed to estimate the parameters for the exponential, the normal, and the

gamma distributions. These estimates are, in certain cases, difficult to obtain. They re-

quire iteration; therefore, certain practical limitations exist for their use. A new method

of solving the likelihood equations for the normal distribution is introduced, and a delta

function is tabulated to facilitate the solution. An extension of the censorship proce-

dure to another general type is considered for estimation by the method of maximum

likelihood. The non-parametric estimate of the probability of surviving (quantiles) is

obtained, and a general method of 85 estimation based on the quantiles is presented,

which will yield reasonable results when the method of maximum likelihood cannot

be used, and which will be reasonably efficient in comparison to the maximum likeli-

hood estimates when these are available for comparison. It is shown that the method

of estimation from the quantiles yields the maximum-likelihood estimate for the expo-

nential distribution for all rules of censorship and the uniform distribution for a random

sample. The quantile method is asymptotically equivalent to the methods of maximum

likelihood for the parameters of the normal distribution. The method yields a simple

result (best linear unbiased estimate) for the uniform distribution with single or multi-

censorship. This is an advantage over the maximum-likelihood method, which does

not furnish a simple result. The results are illustrated by a number of examples taken

from industrial experiments. It is possible, through the techniques presented, to utilize

small samples such as exist in industry, and also, although curtailment exists, to have
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assurance of a certain number of complete ”life times” from which to make estimates

even where no prior knowledge –other than the distributional form – exists on the ”life

times” of the items tested. Montanari and Cacciari (1988) illustrated an application of

progressive Type-II censoring on aging tests on solid insulating materials. The prob-

lem of evaluating the time-to-failure percentiles in progressively-censored tests on solid

insulating materials is addressed in their paper. Statistical methods to estimate the pa-

rameters of the Weibull distribution (and their confidence limits) are examined on the

basis of the results of aging with combined thermal-electrical stresses carried out on

XLPE insulated cable models. These tests are performed at the same stresses on sam-

ples more than 1 m long and subjected to progressive censoring of aging times, or on

short specimens about 20 cm long and subjected to complete, or singly-censored, life

tests. This procedure allows the effectiveness of progressively-censored tests in estimat-

ing life percentiles to be verified, and the accuracy of the methods to be compared.

Balakrishnan and Aggarwala (2000) have excellent text on progressive censoring.

The estimation of parameters from lifetime distributions based on progressive Type-II

censoring has been studied by several authors among them Balakrishnan and Kannan

(2001), Ng, et al. (2002), Mousa and Jaheen (2002), Balakrishnan, et al. (2003) and

Soliman (2005). Balakrishnan and Kannan used the logistic distribution in their paper.

The logistic distribution has been widely used as a growth model in many problems.

The logistic model has often been selected as an alternative to the normal because of the

similarity of the two distributions. In their article, they considered the estimation of the

location and scale parameters of the logistic distribution based on progressively Type-II

censored samples. The maximum likelihood method yielded equations that do not pro-

vide explicit solutions under any censoring scheme. They used an approximation of the

cumulative distribution function (cdf) that leads to simplified likelihood equations which
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yielded explicit estimators. They examined numerically the bias and mean squared error

(MSE) of the maximum likelihood estimators (MLEs) and the approximate estimators

and showed that the approximation provides estimators that are almost as efficient as

the MLEs. The probability coverages of the pivotal quantities (for location and scale

parameters) based on asymptotic normality are shown to be unsatisfactory, especially

when the effective sample size is small. They suggested the use of unconditional simu-

lated percentage points for the construction of confidence intervals. They also developed

estimators based on weighted least squares; these estimators may be used as effective

starting values for the numerical algorithm to determine the MLEs, and are themselves

quite efficient when the effective sample size is large. A wide range of sample sizes and

progressive censoring schemes have been considered in this study. Finally, they present

a numerical example to illustrate the methods of inference developed here. In this study

MLE’s are derived for the EGW distribution proposed by Oguntunde et al. (2015) under

progressive type II censored data.
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Chapter 3

Methodology

The methods of estimation of the parameters most used are the method of the maxi-

mum likelihood estimator (MLE) and the method of the moments (MM). The first is

used generally because of its very interesting asymptotic properties, the second for its

simplicity. As far as the Weibull distribution is concerned, other methods have been pro-

posed, in particular graphical estimation methods and methods based on order statistics.

These include the work of Dubey (1967) and Kappenman (1985). In addition, some

authors proposed modifications to the classical methods of maximum likelihood esti-

mator and moments Cohen and Whitten (1982). We consider in this thesis the method

of maximum likelihood for its well-known asymptotic properties Lehmann (1983). The

asymptotic properties of estimators derived from the maximum likelihood method are

well known. In particular, these estimators are consistent, asymptotically unbiased and

best asymptotically normal Lehmann (1983).
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3.1 Exponentiated Generalized Weibull distribution

The Exponentiated Generalized Weibull distribution has been proposed by Oguntunde

et al. (2015) using the Weibull distribution as a baseline distribution in the expontiated

generalized class of distribution introduced by Cordeiro et al. (2013). The cumulative

distribution function and the survival function of the Exponentiated Generalized Weibull

are respectively given by:

F (x; a, b, α, β) =

[
1−

{
e−(x/β)α

}a]b
(3.1)

and

S(x; a, b, α, β) =1− F (x; a, b, α, β)

=1−
[
1−

{
e−(x/β)α

}a]b
(3.2)

where x > 0, a > 0, b > 0, α > 0, β > 0.

The quantile function is given by

q(y; a, b, α, β) = β

(
− 1

a
log(1− y1/b)

)1/α

(3.3)

where y > 0, a > 0, b > 0, α > 0, β > 0.

The Exponentiated Generalized Weibull generalizes the following distributions:

For a = 1 , Generalized Weibull;

For b = 1, Exponentiated Weibull;

For a = b = 1, Weibull distribution;

For a = b = α =1, Exponential distribution.

The probability density function and the hazard function have respectively the following
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expressions:

f(x; a, b, α, β) = ab
α

β

(
x

β

)α−1{
e−(x/β)α

}a[
1−

{
e−(x/β)α

}a]b−1

(3.4)

and

h(x; a, b, α, β) =

ab
α

β

(
x

β

)α−1{
e−(x/β)α

}a[
1−

{
e−(x/β)α

}a]b−1

1−
[
1−

{
e−(x/β)α

}a]b (3.5)

3.2 Maximum likelihood estimation

Let us recall the principle of maximum likelihood estimation (MLE).

We have n observations, considered as the realizations of n independent and identi-

cally distributed random variables (X1, X2, . . . , Xn).

In the framework of a parametric statistical model (P(θ))θ∈Θ, each Xi i = 1, . . . , n

follows a distribution governed by the vector parameter θ ∈ Rd. For example, the Xi’s

can be identically independently normally distributed, N(µ, σ2): then θ = (µ, σ2), and

Θ = R2.

The density of Xi is denoted by f(θ : xi), f(xi; θ) or more often f(xi|θ). The

likelihood of the sample is the joint density of X1, X2, . . . , Xn:

Ln(x1, x2, . . . , xn; θ) =
n∏
i=1

f(xi; θ) (3.6)

In the particular case of a discrete distribution, this leads to:

Ln(x1, x2, . . . , xn; θ) = Pθ(X1 = x1, X2 = x2, . . . , Xn = xn) =
n∏
i=1

Pθ(Xi = xi)

(3.7)
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Definition: The maximum likelihood estimator of θ is given by

θ̂ = argmax
θ
Ln(x1, x2, . . . , xn; θ) (3.8)

It is therefore, with a fixed sample, the value of the vector of parameters which

makes the observations obtained as plausible as possible.

For reasons of analytical convenience, it is often preferred to maximize log(Ln)

rather than Ln. The log function being strictly increasing, we get the same value, while

considerably facilitating the calculations since:

logLn(x1, x2, . . . , xn; θ) =
n∑
i=1

log f(xi; θ) (3.9)

and that it is generally more easier to work on a sum rather than on a product.

3.3 The Exponentiated Generalized Weibull and progressive type

II censored data

A type II censored sample is a sample for which only the k smallest observations in a

random sample of m elements are observed (1 6 k 6 m). Type II censoring is often

used in survival analysis, to save time and cost. The type II censored data can be gen-

eralized using progressive scheme. In the progressive type II censoring, after the first

failing item, R1 items are removed from the remaining m− 1 items, then at the second

failing item a R2 items are removed from the remaining m− 2−R1, and so forth. The

experiment stops after some pre-established number of repetitions of this procedure.

A random variable, X has an exponentiated generalized Weibull distribution with

parameter θ = (a, b, α, β), if the probability density function and the survival function
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of X takes respectively the following form:

f(x; a, b, α, β) = ab
α

β

(
x

β

)α−1{
e−(x/β)α

}a[
1−

{
e−(x/β)α

}a]b−1

(3.10)

and

S(x; a, b, α, β) =1− F (x; a, b, α, β)

=1−
[
1−

{
e−(x/β)α

}a]b
(3.11)

with x > 0, a > 0, b > 0, α > 0, β > 0.

Let (X1, R1), (X2, R2), . . . , (Xk, Rk), be a progressively type II censored sample,

then X1 < X2 < . . . < Xk. We make the assuption that X1, X2, . . . , Xm, are exponen-

tiated generalized Weibull. A number k < m is determined and the censoring scheme

(R1, R2, . . . , Rk) withRi > 0 and
∑k

i=1 Ri+k = m is satisfied. The likelihood function

is expressed as (Cohen 1963):

L(x; a, b, α, β) = c
k∏
i=1

f(xi; a, b, α, β)

(
S(xi; a, b, α, β)

)Ri
(3.12)

where

c = m(m−R1 − 1)(m−R1 −R2 − 2) . . . (m−R1 − . . .−Rk−1 − k + 1),

f(xi; a, b, α, β) and S(xi; a, b, α, β) are respectively the exponentiated generalized Weibull

probability density and survival functions.
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3.4 Expectation maximization algorithm (EM-algorithm)

3.4.1 Principle

The EM-algorithm for Expectation-Maximization algorithm is an iterative algorithm

due to Dempster, et al. (1977). It is a parametric estimation method within the general

framework of maximum likelihood.

When the only available data do not allow the estimation of the parameters, and (or)

the likelihood expression is analytically impossible to maximize, the EM-algorithm can

be a solution. Roughly and vaguely, it aims to provide an estimator when this impossi-

bility results from the presence of hidden or missing data or rather, when the knowledge

of these data would make it possible to estimate the parameters.

The EM-algorithm derives its name from the fact that at each iteration it operates

two distinct steps:

• The word ”Expectation”, often referred to as ”E-step”, proceeds as its name implies,

to the estimation of the unknown data, knowing the observed data and the value of the

parameters determined at the previous iteration;

• The word ”maximization”, or ”M-step”, then proceeds to the maximization of the

likelihood, now made possible by using the estimation of the unknown data completed

in the preceding step (E-step), and updates the value of the parameter(s) for the next

iteration.

In short, the EM-algorithm proceeds according to an extremely natural mechanism:

if there is an obstacle to apply the MLE method, this obstacle is simply blown up and

then this method is applied.
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The EM algorithm ensures that the likelihood increases with each iteration, which

leads to increasingly ”correct” estimators.

3.4.2 The iteration

To formalize somewhat what is stated in the above section:

• We have observations identically independently distribution X = (X1, X2, . . . , Xn)

of likelihood denoted P(X|θ);

•Maximizing logP(X|θ) is impossible;

•We consider hidden data Z = (Z1, . . . , Zn) whose knowledge would make it possible

to maximize the ”likelihood of complete data”, logP(X,Z|θ);

• Since these data Z are not known, we estimate the likelihood of the complete data tak-

ing into account all the known information: the estimator is naturally EZ|X,θm [logP(X, z|θ)]

(”E-Step” of the algorithm);

• Finally, this estimated likelihood is maximized to determine the new value of the pa-

rameter (” M-step” of the algorithm).

Thus, the passage from the iterationm to the iterationm+1 of the algorithm consists

in determining:

θ̂m+1 = argmax
θ

EZ|X,θ̂m [logP(X, z|θ)] (3.13)
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Chapter 4

Results and discussions

The results obtained in this study are presented in this chapter; it includes the complete

log-likelihood expressions, the EM-algorithm, the conditional expectations, derivations

of the complete log-likelihood, simulation study, statistical table, application to real

data. Some algorithm for the execution of the analyses in R software are provided in

Appendix.

4.1 Parameters estimation

4.1.1 The model

Let us assume that we have n independent variables in a trial, and the orderedm failures

are observed under the progressive type-II censoring plan R = (R1,. . . , Rm), where

Rj ≥ 0 for j = 1, . . . ,m and
∑m

j=0 Rj +m = n. Let the observed and censored data be

respectively Y = (Y1, . . . , Ym) and Z = (Z1, . . . , Zm), where Zj = (Zj1, . . . , ZjRj)for

j = 1, . . . ,m. Now let us consider X = (Y, Z) to be the complete data (observed

and censored data together). Then the joint probability that the complete sample (the
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complete data likelihood)is observed is given by

Lc(x, a, b, α, β) =
m∏
j=1

[
f(yj, a, b, α, β)

Rj∏
k=1

f(zjk, a, b, α, β)

]
, (4.1)

(Ng et al 2002).

From which we get the following log-likelihood by using (3.10)

logLc(x, a, b, α, β) =n log a+ n log b+ n logα− n log β + (α− 1)
m∑
j=1

log

(
yj
β

)

− a
m∑
j=1

(
yj
β

)α
+ (b− 1)

m∑
j=1

log

[
1−

{
e−(yj/β)α

}a]

+ (α− 1)
m∑
j=1

Rj∑
k=1

log

(
zjk
β

)
− a

m∑
j=1

Rj∑
k=1

(
zjk
β

)α

+ (b− 1)
m∑
j=1

Rj∑
k=1

log

[
1−

{
e−(zjk/β)α

}a]
(4.2)

4.1.2 EM-Algorithm

E-step

In oder to tackle the E-step the conditional expectation of the previous log-likelihood

knowing the observed sample Y = (y1, y2, . . . , ym) is computed. Denote this by Q(θ)

where
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θ = (a, b, α, β) is the vector of parameters.

Q(θ) =n log a+ n log b+ n logα− n log β + (α− 1)
m∑
j=1

log

(
yj
β

)

− a
m∑
j=1

(
yj
β

)α
+ (b− 1)

m∑
j=1

log

[
1−

{
e−(yj/β)α

}a]

+ (α− 1)
m∑
j=1

Rj∑
k=1

Eθ
(

log

(
zjk
β

)
|zjk > yj

)
− a

m∑
j=1

Rj∑
k=1

Eθ
((

zjk
β

)α
|zjk > yj

)

+ (b− 1)
m∑
j=1

Rj∑
k=1

Eθ
(

log

[
1−

{
e−(zjk/β)α

}a]
|zjk > yj

)
(4.3)

Thus, to facilitate the E-step, the conditional distribution of Z for given Y and the

current value of the parameters, needs to be determined.

In Ng et al (2002) the conditional distribution is given by

fZ|Y (zjk|Y = y, θ) =
f(zjk, θ)

1− F (yj, θ)
, zjk > yj (4.4)

Let us set A(θ, yj) = Eθ
(

log

(
zjk
β

)
|zjk > yj

)
, B(θ, yj) = Eθ

((
zjk
β

)α
|zjk >

yj

)
and C(θ, yj) = Eθ

(
log

[
1−

{
e−(zjk/β)α

}a]
|zjk > yj

)
.

Using (4.4) we can obtain the expressions for A(θ, yj), B(θ, yj) and C(θ, yj) as follow.

A(θ, yj) = Eθ
(

log

(
zjk
β

)
|zjk > yj

)
=

1

1− F (yj, θ)

∫ ∞
yj

log

(
zjk
β

)
f(zjk, θ)dzjk

Replacing the pdf by its expression (3.10) and applying the following binomial series

(1 + x)µ =
∑∞

i=o

(
µ
i

)
xi, µ ∈ R on

[
1−

{
e−(zjk/β)α

}a]b−1

we get [
1−

{
e−(zjk/β)α

}a]b−1

=
∞∑
v=0

(
b− 1

v

)
(−1)ve−a(v+1)(zjk/β)α
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Hence

A(θ, yj) =
abα

β

[
1− F (yj, θ)

] ∫ ∞
yj

log

(
zjk
β

)(
zjk
β

)α−1 ∞∑
v=0

(
b− 1

v

)
(−1)ve−a(v+1)(zjk/β)αdzjk

Due to the Monotone Convergence Theorem, Gallouët and Herbin (2013) we can inter-

changed the integral and the sum.

A(θ, yj) =
abα

β

[
1− F (yj, θ)

] ∞∑
v=0

(
b− 1

v

)
(−1)v

∫ ∞
yj

log

(
zjk
β

)(
zjk
β

)α−1

e−a(v+1)(zjk/β)αdzjk

Now let x = (zjk/β)α, then(
zjk
β

)α−1

= x(α−1)/α and
dzjk
dx

=
β

α
x(1−α)/α

Thus

A(θ, yj) =
ab

α

[
1− F (yj, θ)

] ∞∑
v=0

(
b− 1

v

)
(−1)v

∫ ∞
(yj/β)α

log(x)e−a(v+1)xdx

Using integration by parts we get

A(θ, yj) =
ab

α

[
1− F (yj, θ)

] ∞∑
v=0

(
b− 1

v

)
(−1)v

[
log(yj/β)

αa(v + 1)
e−a(v+1)(yj/β)α +

∫ ∞
(yj/β)α

e−a(v+1)x

x
dx

]

Let z = a(v + 1)x then∫ ∞
(yj/β)α

e−a(v+1)x

x
dx =

∫ ∞
a(v+1)(yj/β)α

z−1e−zdz

= Γ(0, a(v + 1)(yj/β)α)

where Γ is upper incomplete gamma function.

Finally we get

A(θ, yj) =
ab

α

[
1− F (yj, θ)

] ∞∑
v=0

(
b− 1

v

)
(−1)v

[
log(yj/β)

αa(v + 1)
e−a(v+1)(yj/β)α+Γ(0, a(v+1)(yj/β)α)

]
(4.5)

25



Next we have

B(θ, yj) = Eθ
((

zjk
β

)α
|zjk > yj

)
=

1

1− F (yj, θ)

∫ ∞
yj

(
zjk
β

)α
f(zjk, θ)dzjk

Replacing the pdf by its expression (3.10) and using the binomial series we have[
1−

{
e−(zjk/β)α

}a]b−1

=
∑∞

v=0

(
b−1
v

)
(−1)ve−a(v+1)(zjk/β)α

Which gives

B(θ, yj) =
abα

β

[
1− F (yj, θ)

] ∫ ∞
yj

(
zjk
β

)2α−1 ∞∑
v=0

(
b− 1

v

)
(−1)ve−a(v+1)(zjk/β)αdzjk

=
abα

β

[
1− F (yj, θ)

] ∞∑
v=0

(
b− 1

v

)
(−1)v

∫ ∞
yj

(
zjk
β

)2α−1

e−a(v+1)(zjk/β)αdzjk

Now set x = a(v + 1)(zjk/β)α, then(
zjk
β

)2α−1

=

(
x

a(v + 1)

)(2α−1)/α

and
dzjk
dx

=
β

αa(v + 1)

(
x

a(v + 1)

)(1−α)/α

so that

B(θ, yj) =
ab

1− F (yj, θ)

∞∑
v=0

(
b− 1

v

)
(−1)v

(a(v + 1))2

∫ ∞
a(v+1)(yj/β)α

xe−xdx

Therefore

B(θ, yj) =
ab

1− F (yj, θ)

∞∑
v=0

(
b− 1

v

)
(−1)v

(a(v + 1))2

(
1+a(v+1)(yj/β)α

)
e−a(v+1)(yj/β)α

(4.6)

Also we have

C(θ, yj) = Eθ
(

log

[
1−

{
e−(zjk/β)α

}a]
|zjk > yj

)
=

1

1− F (yj, θ)

∫ ∞
yj

log

[
1−

{
e−(zjk/β)α

}a]
f(zjk, θ)dzjk
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Replacing the pdf by its expression (3.10) and using the followings Taylor series

log(1 + x) =
∞∑
i=1

(−1)i+1

i
xi, x ∈ (−1, 1] (4.7)

and binomial series

(1 + x)µ =
∞∑
i=o

(
µ

i

)
xi, µ ∈ R (4.8)

so that

C(θ, yj) =

abα

β

[
1− F (yj, θ)

] ∫ ∞
yj

(
zjk
β

)α−1 ∞∑
i=0

(−1)2i+1

i
e−ai(zjk/β)α

∞∑
v=0

(
b− 1

v

)
(−1)ve−a(v+1)(zjk/β)αdzjk

=
abα

β

[
1− F (yj, θ)

] ∫ ∞
yj

(
zjk
β

)α−1 ∞∑
i=0

∞∑
v=0

(−1)2i+1

i

(
b− 1

v

)
(−1)ve−a(v+1+i)(zjk/β)αdzjk

=
abα

β

[
1− F (yj, θ)

] ∞∑
i=0

∞∑
v=0

(−1)2i+1

i

(
b− 1

v

)
(−1)v

∫ ∞
yj

(
zjk
β

)α−1

e−a(v+1+i)(zjk/β)αdzjk

Now let x = a(v + i+ 1)(zjk/β)α, then(
zjk
β

)α−1

=

(
x

a(v + i+ 1)

)(α−1)/α

and
dzjk
dx

=
β

αa(v + i+ 1)

(
x

a(v + i+ 1)

)(1−α)/α

Therefore

C(θ, yj) = − ab[
1− F (yj, θ)

] ∞∑
i=0

∞∑
v=0

(−1)v

ia(v + i+ 1)

(
b− 1

v

)∫ ∞
a(v+i+1)(yj/β)α

e−xdx

Hence

C(θ, yj) = − ab[
1− F (yj, θ)

] ∞∑
i=0

∞∑
v=0

(−1)v

ia(v + i+ 1)

(
b− 1

v

)
e−a(v+i+1)(yj/β)α (4.9)
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We therefore obtain an expression for the conditional expectation of the log-likelihood

as

Q(θ) =n log a+ n log b+ n logα− n log β + (α− 1)
m∑
j=1

log

(
yj
β

)

− a
m∑
j=1

(
yj
β

)α
+ (b− 1)

m∑
j=1

log

[
1−

{
e−(yj/β)α

}a]

+ (α− 1)
m∑
j=1

RjA(θ, yj)− a
m∑
j=1

RjB(θ, yj) + (b− 1)
m∑
j=1

RjC(θ, yj)

(4.10)

M-step

In the M-step on the p-th iteration of the EM-algorithm, the value of θ which maximizes

Q(θ, θ(p−1)) = Eθ(logLc(x, θ)|Y, θ(p−1)) will be used as the next estimate θ(p) of θ.

Where θ(p) = (a(p), b(p), α(p), β(p)) is the vector parameters at the p-th iteration p > 1,

and

θ(0) = (a(0), b(0), α(0), β(0)) the initial value of the vector parameters.

Q(θ, θ(p−1)) = Eθ(logLc(x, θ)|Y, θ(p−1))

Therefore, if at the p-th stage the estimate of θ is θ(p−1), then θ(p) can be obtained by

maximizing

Q(θ, θ(p−1)) =n log a+ n log b+ n logα− n log β + (α− 1)
m∑
j=1

log

(
yj
β

)
− a

m∑
j=1

(
yj
β

)α
+ (b− 1)

m∑
j=1

log

[
1−

{
e−(yj/β)α

}a]
+ (α− 1)

m∑
j=1

RjA(θ(p−1), yj)

− a
m∑
j=1

RjB(θ(p−1), yj) + (b− 1)
m∑
j=1

RjC(θ(p−1), yj) (4.11)

Notice that we can write Q(θ, θ(p−1)) as T (θ), a function of θ since θ(p−1) is known

(computed in the previous iteration).

28



Then θ(p) is solution of the following system of equations



∂Q(θ, θ(p−1))

∂a
= 0

∂Q(θ, θ(p−1))

∂b
= 0

∂Q(θ, θ(p−1))

∂α
= 0

∂Q(θ, θ(p−1))

∂β
= 0

(4.12)

which is equivalent to

n

a
−
∑m

j=1

(
yj
β

)α
+ (b− 1)

∑m
j=1

(
yj
β

)α{
e−(yj/β)α

}a
1−

{
e−(yj/β)α

}a −
∑m

j=1 RjB(θ(p−1), yj) = 0

n

b
+
∑m

j=1 log

[
1−

{
e−(yj/β)α

}a]
+
∑m

j=1 RjC(θ(p−1), yj) = 0

n

α
+
∑m

j=1 log

(
yj
β

)
− a

∑m
j=1

(
yj
β

)α
log

(
yj
β

)
+ a(b− 1)

∑m
j=1

log

(
yj
β

)(
yj
β

)α{
e−(yj/β)α

}a
1−

{
e−(yj/β)α

}a
+
∑m

j=1RjA(θ(p−1), yj) = 0

−n+ (α− 1)m

β
+
aα

β

∑m
j=1

(
yj
β

)α
− aα(b− 1)

β

∑m
j=1

(
yj
β

)α{
e−(yj/β)α

}a
1−

{
e−(yj/β)α

}a = 0

(4.13)

From the second equation in the above system we can express b(p) for known a(p), α(p),

β(p) as:

b(p) = − n∑m
j=1 log

[
1−

{
e−(yj/β(p))α

(p)

}a(p)]
+
∑m

j=1 RjC(θ(p−1), yj)

(4.14)
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The expressions for a(p), α(p) and β(p) are not available in closed form.

The solution to the M-step does not exists in closed form. For this case Dempster

et al (1977) defined what is called the generalized EM-algorithm (GEM algorithm) for

which the M-step requires θ(p) to be chosen such that

Q(θ(p), θ(p−1)) > Q(θ(p−1), θ(p−1)) (4.15)

Since we need only to increase the likelihood, we may replace the M-step with a

single iteration of the Newton-Raphson(N-R) algorithm.

4.2 Simulation and remarks

4.2.1 Simulation

For illustration we consider the values of n = 30, m = 20 and θ = (1, 1, 1, 1). Pro-

gressively Type-II censored sample was generated from the Exponentiated Generalized

Weibull distribution using the algorithm in Balakrishnan and Sandhu (1995).

The algorithm is defined as follows:

• Generate m independent Uniform(0,1) observations W1,W2, . . . ,Wm

• Set Vi = W
1/(i+Rm+Rm−1+...+Rm−i+1)
i for i = 1, 2, . . . ,m

• Set Ui = 1− VmVm−1 . . . Vm−i+1 for i = 1, 2, . . . ,m. Then U1, U2,. . . , Um, is the

required progressive Type-II censored sample from the Uniform (0,1) distribution.

• Finally, we set Xi = F−1(Ui, θ) for i = 1, 2, . . . ,m, where F−1(., θ) is the inverse

cdf of the Exponentiated Generalized Weibull distribution. Then X1, X2, . . . , Xm,

30



is the required progressive Type-II censored sample from the Exponentiated Gen-

eralized Weibull distribution.

with censoring scheme R = (1, 3, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0).

The generated sample is given in Table(4.1).

Via the EM algorithm discussed in Section (4.1.2), the computed MLEs of the param-

Table 4.1: Progressive type II data for n = 30, m = 20 and θ = (1, 1, 1, 1)

0.0138 0.0230 0.0447 0.2401 0.3091 0.3264 0.4597 0.5448 0.5841 0.7274,

0.9875 1.1164 1.2090 1.3519 1.4896 1.5041 1.6224 2.9952 3.4537 3.6385

eters become:

â = 0.7606, b̂ = 0.8272, α̂ = 1.0911 and β̂ = 1.0365

In Table(4.2) a Monte Carlo simulation for N=500 was used to compute the RMSE

and the mean estimates for different value of n, m and θ = (2, 2, 1, 1). The following

formula was used to compute the RMSE

RMSE(λ̂) =

√√√√ N∑
i=1

(λ̂i − λ)2

N

where λ̂i is the i-th estimates of the parameter λ
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Table 4.2: RMSE of the estimators

Estimates RMSE

n m â b̂ α̂ β̂ â b̂ α̂ β̂

25 15 1.6346 1.9228 1.2833 0.6301 2.1274 2.0622 1.5970 3.1484

20 2.0388 1.6436 1.1927 1.0383 1.0591 1.3232 0.9489 1.0364

25 2.0723 1.9273 0.9889 1.0761 0.4639 0.6423 0.3130 0.6419

40 20 2.0371 1.9960 1.0133 1.0716 1.3787 1.8453 0.8290 0.8120

30 2.0199 2.0494 0.9433 1.0301 0.4582 0.8808 0.3870 0.2936

40 2.0011 1.9357 1.0222 1.0030 0.3196 0.5117 0.2313 0.1701

65 30 2.0751 1.9770 1.0153 1.0176 0.3112 0.7451 0.2008 0.1108

45 2.0148 2.0949 0.9944 1.0012 0.2384 0.3315 0.1546 0.0536

65 2.0148 1.9991 1.0063 0.9988 0.2610 0.6053 0.1451 0.0720
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Figure 4.1: Plot of the RMSE of â

Figure 4.2: Plot of the RMSE of b̂
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Figure 4.3: Plot of the RMSE of α̂

Figure 4.4: Plot of the RMSE of β̂
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4.2.2 Discussion

Three different sample sizes nwere used in Table(4.2) and for each sample size we used

three different censoring m, which gives nine cases and we compute the estimates and

the root mean square error in each case.

In the graphs in Figure(4.1), Figure(4.2), Fgure(4.3), Figure(4.4) we plotted the data

in Table(4.2). In each figure we have three graphs each representing respectively the

sample of size n = 25, n = 40, and n = 65. Considering:

• the variation of the sample sizes the Root Mean Square Error becomes smaller.

That is in other words by increasing the sample size n, the Root Mean Square

Error is decreasing. It is noticed by looking at the starting value of each case and

the ending value in each case

• the variation of the observed data size for each sample size the RMSE is decreas-

ing. That is in other words for fixed sample size n and by increasing

4.2.3 Remarks

• The largest values of m in each case represent the complete sample case. (see

Table(4.2))

• For fixed sample size n and by increasing m, we get smaller RMSE’s.(see Ta-

ble(4.2))

• By increasing the sample size n, we get smaller RMSE’s.(see Table(4.2))
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4.3 Application to real data

The data set we used is from Nichols and Padgett (2006). It has been analyzed by

Mashail and Soliman (2015) to illustrate the estimation of the parameters of the expo-

nentiated Weibull (with two shape parameters) model with adaptive Type-II progressive

censored schemes. The data set is composed of 100 observations on breaking stress of

carbon fibres (in Gba) as given in Table(4.3):

We take m = 60, R = (20, 0 ∗ 58, 20). For clarity R = (1, 0 ∗ 4, 3) is a short form for

Table 4.3: Real data set from Nichols and Padgett

0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25

1.36 1.41 1.47 1.57 1.57 1.59 1.59 1.61 1.61 1.69

1.69 1.71 1.73 1.80 1.84 1.84 1.87 1.89 1.92 2.00

2.03 2.03 2.05 2.12 2.17 2.17 2.17 2.35 2.38 2.41

2.43 2.48 2.48 2.50 2.53 2.55 2.55 2.56 2.59 2.67

2.73 2.74 2.76 2.77 2.79 2.81 2.81 2.82 2.83 2.85

2.87 2.88 2.93 2.95 2.96 2.97 2.97 3.09 3.11 3.11

3.15 3.15 3.19 3.19 3.22 3.22 3.27 3.28 3.31 3.31

3.33 3.39 3.39 3.51 3.56 3.60 3.65 3.68 3.68 3.68

3.70 3.75 4.20 4.38 4.42 4.70 4.90 4.91 5.08 5.56

R = (1, 0, 0, 0, 0, 3)

So the observed data is given in Table(4.4): Based on the above progressive Type-II

censored data we compute estimates of the parameters of the Exponentiated General-

ized Weibull distribution using the algorithm describe above. We get

(â, b̂, α̂, β̂) = c(1.5819, 0.8477, 1.8117, 3.6395)
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Table 4.4: Observed data set

0.39 0.85 0.98 1.12 1.17 1.18 1.22 1.36 1.41 1.57

1.57 1.59 1.61 1.61 1.69 1.69 1.71 1.73 1.80 1.84

1.84 1.87 1.92 2.03 2.03 2.12 2.17 2.17 2.17 2.35

2.38 2.41 2.48 2.48 2.50 2.53 2.55 2.55 2.56 2.59

2.67 2.74 2.77 2.79 2.81 2.82 2.83 2.87 2.88 2.93

2.95 2.96 2.97 2.97 3.09 3.11 3.11 3.15 3.15 3.19
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Chapter 5

Summary, conclusion and

recommendation

5.1 Summary

In this study we presented an estimation procedure for estimating the parameters of the

Exponentiated Generalized Wiebull based on progressive type II censored data. Since

the progressive type II censored data can be considered as a missing data problem the

Expectation Maximization algorithm (EM-algorithm) is used to compute the maximum

likelihood estimates (MLE’s). In the first specific objective we derived the MLE’s via

the EM-algorithm, where we computed in the E-step (Expectation step) conditional ex-

pectations (conditioned by the observed data Y ) and then used the Newton Raphson

Algorithm instead of the M-step (Maximization step) since the closed is not obtained

from in the M-step. The simulation for various degrees of censoring and sample sizes

conducted in the second specific objective led us to investigate the performance of the

estimators. Finally using the data from Nichols and Padgett paper we applied the esti-
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mation to a real data case for the third and last specific objective of the study

5.2 Conclusion

The parameters of the Exponentiated Generalized Weibull distribution were estimated

using maximum likelihood estimation method via Expectation Maximization (EM) al-

gorithm. The Root Mean Square Error were computed for different values of the sample

size n and failures (observed sample size) m (various degrees of censoring). It was ob-

served that the RMSE’s were smaller for fixed sample size n and increasing the size m

of the observed data, and also for the increasing sample size n. Application to real data

was also given to estimate the parameters of the EGW distribution.

5.3 Recommendations

The study only focused on developing maximum likelihood estimators for the param-

eters of the Exponentiated Generalized Weibull based on progressive type II censored

data. One may be interested in the asymptotic variance-covariance matrix of the MLE’s

and use it to construct the asymptotic 95% confidence interval for the parameters. One

can also be interested on Bayesian estimation of parameters of the Exponentiated Gen-

eralized Weibull.

The results of this study will go a long way in making Exponentiated Generalized

Weibull (EGW) to be applicable in situation where progressive type II censoring data

are encountered, thus contributing to knowledge in the are of survival and reliability

analysis.
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Appendices

R codes for the simulation

# The p d f o f t h e E x p o n e n t i a t e d G e n e r a l i z e d W e i b u l l EGW( a , b , alpha , b e t a )

f <− f u n c t i o n ( a , b , a lpha , beta , x ){

y = a *b* ( a l p h a / beta ) * ( x / beta ) ˆ ( a lpha −1)*exp(−a * ( x / beta ) ˆ a l p h a ) *

(1−exp(−a * ( x / beta ) ˆ a l p h a ) ) ˆ ( b−1)

re turn ( y )

}

# The c d f o f t h e E x p o n e n t i a t e d G e n e r a l i z e d W e i b u l l EGW( a , b , alpha , b e t a )

F <− f u n c t i o n ( a , b , a lpha , beta , x ){

y = (1−exp(−a * ( x / beta ) ˆ a l p h a ) ) ˆ b

re turn ( y )

}

# G e n e r a t i n g p r o g r e s s i v e t y p e I I c e n s o r e d

r s a m p l e <− f u n c t i o n ( n ,m, par ){

p = 0 . 2 # p i s t h e proba t h a t an i n d i v i d u a l u n i t i s removed form t h e t e s t

# a t t h e i−t h f a i l u r e , i = 1 , 2 , . . . , m − 1

a = par [ 1 ]

b = par [ 2 ]

a l p h a = par [ 3 ]
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beta = par [ 4 ]

# q u a n t i l e f u n c t i o n

regw <− f u n c t i o n ( x , aa=a , bb=b , a a l p h a = a lpha , b b e t a = beta ){

q = b b e t a * (−(1 / aa ) * l o g (1−x ˆ ( 1 / bb ) ) ) ˆ ( 1 / a a l p h a )

re turn ( q )

}

random = regw ( r u n i f (m) , a , b , a lpha , beta )

y = random [ order ( random ) ]

r = c ( )

r [ 1 ] = rbinom ( 1 , n−m, p )

i n t = seq ( 2 ,m−1)

s = r [ 1 ]

f o r ( i i n i n t ){

r [ i ] = rbinom ( 1 , n−m−s , p )

s = s+ r [ i ]}

i f ( n−m−s >0)

r [m] = n−m−s

e l s e

r [m] = 0

D = data . frame ( y , r )

re turn (D)

}

# G e n e r a t i n g p r o g r e s s i v e t y p e I I c e n s o r e d

# Using a l g o r i t h m from N . B a l a k r i s h n a n & R . A . Sandhu ( 1 9 9 5 )
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b a l a s a n <− f u n c t i o n ( n ,m, par ){

a = par [ 1 ]

b = par [ 2 ]

a l p h a = par [ 3 ]

beta = par [ 4 ]

regw <− f u n c t i o n ( x , aa=a , bb=b , a a l p h a = a lpha , b b e t a = beta ){ # q u a n t i l e f u n c t i o n

q = b b e t a * (−(1 / aa ) * l o g (1−x ˆ ( 1 / bb ) ) ) ˆ ( 1 / a a l p h a )

re turn ( q )

}

w = r u n i f (m)

r = c ( )

r [ 1 ] = rbinom ( 1 , n−m, 0 . 2 )

i n t = seq ( 2 ,m−1)

s = r [ 1 ]

f o r ( i i n i n t ){

r [ i ] = rbinom ( 1 , n−m−s , 0 . 2 )

s = s+ r [ i ]}

i f ( n−m−s >0)

r [m] = n−m−s

e l s e

r [m] = 0

p = c ( )

x = c ( )

v = c ( )

u = c ( )
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y = c ( )

p = r [m]

f o r ( i i n 1 :m){

v [ i ] = w[ i ] ˆ ( 1 / ( i +p ) )

p = p+ r [m−i ]}

x = v [m]

f o r ( i i n 1 :m){

u [ i ] = 1−x # p r o g r e s s i v e t y p e I I sample from U( 0 , 1 )

x = x*v [m−i ]

y [ i ] = regw ( u [ i ] , a , b , a lpha , beta )}

D = data . frame ( y , r )

re turn (D)

}

#The c o n d i t i o n a l e x p e c t a t i o n s A , B and C

#A

Aa <− f u n c t i o n ( par ,m){

a = par [ 1 ]

b = par [ 2 ]

a l p h a = par [ 3 ]

beta = par [ 4 ]

y = c ( )

c = c ( )

f o r ( j i n 1 :m){

c [ j ] = 1 / (1−F ( a , b , a lpha , beta , frame$y [ j ] ) )
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g <− f u n c t i o n ( x ){

l o g ( x / beta ) * f ( a , b , a lpha , beta , x )

}

y [ j ] = c [ j ] * i n t e g r a t e ( g , lower=frame$y [ j ] , upper= I n f ) $ v a l u e

}

re turn ( y )

}

#B

Bb <− f u n c t i o n ( par ,m){

a = par [ 1 ]

b = par [ 2 ]

a l p h a = par [ 3 ]

beta = par [ 4 ]

y = c ( )

c = c ( )

f o r ( j i n 1 :m){

c [ j ] = 1 / (1−F ( a , b , a lpha , beta , frame$y [ j ] ) )

g <− f u n c t i o n ( x ){

( ( x / beta ) ˆ a l p h a ) * f ( a , b , a lpha , beta , x )

}

y [ j ] = c [ j ] * i n t e g r a t e ( g , lower=frame$y [ j ] , upper= I n f ) $ v a l u e

}

re turn ( y )

}
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#C

Cc <− f u n c t i o n ( par ,m){

a = par [ 1 ]

b = par [ 2 ]

a l p h a = par [ 3 ]

beta = par [ 4 ]

y = c ( )

c = c ( )

f o r ( j i n 1 :m){

c [ j ] = 1 / (1−F ( a , b , a lpha , beta , frame$y [ j ] ) )

g<−f u n c t i o n ( x ){

l o g (1−( exp (−(x / beta ) ˆ a l p h a ) ) ˆ a ) * f ( a , b , a lpha , beta , x )

}

y [ j ] = c [ j ] * i n t e g r a t e ( g , lower=frame$y [ j ] , upper= I n f ) $ v a l u e

}

re turn ( y )

}

# The f u n c t i o n Q, t h a t i s t h e c o m p l e t e l o g l i k e l i h o o d

Q <− f u n c t i o n ( par ){

a = par [ 1 ]

b = par [ 2 ]

a l p h a = par [ 3 ]

beta = par [ 4 ]
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n* l o g ( ( a *b* a l p h a ) / beta ) + ( a lpha −1)*sum ( l o g ( frame$y / beta ))− a *sum ( ( frame$y / beta ) ˆ a l p h a ) + ( b−1)*sum ( l o g (1−( exp (−( frame$y / beta ) ˆ a l p h a ) ) ˆ a ) ) + ( a lpha −1)*sum (A*frame$ r )−a *sum (B*frame$ r ) + ( b−1)*sum (C*frame$ r )

}

l i b r a r y ( numDeriv )

l i b r a r y ( Ma t r i x )

l i b r a r y ( r o o t S o l v e )

# The em a l g o r i t h m

em <− f u n c t i o n ( frame , n , m, a , b , a lpha , beta , eps = 1 / 100000){

e r r <− 1

i t e r <− 0

param = c ( a , b , a lpha , beta )

r e s u l t s <− NULL

r e s u l t s <− rbind ( r e s u l t s , param )

whi le ( e r r > eps ) {

A = Aa ( frame , param ,m)

B = Bb ( frame , param ,m)

C = Cc ( frame , param ,m)

gvec <− param − s o l v e ( h e s s i a n (Q, param ) ) %*% g r a d i e n t (Q, param ) [ 1 , ]

o ld . param <− param

param <− gvec [ , 1 ]

e r r <− max ( abs ( ( old . param − param ) / param ) )

i t e r <− i t e r + 1

r e s u l t s <− rbind ( r e s u l t s , gvec [ , 1 ] )

}

re turn ( r e s u l t s )
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}

# S i m u l a t i o n f o r n = 30 , m = 20 and ( a , b , alpha , b e t a ) = ( 1 , 1 , 1 , 1 )

n = 30

m = 20

a = 1

b = 1

a l p h a = 1

beta = 1

par = c ( a , b , a lpha , beta )

frame = b a l a s a n ( n , m, par )

em ( frame , n , m, a , b , a lpha , beta )

N = 1

mle a <− c ( rep ( 0 ,N) )

mle b <− c ( rep ( 0 ,N) )

mle a l p h a <− c ( rep ( 0 ,N) )

mle beta <− c ( rep ( 0 ,N) )

n = 30

m = 20

param = c ( 1 , 1 , 1 , 1 )

par = param

a = par [ 1 ]

b = par [ 2 ]

a l p h a = par [ 3 ]

beta = par [ 4 ]

51



f o r ( i i n 1 :N){

frame= b a l a s a n ( n ,m, par ) # can a l s o use r sample ( n , m, par )

A = Aa ( par ,m)

B = Bb ( par ,m)

C = Cc ( par ,m)

gvec = par # i n i t i a l e v a l u e

gvec <− gvec − s o l v e ( h e s s i a n (Q, par ) ) %*% g r a d i e n t (Q, par ) [ 1 , ]

mle . vec <− gvec [ , 1 ]

mle a [ i ] <− mle . vec [ 1 ]

mle b [ i ] <− mle . vec [ 2 ]

mle a l p h a [ i ] <− mle . vec [ 3 ]

mle beta [ i ] <− mle . vec [ 4 ]

}

p r i n t ( cbind ( mle a , mle b , mle a lpha , mle beta ) )

### mean e s t i m a t e s

mean a <− sum ( mle a ) /N

mean b <− sum ( mle b ) /N

mean a l p h a <− sum ( mle a l p h a ) /N

mean beta <− sum ( mle beta ) /N

### C a l c u l a t e Average B ias

ABias a <− sum ( mle a−a ) /N

ABias b <− sum ( mle b−b ) /N

ABias a l p h a <− sum ( mle a lpha−a l p h a ) /N

ABias beta <− sum ( mle beta−beta ) /N

### C a l c u l a t e RMSE
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RMSE a <− s q r t ( sum ( ( a−mle a ) ˆ 2 ) /N)

RMSE b <− s q r t ( sum ( ( b−mle b ) ˆ 2 ) /N)

RMSE a l p h a <− s q r t ( sum ( ( a lpha−mle a l p h a ) ˆ 2 ) /N)

RMSE beta <− s q r t ( sum ( ( beta−mle beta ) ˆ 2 ) /N)

p r i n t ( cbind ( mean a , mean b , mean a lpha , mean beta ) )

p r i n t ( cbind ( ABias a , ABias b , ABias a lpha , ABias beta ) )

p r i n t ( cbind (RMSE a ,RMSE b ,RMSE alpha ,RMSE beta ) )

# Monte Car lo S i m u l a t i o n s N = 500 , n = 25 and v a r i o u s c e n s o r e d s i z e

n = 25

m = 15 # 20 , 25

N = 500

mle a <− c ( rep ( 0 ,N) )

mle b <− c ( rep ( 0 ,N) )

mle a l p h a <− c ( rep ( 0 ,N) )

mle beta <− c ( rep ( 0 ,N) )

param = c ( 2 , 2 , 1 , 1 )

par=param

a=par [ 1 ]

b=par [ 2 ]

a l p h a =par [ 3 ]

beta =par [ 4 ]

f o r ( i i n 1 :N){

frame= b a l a s a n ( n ,m, par ) # can a l s o use r sample ( n , m, par )

d <− em ( frame , n , m, a , b , a lpha , beta )
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mle . vec <− d [ nrow ( d ) , ]

mle a [ i ] <− mle . vec [ 1 ]

mle b [ i ] <− mle . vec [ 2 ]

mle a l p h a [ i ] <− mle . vec [ 3 ]

mle beta [ i ] <− mle . vec [ 4 ]

}

p r i n t ( cbind ( mle a , mle b , mle a lpha , mle beta ) )

### mean e s t i m a t e s

mean a<−sum ( mle a ) /N

mean b<−sum ( mle b ) /N

mean a l p h a<−sum ( mle a l p h a ) /N

mean beta<−sum ( mle beta ) /N

### C a l c u l a t e Average B ias

ABias a<−sum ( mle a−a ) /N

ABias b<−sum ( mle b−b ) /N

ABias a l p h a<−sum ( mle a lpha−a l p h a ) /N

ABias beta<−sum ( mle beta−beta ) /N

### C a l c u l a t e RMSE

RMSE a<−s q r t ( sum ( ( a−mle a ) ˆ 2 ) /N)

RMSE b<−s q r t ( sum ( ( b−mle b ) ˆ 2 ) /N)

RMSE a l p h a<−s q r t ( sum ( ( a lpha−mle a l p h a ) ˆ 2 ) /N)

RMSE beta<−s q r t ( sum ( ( beta−mle beta ) ˆ 2 ) /N)

p r i n t ( cbind ( mean a , mean b , mean a lpha , mean beta ) )

p r i n t ( cbind ( ABias a , ABias b , ABias a lpha , ABias beta ) )

p r i n t ( cbind (RMSE a ,RMSE b ,RMSE alpha ,RMSE beta ) )
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# Monte Car lo S i m u l a t i o n s N = 500 , n = 40 and v a r i o u s c e n s o r e d s i z e

n = 40

m = 20 # 30 , 40

N = 500

mle a <− c ( rep ( 0 ,N) )

mle b <− c ( rep ( 0 ,N) )

mle a l p h a <− c ( rep ( 0 ,N) )

mle beta <− c ( rep ( 0 ,N) )

param = c ( 2 , 2 , 1 , 1 )

par=param

a=par [ 1 ]

b=par [ 2 ]

a l p h a =par [ 3 ]

beta =par [ 4 ]

f o r ( i i n 1 :N){

frame= b a l a s a n ( n ,m, par ) # can a l s o use r sample ( n , m, par )

d <− em ( frame , n , m, a , b , a lpha , beta )

mle . vec <− d [ nrow ( d ) , ]

mle a [ i ] <− mle . vec [ 1 ]

mle b [ i ] <− mle . vec [ 2 ]

mle a l p h a [ i ] <− mle . vec [ 3 ]

mle beta [ i ] <− mle . vec [ 4 ]

}

p r i n t ( cbind ( mle a , mle b , mle a lpha , mle beta ) )
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### mean e s t i m a t e s

mean a<−sum ( mle a ) /N

mean b<−sum ( mle b ) /N

mean a l p h a<−sum ( mle a l p h a ) /N

mean beta<−sum ( mle beta ) /N

### C a l c u l a t e Average B ias

ABias a<−sum ( mle a−a ) /N

ABias b<−sum ( mle b−b ) /N

ABias a l p h a<−sum ( mle a lpha−a l p h a ) /N

ABias beta<−sum ( mle beta−beta ) /N

### C a l c u l a t e RMSE

RMSE a<−s q r t ( sum ( ( a−mle a ) ˆ 2 ) /N)

RMSE b<−s q r t ( sum ( ( b−mle b ) ˆ 2 ) /N)

RMSE a l p h a<−s q r t ( sum ( ( a lpha−mle a l p h a ) ˆ 2 ) /N)

RMSE beta<−s q r t ( sum ( ( beta−mle beta ) ˆ 2 ) /N)

p r i n t ( cbind ( mean a , mean b , mean a lpha , mean beta ) )

p r i n t ( cbind ( ABias a , ABias b , ABias a lpha , ABias beta ) )

p r i n t ( cbind (RMSE a ,RMSE b ,RMSE alpha ,RMSE beta ) )

# Monte Car lo S i m u l a t i o n s N = 500 , n = 65 and v a r i o u s c e n s o r e d s i z e

n = 65

m = 30 # 45 , 65

N = 500

mle a <− c ( rep ( 0 ,N) )

mle b <− c ( rep ( 0 ,N) )
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mle a l p h a <− c ( rep ( 0 ,N) )

mle beta <− c ( rep ( 0 ,N) )

param = c ( 2 , 2 , 1 , 1 )

par=param

a=par [ 1 ]

b=par [ 2 ]

a l p h a =par [ 3 ]

beta =par [ 4 ]

f o r ( i i n 1 :N){

frame= b a l a s a n ( n ,m, par ) # can a l s o use r sample ( n , m, par )

d <− em ( frame , n , m, a , b , a lpha , beta )

mle . vec <− d [ nrow ( d ) , ]

mle a [ i ] <− mle . vec [ 1 ]

mle b [ i ] <− mle . vec [ 2 ]

mle a l p h a [ i ] <− mle . vec [ 3 ]

mle beta [ i ] <− mle . vec [ 4 ]

}

p r i n t ( cbind ( mle a , mle b , mle a lpha , mle beta ) )

### mean e s t i m a t e s

mean a<−sum ( mle a ) /N

mean b<−sum ( mle b ) /N

mean a l p h a<−sum ( mle a l p h a ) /N

mean beta<−sum ( mle beta ) /N

### C a l c u l a t e Average B ias

ABias a<−sum ( mle a−a ) /N
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ABias b<−sum ( mle b−b ) /N

ABias a l p h a<−sum ( mle a lpha−a l p h a ) /N

ABias beta<−sum ( mle beta−beta ) /N

### C a l c u l a t e RMSE

RMSE a<−s q r t ( sum ( ( a−mle a ) ˆ 2 ) /N)

RMSE b<−s q r t ( sum ( ( b−mle b ) ˆ 2 ) /N)

RMSE a l p h a<−s q r t ( sum ( ( a lpha−mle a l p h a ) ˆ 2 ) /N)

RMSE beta<−s q r t ( sum ( ( beta−mle beta ) ˆ 2 ) /N)

p r i n t ( cbind ( mean a , mean b , mean a lpha , mean beta ) )

p r i n t ( cbind ( ABias a , ABias b , ABias a lpha , ABias beta ) )

p r i n t ( cbind (RMSE a ,RMSE b ,RMSE alpha ,RMSE beta ) )

N = 500

mle a <− c ( rep ( 0 ,N) )

mle b <− c ( rep ( 0 ,N) )

mle a l p h a <− c ( rep ( 0 ,N) )

mle beta <− c ( rep ( 0 ,N) )

n = 25

m = 15

param = c ( 2 , 2 , 1 , 1 )

par=param

a=par [ 1 ]

b=par [ 2 ]

a l p h a =par [ 3 ]

beta =par [ 4 ]
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f o r ( i i n 1 :N){

frame= b a l a s a n ( n ,m, par ) # can a l s o use r sample ( n , m, par )

A=Aa ( par ,m)

B=Bb ( par ,m)

C=Cc ( par ,m)

gvec=par # i n i t i a l e v a l u e

gvec <− gvec − s o l v e ( h e s s i a n (Q, par ) ) %*% g r a d i e n t (Q, par ) [ 1 , ]

mle . vec <− gvec [ , 1 ]

mle a [ i ] <− mle . vec [ 1 ]

mle b [ i ] <− mle . vec [ 2 ]

mle a l p h a [ i ] <− mle . vec [ 3 ]

mle beta [ i ] <− mle . vec [ 4 ]

}

p r i n t ( cbind ( mle a , mle b , mle a lpha , mle beta ) )

### mean e s t i m a t e s

mean a<−sum ( mle a ) /N

mean b<−sum ( mle b ) /N

mean a l p h a<−sum ( mle a l p h a ) /N

mean beta<−sum ( mle beta ) /N

### C a l c u l a t e Average B ias

ABias a<−sum ( mle a−a ) /N

ABias b<−sum ( mle b−b ) /N

ABias a l p h a<−sum ( mle a lpha−a l p h a ) /N

ABias beta<−sum ( mle beta−beta ) /N

### C a l c u l a t e RMSE
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RMSE a<−s q r t ( sum ( ( a−mle a ) ˆ 2 ) /N)

RMSE b<−s q r t ( sum ( ( b−mle b ) ˆ 2 ) /N)

RMSE a l p h a<−s q r t ( sum ( ( a lpha−mle a l p h a ) ˆ 2 ) /N)

RMSE beta<−s q r t ( sum ( ( beta−mle beta ) ˆ 2 ) /N)

p r i n t ( cbind ( mean a , mean b , mean a lpha , mean beta ) )

p r i n t ( cbind ( ABias a , ABias b , ABias a lpha , ABias beta ) )

p r i n t ( cbind (RMSE a ,RMSE b ,RMSE alpha ,RMSE beta ) )
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