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SYMBOLS AND ABBREVIATIONS
SYMBOLS
1. R"- the set of positive real numbers
2. R - the set of real numbers
3. C - the set of complex numbers
4. k - set of scalars from the set of complex numbers
5. 0 - the zero vector
6. | - the identity matrix
7. ||.||- norm of
8. —-tendto
9. O(1) - capital order i.ex, = O(1) if there existM € R* such thatxy| < M, ¥n
10. o(1) - small order i.ex, € o(n) asn — o if X, — 0 asn — oo
11. 0- empty set
ABBREVIATIONS
1. s-the set of all sequences
2. ¢p- the set of all sequences which converge to zero - null sexpsen
3. {p(0 < p < ») - sequences such thé X|P < o
4. c - convergent sequences
5. /» - bounded sequences i.e. sequencasch that supxy| <

6. bv-sequences of bounded variationi.e. sequersash thaty |xy 1 —Xi| <o
k=0

7. by - sequences of bounded variation wigh— 0 ask — o

8. by - statistically null bounded variation sequences i.e Ay € /1 such that
O0({ki e N:ieN})=1whereAx =X — X foralli e N
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n
9. bs- bounded series i.e. sequengesich that sup.o{ > x|} <
k=0

10. cs- convergent series i.e sequengesich thaty X is convergent
k=0

11. wp(0 < p < ) - the space of strongly Cesaro summable complex sequences of
order 1 indexp i.e. the set of all sequences= (x),_,Such that there exist a

number? depending o for which E % — £|P = o(n)
k=0

12. wp(0) - the space of strongly Cesaro summable complex sequenaedesf 1
index p such tha? = 0

13. w.l.o.g - without loss of generality
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ABSTRACT

Spectral theory is an important branch of Mathematics dutstapplication in other
branches of science. In summability theory, different s#asof matrices have been
investigated and characterized. There are various typsarofnability methods e.qg.
Norlund operators, Cesaro, Riesz, Euler, Abel and many others. résearch in-
vestigates and determines the spectrum of a clagdtofund operators on the se-
guence space®), ¢ andbvy. This is achieved by constructing the resolvent operator
T, =(T—1A )*1, the spectrum is then given by all the valuesidior which T, does
not exist as a bounded operator on the sequence spac@andbv. It is shown that
the spectrum consists of the §ét € C : [A — | < $}U{1}. This will find application

in the development of Tauberian and Mercerian theoremshi®NBrlund operator
which are used to determine the limit or sum of a convergemiesece or series. In
addition the eigenvalues and the eigenvectors are useti/migbnite linear system of
equations. Infinite dimensional linear systems appeatsalit when studying control
problems for systems modelled by linear partial differ@rgguations. Many problems
in dynamical systems can be written in form of infinite diéfatial systems e.g Mathieu
equation, Hill's equation.



CHAPTER ONE
INTRODUCTION AND LITERATURE REVIEW

1.1 Background of the Study

Basic concepts on the spectral theory, summability theodysame results of previous
studies with a bearing on the topic of study are exploredigdéaction.

1.1.1 Introduction

Spectral theory is an important branch of Mathematics dutstapplication in other
branches of science. It is proved to be a standard tool ofen@dkical sciences be-
cause of its usefulness and application oriented scopédfareht fields. In numerical
analysis, the spectral values may determine whether aetestion of a differential
equation will get the right answer or how fast a conjugateligrat iteration will con-
verge. In aeronautics, the spectral values may determie¢h&hthe flow over a wing
is laminar or turbulent. In electrical engineering, it magtemine the frequency re-
sponse of an amplifier or the reliability of a power systemqguiantum mechanics, it
may determine atomic energy levels and thus, the frequehayaser or the spectral
signature of a star. In structural mechanics, it may deteemihether an automobile
is too noisy or whether a building will collapse during anteguake. In ecology, the
spectral values may determine whether a food web will settte a steady equilib-
rium. In probability theory, they may be used to determireertite of convergence of
a Markov process.

Mathematics, especially mathematical analysis, devesmukis maintained via the

concept of convergence of sequences and series. Even iadpplence and engineer-
ing, one is interested in the convergence of sequences &ied séresults generated
during experiments. Established theorems such as ratwdireand integral theorem
are not applicable in a variety of sequences and series. &liere they apply, they

just determine convergence but not the limit or sum of a cayes@ sequence or series.
Tauberian and Mercerian theorems handles this problem &k convergence and
even limit of a convergent sequence or series is determioed the convergence of
some transform of it together with a side condition.

In summability theory, different classes of matrices hagerbinvestigated and char-
acterized into classes. There are various types of sumityaiiethods likeN6rlund
operators, Cesaro, Riesz, Euler, Abel and many others. ughaut this researcN



denotes the set of non-negative integers. A sequence afuedbers is a real valued
function whose domain is the s§t. The symbolx,)7is used to denote an infinite se-
quence e.g(x,) = (3)7 = {1,3,3, - }. A sequence is said to converge if lign=|
wherel is a finite number. A sequence diverges if it does not converge

A series is the sum of the sequence i5e X, = X1 + X2 +---. A series is said to
n=1

converge if thenth partial sums, = X1 + X2 + - - - + X, tends to a finite limisasn — oo,
If s, does not tend to a finite limit as— o, then the series is said to diverge. The
value of this limit is called the sum of the series denoted byy xn.

n=1

1.1.2 Classical Summability

The central point of summability theory is to find means ofigrasag a limit to a
divergent sequence or sum to a divergent series in such ahaayhe sequence or
series can be manipulated as though it converges, (Ruc®8d,, g 159-161). The
most common means of summing a divergent series or sequenicatiof using an
infinite matrix of complex numbers.

Definition 1.1.1. (Sequence to sequence Transformation)

Let A= (a), N, k=0,1,2 ... be an infinite matrix of complex numbers. Given a
sequenca = (Xx),_o define

yn:Z an, N=0,1,2, ... (1.1.1)
K=0

If the series 1.1.1, converges for allthen the sequence= (yn);_,. is called the
A—transform of the sequence= (X),_,. If furthery, — aasn — o, then(x)y_g is
summableA to a. There are numerous sequence to sequence transformaielasv
are few well known examples.

Example 1.1.2.(Cesaro opearator)

Consider the matrif = (ank), where

1
4, 0<k<n
ax=4 " (1.1.2)
0, k>n

and a sequenoe)y_o = (1,0,1,0,...), then the sequende)yis summable byA to

%. The matrixA is called the Cesaro operator of order 1 and is usually ddnoge

2



(C,1) or Cy. Cesaro operator of other orders are also well known, the geseeral is
(C, a) operator which are given by

a-1
A;\n—;,k, 0<k<n
adnk = 0 c (1.1.3)
, >n

o > —1(Holder operator)

whereA? — ( a-+n ) __T(a+n+1)

n - ra+)r(n+1)°

Closely related to the Cesaro operat@ra) is the Holder operataiH, k). This is
simply the product ofC, 1) operatork times. Its matrix is given by

ik = (nS) (he ™) (1.1.4)

whereh(}() = (C,1), (Powel and Shah, 1972, pg. 46-49).

n

Example 1.1.3.(Holder operator)

Closely related to the Cesaro operat6r a) is the Holder operatofH,k). This is
simply the product ofC, 1) operatork times. Its matrix is given by

i = (nS) (R ™) (1.1.5)

Wherehﬁ() = (C,1), (Powel and Shah, 1972, pg. 46-49).
Example 1.1.4.(N6rlund operato)

Let the sequencépn}; be the sequence of real numbers wigt> 0, the transfor-

mation given by
n

1
Yn = E Pn—kXk, n:O, 1727"' (116)
n K=

whereP, = po+ p1+ -+ pn # 0, is called aN6rlund operatorand is denoted by
(N, p). Its matrix is given by

EE 0<k<n
ank = " (2.12.7)
0, k>n
In Matrix 1.1.7, ifpp = 1, p1 = —2, p2 = p3 = ps = - -- = 0, thena,, transforms the

unbounded sequenéa)y o= (1,2,4,8,...) to zero. Ifp, = 1 foreacm=0,1,2,---,
then(ank) = (C,1), (Powel and Shah, 1972, pg. 45-46).

3



Similarly in matrix 1.1.7 ifpp =m, pr = p2 = p3= p4 = --- = 0, m€ R this gives
the identity matrix

1, n=Kk
adnk = ) (1.1.8)
0, Otherwise
That is,
10 0 O-
01 0 O-
A= o0 1 0 (1.1.9)
00 0 1-
Similarly in matrix 1.1.7 ifpp=pr=m,p2 = p3=ps=--- =0, me R then the
matrix is given by
1, n=k=0
ank=4 3,n—1<k<n (1.1.10)
0, Otherwise
That is,
10 0 O-
11
32 0 0
ol 1 o.
A= 2 2 (1.1.11)
003 3 -
00 0 1.
n+k—1 M (n4K) :
If pn= K1 = FOr k > 0 then(N, p,) is the(C, k) operator, (Hardy,

1948 pg. 64-65).

In matrix 1.1.7, ifpp = p1=p2=m, p3 = p4 = ps--- = 0, m € R then the matrix is
given by
1, n=k=0
3, n=10<k<n
bk = (1.1.12)
i, n-2<k<n
0, Otherwise

That is,



(1.1.13)

oy}

I
O O WKENF =
O WkRWRNF O
wWRrwRrwFEF O o
wrRrwr O O o

This matrix represents all the6rlund operators in which the first three terms of the
sequencgpn}, are equal and the rest are zeros. It converts any sequenseqa@nce

of the arithmetic mean of three consecutive terms of thamalgequence apart from
the first term which it maintains and the second term whichésarithmetic mean of
the first two terms. This research will focus on this class afrioes.

Definition 1.1.5. (Series to series transformation)

The transformation of the seri€gs X, into a convergent serie§ y, by an infinite
k=0 n=0

matrix A = (ank) So that

Yn=) ankX (1.1.14)
2

is called series to series transformation.

1.1.3 General Results in Classical Summability

(X,Y) is the set of all matrice8 which mapsXintoY. (X,Y, p) is the subset ofX,Y)
for which limits or sums are preserved, Ae= (c,c, p) means thaf\(X) € ¢ for each
nwhenevex € c andAn(X) — | asn — c whenevex — | asn — oo.

Definition 1.1.6. (Regular Method, Conservative method)

Let A= (an),n=0,1,2,... be an infinite matrix of complex numbers;

I. If the A—transform of any convergent sequence of complex numbesssexnd
converges, theA is called a conservative method. It is then writterAas (c, c).

i If Alis conservative and preserves the limits i.e

limy,=limx,=a,acC (1.1.15)
n—oo n—oo

where(yn),,_q is theA—transform of the convergent sequerigg),,_, thenAis called
regular. It is then written a& € (c,c, p).



Theorem 1.1.7.(Kojima-Shur)
A€ (c,c)ifand only if
I. Iim 1 8k = 8K for each fixedk, k=0,1,2,...

i, lim Z ank =aasn — o,
n%ook_

i, SUPysof z [and} < o.
(Maddox, 1970 pg 166-167).

Theorem 1.1.8.(Silverman-Toeplitz)

A€ (c,c,p) if and only if
i. limap =0 for each fixekk, k=0,1,2,....

n—-00

ii. lim Z ank = 1 asn — oo,
n%ook_

lii. supysof z lank]} <M <0, M e RY.
(Maddox, 1970 pg 165-166)
Theorem 1.1.9.A € (cp, Cp) if and only if

i. limap =0 for each fixekk, k=0,1,2,....

n—oo

ii. suph>of Z |ank|} < co.
(Maddox, 1970 pg 165-167).

Theorem 1.1.10.A € (I1,11) if and only if
i z |ank| < oo for each fixedk.

ii. sup{ z |ank| } < eo.
(Limaye, 1996 pg. 88-90, 154-156)

Theorem 1.1.11.A € (I, lp) if and only if
i sup{ Y lank/P} =M <o, 1< p< .
k=0
ii. sup, k|ank| <, for the casep = oo.
(Maddox, 1970, pg 167)
Recall: If 3 |bn| < o« for eachn and 3 |by| — 0 asn — oo, then 5 |bp is
k=0 k=0 k=0
uniformly convergent im,

Theorem 1.1.12.(Schur)



A€ (lo,C) if and only if

i. S |ank| converges uniformly im.
k=0

ii. There existsn ﬂrrank for each fixedk.
Definition 1.1.13. (Space$vandbv )

The sequence spabeis such thak € bvif

(o]

Z X1 — X¢| < 00 (1.1.16)
K=0

andx € by if x € bvwith xx — 0 ask — c. That isbvy is the space of sequences of
bounded variation with limit zero.

Theorem 1.1.14.A € (bwy,bv) if and only if

i. limay= 0 for each fixedk > 0.

n—-o0
m
kgo (ank — anfl,k)

< 00,

ii. SUPn=0 §
~ n=0
Theorem 1.1.15.A € (bv,bv) if and only if

< 00,

o) m
L SURn>o 3| 3 (Bnk—an-1k)
n=0 |k=0

iil. Y ankconverges for alh > 0.
k=0

0o m
Moreover|[Al| pypy) = Al (v bv) = SURM=0 zo kzo (ank—an-1k) |- (Jakimovski and
== —

Russel, 1972 , pg. 345-353).

Below are some of the characteristics of the spaces distassse
. (c,c,p) C (looyleo)-
ii. (lo,C,) C(c,C).
iii. (c,c,p) C (co,Co).
iv. (c,c,p) N (lw,C) = 0.
v. If ABe (c,c) = A+B, AB< (c,c) where(AB)k :Eo anibik.

Vi. A€ (lw,Co) ifand only if 5 |ank| — 0 asn — oo.
k=0

1.1.4 Banach Spaces

Definition 1.1.16. (Paranorm)



A paranormp on a linear spack, is a functionp : X — R such that

i. p(6) =0, wheref denotes the zero vector

i. p(x)>0

i p(x) = p(—x)

iv.  p(x+y) < p(x) + p(y)

v. If (An)g is a sequence of scalars with — A and(x,)g is a sequence of points
in X with x, — X, thenp(Anx, — AX) — 0 (Continuity of multiplication)

Definition 1.1.17. (Seminorm and Norm)

A seminormp on a linear spack, is a functionp : X — R such that
L. p(x)=0

ii. p(x+y) < p(x)+p(y)
iii. p(AX)=|A|p(x), A €k

If in addition to these conditions, if a seminorm satisfies ¢bndition thap(x) = 6 if
and only ifx = 0, then it is called a norm.
Definition 1.1.18. (Linear topological space)

A linear topological space is a linear spa€evhich has a topology, such that
addition and scalar multiplication iX are continuous. I is given a metric, it is a
linear metric space.

Definition 1.1.19. (Schauder basis)

Let X be a paranormed or normed space with a paran@onnorm||.||. A se-
quenceby)y of elements oK is called a schauder basis if and only if for every X, 3
a unigue sequence of scal@ig)y such that

Xx=79Y Axby. (12.1.17)
2

That is, p(x— S Agbx) — 0 asn — o or in norm notation — 0 as
k=0

X— E )\kbk
k=0

n— o

Example 1.1.20.A = (8¥)% = (6°,8%,62,---) is a schauder basis for the spaces
Co, bvo, Ip(0 < p< 1),cs8.



AT =(8,8°8%,6% ---) is a schauder basis for the spacgsv. The spacek, andbs
have no schauder basis

Example 1.1.21.co, C, Ip(p > 1), lw, bV, bvp, cs bs wp(p > 1) are all normed linear
spaces.

Their norms are as follows;co, C, l.. have the same natural norm namély| =

SURzo /%l };
Ip(1 < P < ) has a natural norm

x| = (Z |Xn|p> : (1.1.18)
k=0

bv has a natural norm

X[ = lim [x]+ k;) X1 =Xl - (1.1.19)
bvp has a natural norm
X =3 Xy — X - (1.1.20)
K=0

csandbshave the same natural norm given by

= . 1.1.21
Xl ﬁ‘;g{ k; Xk‘} ( )

Definition 1.1.22. (Banach Spaces)

A Banach space is a complete normed linear space. Compdstemeans that if
||Xm — Xn|| — 0 @asm, n — o, wherex, € X, then there exists< X such that|x, — x|| —
0 asn — oo.

Example 1.1.23.The spacesy, C, |p(p > 1), l», bV, bvg, cs bs wp(p > 1) are all Ba-
nach spaces under their natural norms.

Definition 1.1.24. (Frechet space), FK - space

A Frechet space is a complete linear metric space. An FK esigacFrechet space
with continuous coordinates. A normed FK - space is calletKa Bpace.

NOTE: Every Frechet space with a schauder basis is an FK - spaceexameples
of FK - spaces arey, ¢, Ip(p > 1), by, bvo, cs wp(p > 1) , (Bennet, 1971), (Bennet,
1972b), (Bennet, 1972a), (Bennet and Kalton, 1972), (Br@tial, 1969) and (Mad-
dox, 1970).



1.1.5 Linear Operators and Functionals

Definition 1.1.25. (Linear Operator)

Let X andY be linear spaces. Then a functibn X — Y is called a linear operator
or a map or a transformation if and only if for ally € X and allA, u € k

f(AX+py) = A F(X)+ uf(y). (1.1.22)

Definition 1.1.26. (Linear Functional)

A function f is a linear functional orX if f : X — k is a linear operator, i.e. a
linear functional is a real or complex valued linear opeatato

Definition 1.1.27. (Bounded linear operator)

Alinear OperatoA : X — Y is called bounded if there exist a constithsuch that
|AX)|| < M|x]|, ¥x € X. (1.1.23)
NOTE: A bounded functional oKX satisfies,

1£(x)] < MIJX][, ¥x € X. (1.1.24)

NOTATION: Let X andY be linear spaces. Thér{X,Y) denotes the set of all linear
operators orX into Y. L(X,k) the set of all linear functionals oK. It is usual to
denote this byX™ and call it the algebraic dual ¢£.

Definition 1.1.28. (Continuous dual oK)

Let X andY be normed spaces. Th&X,Y) denotes the set of all bounded or contin-
uous linear operators okinto Y. B(X, k), the set of all bounded or continuous linear
functionals onX.

Remarkl.1.29 Let X be a Banach space, thB(X, X) = B(X), the linear space of all
bounded linear operatofson X into itself is a Banach space with norm

sup

[x[<1

Tl = ITX| . (1.1.25)

(Maddox,1970, pg. 107)

10



This norm induces a metric topology, the uniform operatgotogy onB(X),
(Dunford and Schwatz, 1957, pg. 475)

Definition 1.1.30. (Adjoint OperatorT *)

The adjointT* of linear operatofl € B(X,Y) is the mapping fronY*to X* defined

by
T*of="foT, feY*" (1.1.26)

Theorem 1.1.31.T* is linear and bounded. Moreové

T\ = [T,
(Kreyszig, 1980, pg. 232).

Theorem 1.1.32.A linear Operator T< B(X,Y) has a bounded inverse T defined
on all Y if and only if its adjoint Thas a bounded inverdd@*) ! defined on all of X.
When these inverses exi€f, )" = (T*)1,

(Goldberg, 1966, pg. 60).
Definition 1.1.33. (Resolvent OperatoR, = (T —Al)™?)

Let X be a non - empty Banach space and supposeTthak — X . With T,
associated is the operatdf =T — Al, A € C,wherel is the identity operator oiX.
If T, =T — Al has an inverse, then it is denotedRy(T) or simplyR, and call it the
resolvent operator of .

Definition 1.1.34. (Resolvent sep(T), spectruno (T))

Let X be a non - empty Banach space and supposélthat — X . The resolvent
setp(T) of T is the set of complex numbeidor which (T —Al)~! exist as a bounded
operator with the domaiK. The spectruno (T) of T is the compliment op(T) in C.

Theorem 1.1.35.The resolvent sgd(T) of a bounded linear operator T on a Banach
space X is open; hence the spectraT) of T is closed,

(Kreyszig, 1980, pg. 376).
Theorem 1.1.36.1f X is any Banach space andd B(X), theno(T) # 0,

(Taylor and Lay, 1980, pg. 278)
The spectruno(T) of a bounded linear operatdr : X — X on a Banach spack is
compact and lies in the disk given by:

Al =|T]. (1.1.27)
(Kreyszig, 1980, pg. 377).
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Theorem 1.1.37.Let T € B(X), where X is any Banach space, then the spectrum of
T*is identical to the spectrum of T. Furthermore,(®*) = (R, (T))*for A € p(T) =

p(T"),

(Goldberg, 1966, pg. 71).
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1.2 Literature Review

The spectra of conservative matrices and in particular peetsum of any Hausdorff
method is either uncountable or finite if it's finite then itnsists of one point or two
points. Let E be Hausdorff method correspoding to the SGIfB{.[h a9, - } ,0<
q< 1, thenal + (1— a)E is Mercerian if and only ifa| > |1— a|. Thus fora > 0,

al 4+ (1— o)E is Mercerian if and only ir > % (Sharma, 1972) .

Some of the well known Hausdorff matrices are Cesaro, Hpleler, Gamma and
Generalized Cesaro. H is a Hausdorff operator ifi?, then there exist a bounded
analytic function onE = {z€ C: |z— 1| < 1}, with (1) = 1 such thaH = (C,).
Theny(E) is an open set, the spectrumtdf o(H) = closurey(E), and the point
spectrumap(H*) contains the sefy(E)~ which is the complex conjugate qf(E).
Finally |[H|| = sup{|A|: A € ¢(E)} (Deddens, 1978)

The isolated points of the spectra of conservative mataceggiven by the diagonal
elements of these matrices, (Sharma, 1975).

The fine spectra a4, the Cesaro Operator a(ilf, (p a positive integer), the Holder
summability operator of ordgp on c- the space of convergent sequences have been
investigated. The fine spectra©fconsists of all points exterior to the circle centered
at (%,O) with radius%. The Holder summability operator has a fine spectra given
by the closed region bounded by the closed curve given inr maladinates by =
coé’(%) (Wenger, 1975). Wenger’s work was extended by determiriadihe spectra
of weighted mean operators anLet A be a regular weighted mean method such that
5 = limm/R, exists. IfA satisfies|A — (2— )| < [1-9//|2-5|, thenA is a point of
o(A) for whichR(T) # X andT ~* exists and is continuous, (Rhoedes, 1983).

Brown and others determined the spectrum of the Cesarotopéta operator) on the
spacer? of square summable sequences, they showed that it conssits{d € C :

|A —1] <1, (Brown et al, 1965). This was extended by determining preesum of the
sameC; operator or/P(R*) for p # 2. The spectrum is given by the get : Re(Al) =
(p—1)/p} which for p= —1, is a circle centered af @— 1) /p and the same radius,
and forp=1, is the imaginary axis, (Boyd, 1968). The spectrum of trsao®operator
on co- the space of null sequences, consists oﬂaﬂatisfying\)\ — %] <1 (Reade,
1985). Okutoyi in the same year determined the spectru@aberator orwp(0)(1 <

p < ), and concluded that the spectrum is thesf€,) = {A € C: |A — 3| < 3}
with no eigenvalues, (Okutoyi, 1985). The spectrum(lof C)* as an operator in
lp(l<p<o)isa((I-C)") ={z—(p/2—1) : |7 < p/2}, (Gonzalez, 1985). The
spectrum ofC; as an operator on theyg space is{A € C: })\ —%] < %} , (Okutoyi,
1990). The only eigenvalue @ € B(bv), the space of bounded variationsAis= 1,
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and its spectrum is given hy(Cy) = {A € C:|A — 3| < 3}, (Okutoyi, 1992). In 1996,
Shafiquel Islam obtained the spectrum of @eoperator or/.- the space of bounded
sequences, (Shafiquel, 1996). The spectrum dCileperator orwp(1 < p < ) - the
space of strongly Cesaro summable complex sequences aflgrihelexp, is the set
{A eC:|A—3| <3} andits eigenvalue i& = 1, (Okutoyi and Akanga, 2005). Let
C1 :bVp N £ — by N £eo, then the spectrum &y is 0(C1) ={A € C: |A = 3| < 3},
(Binod et al, 2013).

LetA={A € C: A = A1\, whered;,A; € D} andB={A € C: A = A%, A3 € D}where
D={zeC:|z— 3| < 3}, thenA=B. The spectrum of the cesaro operator of order two
(C11 operator) orco(cp)- the space of double null sequencesg€:11) = A (Okutoyi
and Thorpe, 1989).

It has been shown that the spectrum of a certain mercBiGalund operator withe,, =

1, contains negative numbers, (Dorff and Wilansky, 1960k et of eigenvalues of a
specialN6rlund operator in whichp, = rk, 0 < r < 1 andk > 1 as a bounded operator
over the sequence spacks c andby, is the singleton sef1}, (Coskun, 2003). In
the abstract of his paper, Coskun remarked that as far as $ieamaerned there was
no investigations on the spectrum Wbrlund operator. The spectrum of a special
Nérlund Q operator on the spaa®, is the set{A € C: [A —3| < 1} and it has no
eigenvalues, (Akanga et at, 2010). The spectrum of a spN¢idund operator in
whichpg=p1 =1, po = p3=--- =0 as a bounded operator on the sequence space
isthesef{A € C: |A — %} < %} and it has one eigenvalde= 1 corresponding to the
eigenvectox = (1,1,1---)", (Akanga, 2014).

In this research, we investigate and determine the speafuarclassB of N6rlund
operators on three sequence spages andbv.
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1.3 Statement of the Problem

Mathematics, especially mathematical analysis, devesmukis maintained via the
concept of convergence of sequences and series. Even ir@ppience and engineer-
ing, one is interested in the convergence of sequences &ied séresults generated
during experiments. A divergent series or sequence isftirer@ot as useful as the
convergent ones.

Spectral theory is applied in the determination of convecgeor non - convergence of
sequences and series.

The theorems in which ordinary convergence is deduced frarfdct that one has
some condition plus additional condition are called Taisivetheorems. The spec-
trum of an operator plays a crucial role in the developmentaafberian theory for
the operator which is used to determine the limit or sum ofravement sequence or
series. Mercerian theorems are also developed using tlo&speof an operator and
are used to determine the limit or sum of a convergent seguenseries. For ex-
ample, letA be a coregular triangle with inverse satisfyianrg1 <0, (n<Kk), agt >

0, (n=0,1,2,---), thenl + aAis equivalent for convergence f&e(a) > *Tl where
t=limAe e={1,1,1,1,---} andeg = {0,0,---,1,---}, 1 in thek" position.

The spectrum and the eigenvalues of the Cesaro Operatodef drCy, on the se-
quence space®,c, {p(0 < p < »), C, l, bV, by, bVo, bs cs wp(0 < p < ), wp(0),
have been investigated by many researchers, the receri@ingOkutoyi and Akanga
(2005), Binod and Pallavi (2013). Hence various Tauberizoh ercerian theorems
have been developed. On the other hand, the spectrum anu/aiges of special
Norlund operators have been investigated by researchers such iabbiVilansky
(1960), Coskun (2003), Akanga, Mwathi and Wali (2010) andchdga (2014). The
spectrum of a generdérlund operator has not been determined and therefore the
Tauberian and Mercerian theorems has not been determingthtmperator.

In this research, we investigate and determine the speatfuarclassB of N6rlund
operators on the sequence spaggs andbvy. These are the most common spaces
in analysis. This will find application in the developmenflauberian and Mercerian
theorems for théNdrlund operator which is used to determine the limit or sum of a
convergent sequence or series

15



1.4 Justification

A part from the various applications of spectral theory nred in section 1.1, the
spectrum of operators is a very important tool in the sofutibsystems of linear equa-
tions. Established theorems such as the comparison tesgtib test and the integral
test, are not applicable in a variety of sequences and sdfmn where they apply,
they just determine convergence but not limit or sum of a ecgent sequence or se-
ries respectively. Tauberian and Mecerian theorems in salmiity theory handles this
problem well. The convergence and even limit of a convergequence or series is
determined from the convergence of some transform of itttegewith a side condi-
tion, (Boos, 2000, pg. 167-204), (Hardy, 1948, pg. 148-1@9well and Shah, 1972,
pg. 75-92), (Maddox, 1980, pg. 65-80). Therefore the resulitained from this re-
search will find application in the development of Taubeaand Mercerian theorems
for the N6rlund operator. In turn, this will find applications in diverse éislsuch as
integral transforms of Fourier analysis; in probabilitydastatistics through such areas
involving central limit theorem, almost sure convergersianmation of random se-
ries, Markov series, (Boos, 2000, pg. 256-257). The eigargaand the spectrum of
a matrix also has numerous applications, for exapmle inmsgky system of first order
differential equations. The system can be written in mdbim asy = Ay wherey is

a function oft. The solution is given by = e\t where); are the eigenvalues #fif it

is a diagonal matrix. If it is not diagonal then it is diagdmat and transformed i.e

y=Pw

y = PwW
w = P~ 1APwW

w = et

whereP is the diagonalization matrix andl are the eigenvalues of the resulting di-
agonal matrix. Also, in Quantum mechanics, the Hamiltorianf some system is
given by an infinite matritd = (hjj),i,j =1,2,--- considered as an operator on some
infinite set of numbers . The possible energy values of theesyare the eigenvalues
of H (usually relative to?) and the main problem of pertubation theory is to estimate
these eigenvalues.
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1.5 Objectives

1.5.1 General Objective

To determine the spectrum of a class\airlund operators on sequence spacgsc
andbv

1.5.2 Specific objectives

1. To compute the spectrum of a classNifrlund operators whempg = m, p; =
p2=p3=ps=---=0,me R on sequence spacesandc.

2. To compute the spectrum of a class\dfrlund operators whempy = p1 = p2 =
m, p3 = P4 = ps--- = 0, m& R on sequence spaces

3. To compute the spectrum of a class\dfrlund operators whempy = p1 = p2 =
m, p3 = pa = Ps--- = 0, m€ R on sequence spaces

4. To compute the spectrum of a clasd\dfrlund operators whemy = p1 = p2 =
m, p3 = pa = Ps--- = 0, m & R on sequence spacbg.
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CHAPTER TWO
THE SPECTRUM OF A N ORLUND OPERATOR B ON ¢y

2.1 Introduction

This chapter investigates the spectrum of tleelt\id operators | and B on the sequence
spacecy by applying theorem 1.1.9.

2.2 The spectrum of | operator oncy

Theorem 2.2.1.The spectrum of & B(cp) is the singleton seftl}.

Proof. | € B(cp) sincenirogank = 0 for each fixek, k=0,1,2,... and

Sup=of ¥ |ank } = 1 < o satisfying all the conditions in theorem 1.1.9.
~ k=0
Also [|Hley = [I1[ly, = 2.
Supposéx = AX, X # 0 in ¢cg andA € C,
X0 = AXo
X1 = )\Xl

Xo = A X2
then _ ,

Xn = AXn

solving the system gives = 1, henced = 1 is an eigen value dfin cp.

I*=1T =1, henceA =1 is an eigen value df in co.
Solving the systenil — 1A )x =y for x in terms ofy to get the matrix of| —1A)~! we
have

1-A 0 0 0 X1 V1
0 1-A 0 0 X2 Y2
0 0 1-A O X3 y3 (2.2.1)
0 0 0 1-A X4 Ya
or
(1-2A)%=Yo
(I-A)x1=wy1
(1-2A)x2=Vy2 (2.2.2)
(1-2A)x3=1ys3
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which gives

XOZﬁyo
Xlzﬁw
Xo = 15Y2 (2.2.3)
XSZﬁys
this gives the matrix

1
&5 0 0 0
0 & 0 0

I-1A)t=] 0o 0o & o0 (2.2.4)
o o0 o0 &

The columns of this matrix are defined for all valuesAof~ 1 and converges to zero
satisfying part (i) of Theorem 1.1.9. For the second pag,sg{ 5 |ankl} = 125 < ©
~ k=0

providedA +# 1, hence(l —I1A)~1 € B(cp) if A € C such thatA # 1. Which implies
(1 —1A)~1 ¢ B(cg) whenA =1. O

2.3 The spectrum ofB operator on ¢

Refer to matrix 1.1.13

Corollary 2.3.1. B € B(cp)

Proof. r!il;noobnk = 0 for each fixek, k=10,1,2,...and

IIB|| = sup]zo{kgo |bnk|} = 1 < . Satisfying the conditions in theorem 1.1.9. O

Lemma 2.3.2.Each bounded linear operator TX — Y, where X= cp,¢1,c and Y=
Co,{p(1 < p < ), 4, determines and is determined by an infinite matrix of complex
numbers.

(Taylor, 1958, pg. 217 - 219)

2.3.1 The eigenvalues dB € B(cp)

Theorem 2.3.3.B € B(cp) has no eigenvalues.
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Proof. Solving the systerBx= Ax, X # 0 in cg andA € C, then

10 0 0 O- X0 Xo
13 0 00: X1 X1
1 1 1
i1 1 0 0. X X
3 3 3 7 2= (2.3.1)
0 3 3 3 0 - X3 X3
1 1 1
003 33" Xa Xa
which gives
Xo = AXo

X0+ 3X1=AXg
o+ix+Ix=2Ax
X+ 3o+ I =Axs (2.3.2)

1 1 1
3Xn-2+ 3%n-1+ 3% = AXy

Solving the equation, i is the first non zero entry of thenA = 1. ButA =1 implies
Xo =X1 =Xg =-+- =X, =---, Which shows that is in the span o = (1,1,1,1,---)
hence does not tend to zeroratends to infinity. Thereford = 1 is not an eigenvalue
of B € B(cp). Whenxq is the first non zero entry of, A = 3. But A = 5 implies
Xo = 0, Xo = 2X1, X3 = 6X1, X4 = 16X1, X5 = 44X4, - - - which shows thax is spanned by
{0,1,2,6,16,44, ---} an increasing sequence hence does not tend to zerteass to
infinity. If .2 is the first non zero entry far=0,1,2,3,--- , thenA = % solving the
system gives, =0forn=0,1,2 3,--- which is a cotradiction hence = % cannot be

an eigenvalue O

2.3.2 The eigenvalues dB* € B(¢1)

Lemma 2.3.4.Let T : cg — Cp be a linear map and define*T. {1 — {1 by T*og =
goT,ge€ cy=2¢1. Then T must be given by an infinite matrix of complex numbets a
moreover T : /1 — {1 is the transposed matrix of T .

(Wilansky, 1984, pg. 266)

Corollary 2.3.5. Let B: cg — Cp, then B = BT € B(/1)
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B*=B" = (2.3.3)

O O O O B+
O O O NRNIE
O O Wk Wk wk
O Wk wkrwk O
WRWRWFE O O

1Bl = [|B*] =1
Theorem 2.3.6.The eigenvalues of‘Bz B(/1) is the sefA € C: |A — %} < %}U{l}

Proof. Consider the systef®*x = Ax, X 0 in /1 andA € C,

13 2 00 Xo X0
1 1 1
0 5 3 3 0 X1 X1
oo 1 11 X X
3033 “l=al 7 (2.3.4)
00 0 35 3 X3 X3
00 0 01 X4 X4
or
X0+ 3%+ 3% = AXo
X1+ 3%+ 2x3 = AXq
1 1 1
X2+ 3X3+ 3X4 = AX
? 2+? 3+?X4 2 (2.3.5)
B+ 35X+ 3% = AX3
Xn_2+ 3Xn_1+ 3% = AXn_2, forn>4
solving the system gives
X2 = 3(A —1)X0— 5X1
X3 = 3()\ — %)Xl—XZ
=30 —gpe (2.3.6)
B 1 3.
X5 =3(A —3)X3 — X4

Xn=3(A — 3)Xn—2—Xp_1,N> 4
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1
3
o = 33(A —1)3%; —32(A — )2 —3(A - 3

k=0
n—1 n—1 %172
fornodd x =37 1A -13)7 - 3 3N — 5" 211, n=a
k=0 -
Each term is a geometric progression with common ratie 3(A — %)
0 5 2*2
S [l =Ixol+[xa| + el +xsl+ ¥ [32HA =32 e § 3 - 5% (2
n=0 n—4 =0
neven
n—1
® n—1 n—1 2
+ Y Bz A-37 - 3 A% @
n—5 k=0
nodd
3 o n n ® n— n—
<5 o+ 3 [BEA-DELel+ 3 3-8
n=0 n=4 n=>5
neven nodd
© 22 ki 1y ° 20?1k
3 3 FA-N% eyt T 3 [ 3% @]
n=4 0 n=5 0
neven nodd

asn — oo, this is a geometric series with the common ratie; 3(A — %). This series
converges only ifr| < 1, thatis|3(A — 3)| =3[A — 3| <lor|A 1| <i. A =1lisan
eigenvalue corresponding to the eigenvedpay, O, O, O, ...)T. Hence the eigenvalues
isthe se{A € C: A — 1| < 31u{1}. O
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2.3.3 The Spectrum oB € B(cp)

Theorem 2.3.7.The inverse of an infinite lower triangular matrix

ao(0) 0 0 0 0 w0 0
ao(l)  a(0) 0 0 0 0 0
20(2)  a(l) a0 0 0 0 0
a(3)  a(2) a(1) as(0) 0 0 0
L=| @04) a3 ay(2) as(1) a(0) 0 0
ap(m) a(m—1) ay(m—2) ag(m—3) as(m—4) --- an(0) 0
0 a(m)  a(m-1) az(m—2) as(m—-3) --- an(l) am:1(0)
is given by
1 _
. (o)’ n=Kk
_ —1)"
L= Wﬂ%%k(a m), (0<k<n-—1), (nkeNy)
0, (k>n)
where
a(l)  al0) 0 0 0
a(2) a+1(1) a+2(0) 0 0
DI\ (@alm) = | a(m) aci(m—1) ay2(m—2) - am(0)
0 a1(m  age(m=1) : am(l)
0 0 0 0 0 ank-1(1)
n>1.
(Pinakadhar and Dutta, 2014).
1-A 0 0 0 0
I 1-x2 o0 0 0
1 i 1_x o 0
Corollary 2.3.8. For matrix B, we havé—I1A = 3 R
0 3 3 342 O
A
=, n=k
(B—1A)~lisgivenby My = (ﬁ}ﬂD(kjk, (0<k<n-1), (n,ke Np) where
j=k@n N
0, (k>n)
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ak a1 O 0 -0
ak Ax+1 axi2 O -0
an—)k =| 0 a1 aski2 a3 0
0 :
o T
for k=0, D\ = |azo| = 3
3 3
bia o
oP=|3 5 4o
0 3 3
3 3-2 0 0 0
Pl o3a 0 o
1 11
Dﬁo): g ?) i’ é;)\ g , Which is an nx n tridiagonal matrix.
3 3
: : 0
0 0 0 i1
1 i-2 0 0
R I
fork>1,D% =0 1 i 0 |, this is an n—k x n—k tridiagonal
: : 0
0 O i1

matrix.

The determinant of this tridiagonal matrix is given by,
detB(n) = $detB(n—1) — 5 (3 — A) detB(n—2)
Substituting gives matriM as,

" 0 0 0 0
-1 1
2(1-A)(3-A) 32 0 ° o
{%*g%*)\)i — 1 0o o .
_ | senEnEan G I
M=1 dea’s)gn  Gam 4 (238)
2a-NE-NE-07 2ENEA? 3342 Ta
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n— _1\n—k
fOI’kZZ,mnn:L mnkzﬁD(k) :( 1)"(3D,

A (%_A)nkarl n—k

1

2

K k
;k,r%@wdlk,z)
3

WIS

fork =0, D(lo) =1

2
DY =3(3)~(3-A)3=3(3-(G-A)}
DY = ${3-3(1-31) ~ (5-2)} = ${3(1-(1-30) - (3-A)}
DY = 5{-2(1-30)~(3-N) - (3-2)(1-31)}
= 5{3(1-2(1-32)) = (3-2)(1-(1-3A))}
DY = L{3-31-30)+31-3A)2 - (1 - M) +2(3-A)(1-32)}
= L{3(1-31-30)+(1-31)2) — (1 - A)(1+2(1-3A)}

A
G
Il
K
L
AN
—
NI

<§; a(1— 3)\)") —(3-2) (zil by (1— 3)\)") }When niseven,
k=0

n1 n_1

DY = 5 {% ( s ak(1—3)\)"> —(3-2) ( 5 bk_1(1—3)\)"1> }when nis odd,
k=0 k=0

whereays andbyg are integers.

Hence then'" row is given by

B (~1)"
o =TT I a0

whenn is even, and
n-1 n-1
(—1)"{%( § ak(1—3)\)k) —(%—A)( § bkl(l—SA)kl)}
D(O) . k=0 k=0
N =

FIENENE- ’

_ -"
0= N G-AEA
when n is odd.

As n — o, the columsm,, — O only if the denominator tends to infinity, and the
denominator tends to infinity providéa(% —A )] > 1.

Similarly for k = 1, the denominator is given by*3'(3 — A)(3 — A)"~lwhich tends to
infinity provided|3(3 —A)| > 1or|1—A| > 3

Similarly for k > 2,the denominator is given by*3‘(3 — A)"**1which tends to in-
finity provided|3(3 —A)| > 1 or |3 —A| > £, which satisfies condition (i) of theorem
1.1.9 O

Summing the entries of the matrix 2.3.8 along tfierow, we have
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® _ (—1)p? (~y~*plY
%o Mkl = | mnand | | g
. — K) 1,1 (k)
(-)" (DY, s~ 23 -2)DY, )
P T

say forn > 0. sup{sn} < K < o, providedA € C such that}% —)\} > % since the
columns are tending to zero adends to infinity. Which deals with condition (ii) of
theorem 1.1.9.

Therefore(B—1A)~1 € B(co) if A € C suchthaf2 —A| > 3 . Which implies
(B—1A)~1 ¢ B(co) if A € Csuchthail —A| < 3. Clearly, whemk = 1, column 1 is
infinite therefore the inverse does not exist. Hea¢B) ={A € C: |A — %] < %}U{l}.

2.3.4 The spectrum oB* € B(¢1)

Theorem 2.3.10.The inverse of an infinite upper triangular matrix

20(0) ao(1) a(2) ao(3) a(4) ---  a(m) 0
0  a(0) a(l) a(2) a(3) ai(m-1) a(m
0 0 a0 a(1) ax(2) a(m-2) a(m-1
0 0 0 a3(0) az(1) az(m—3) ag(m-—2
U= 0 0 0 0 a4(0) ay(m—4) as(m-3
0 0 0 0 0 am.(O) am(1)
0 0 0 0 0o - 0 am+1(0)
is given b3./
) ﬁv ( = k)
T n(Ellj}Z»D'@” alm), (0<n<k-—1), (nkeNp)
0, (n>K)
where
ao(1) a(2) ao(3) ap(m—1) ao(n)
a1(0) a1(1) a1(2) ap(m—2) ap(n—1)
DR’ (alm)=| 0 an(0) am(1)  am(2) am(n-m) |,
0 0  am1(0) amea(l) amt1(n—m—1)
0 0 0 0 an-1(0) an-1(1)




n>1.
(Pinakadhar and Dutta, 2014).

Corollary 2.3.11. For matrix B*, we have

1-2 3 z 0 0
1 1 1
0 o 1_) 1 1
B* —IA = 3 3 3 (2.3.10)
0 0 o i-a 1
0 0 0 0 3-A
(B* —1A)~Lis given by
1 —
k 3’ =k
—1)k-n
Uni = I%Jkiamn,i“)n, (0<n<k-1), (nke No) (2.3.11)
0, (n>Kk)
where
1 1
: 1 0 0 0
1 1 1
-3 3 0 0
1 1 1
Dgn): 0 :._’»_)\ li__% ? 0
0 o i-a 1§ 0
0 0 0 -2
1
0) °
1
forn=0, D\” = |}|
1 1
D.(ZO): 12 ?
53— 3
1 1
. 3 3 0
0P = 3-A 4
1 1
1 1
: i 0 0 0
1 1 1
A3 3 0 0
1 1 1
Dno): 0 3~ A 3 3 0 , Which is an nx n tridiagonal ma-
0 o -2 1 0
0 0 0 -2
1
3
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trix.

this gives, [éo) = %Dl(g)l —%(3-2)DY ,and
b1 0 o
1 1 1
A 3 3 0
fornzl,Dl@n: o i-2 3 0 |,
0 0 1-A
this is ank — n x k— n tridiagonal matrix.
OrDI(< )n 1DI(< )n 1_%<%_)‘)DI(<rl)n72'
so that,
1 -1 (3-G-2) —{3(1-(1-30))—-(5-2)
4 2120 31-MG-AGA) FA-A)(G-A)(5-A)2
O % 1 _11 2(%_ _fA) 2
2~ 3(741@4\) 3 (z*)\)ig%)
u=| © ° ™ T
0 0 5
(2.3.12)
_ 1 (—1)k (0 _ (—1*3D1-33-21)Df )
forn=0, Ugo = =5, Uk = TN NI Dy = T /}3}(“/\)3(1 A)(';l 2
_ 1 _ o (=pft @) (CDMED,-3(3-A)D )
forn =1t = 575 Uk = o D = g gt

_ a\k-n 1k n D(”) 1.1 A ()
fornZZ,UnnzllA,Unk: (=1 DI((n) :( ) ( k—n—1 3( )D kn2)
37 37

Remark2.3.12 For an infinite matrixA, the inverse oATequaIs the transpose Af 1,
e (AT) t= (AT

Theorem 2.3.13.The spectruno (B*) of B* € B(¢1) is the set
{AeC:]aA-3<Hu{y}

Proof. Applying theorem 1.1.10,we show th@* —1A)~1 € B(¢;) for all A € C such
that[A — 3| > 1
Summing the entries of the matrix along #& column, we have

(-1 0oy |2 o)

2o ' = [T | T lgaans |t 2, | g
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0) 1)

0o D< (
u — Kk k=1
nZO Uk (1-2)(3-A)(5-A)2 G-NE-m1 T4
The first term and the second term are finite provided 1, % % we show that

[e] D(”)

-n 1 1
, (%J‘w < wforall A € CsuchthafA — 3| > 3

+

n=

D" =3
Dy =3G3)-(-Mi=F-3(3-H)
DY =2 {3- (- V- G-y =4-3(3-2)
DY =533 -2G- N - 3G (33-G-01
=3 3E-N+ 3G
og =5{3-3G-N+3G- V-1 {3360
4 2

m _ 1 aa (1 aa 1 ., a 1 .,
Dk—n_3kn_W<§_)\ T z(3 A g3 AT

()’

,m=12.--3(k—n)—1,ifk—nisevenandn=1,2---3(k—n—1) — 1, otherwise.
Dy
Foe| =

Hence|uny| =

1 _ a + a _ ag 4. (_1)m am
3k—n(:_13_)\)k—n+1 3k—n—1(:_13_)\)k—n 3k—n—2(%_A)k—n—l 3k—n—3(%_A)k—n—2 3k—n—m(%_)0k—n—m+1

asn — oo, |up — 0 if the denominator is tending to infinity, i.3—A| > 1 or

$-A|>1 Hencenz0 |Unk| < oo for each fixedk all |3 —A| > § . Which proves part
(i) of theorem 1.1.10
Again summing the entries of the matrix along #f&column, we have

o ol = (—1)kD|((O) . (_1)k—1DI((3£)1 ) o (_1)k—n<D|((fl)n)
n;) AN E-NE-) G- E -t T & Boayken
(2.3.13)

equation 2.3.13 equals equation 2.3.9 , hencg{sp |unk| } < c providedA € C such
n=0

that|3 —A| > $ . which proves condition (ii) of theorem 1.1.10. TherefBte# B(¢1),
provided{A € C:|A —§| < 1}u{1}. O
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CHAPTER THREE
THE SPECTRUM OF A N ORLUND OPERATOR BON ¢

3.1 Introduction

This chapter determines the spectrum ofalbid matrixB as an operator on the se-
guence spaceapplying theorem 1.1.7.

3.2 The spectrum of | operator onc

Theorem 3.2.1.The spectrum of & B(c) is the singleton sef1}
Proof. | € B(c) since O

1. nIim ink = 0 for each fixedk, k=0,1,2,...
— 00

(o)
2. lim 5 ipgxk=1asn— o
nﬁookzo

3. SUpol 5 find} =1 <

Also ||l = 1%, = 1.
supposex = Ax, X# B incandA € C, then

Xo = AXo
X1 :)\X]_

o =he (3.2.2)

Xn = AXn

solving equation 3.2.1 gives = 1, henceA = 1 is an eigen value dfin c.

I* =1, henceA = 1is an eigen value df in c.

Solving the systenil —1A)x =y for x in terms ofy to get the matrix of| —1A)~! we
have

1-A 0 0 0 X1 Y1
0 1-A 0 0 X2 Yo
0 0 1-A 0 - x3 | =1 vys (3.2.2)
0 0 0 1-A X4 Ya
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or

therefore

this gives the matrix

(I—1A)71

(1-=2A)%=Yo
(I-A)x1=w1
(1-A)x2=Y2
(1-A)x3=y3

Xo = ﬁyo
X1 = ﬁyl
X = ﬁ)/.z
X3 = ﬁys
2 0

0 x

0 0

0 0

=
OL‘HOO
‘l—‘OOO

[EnY
>

(3.2.3)

(3.2.4)

(3.2.5)

The columns of this matrix are defined for all valuesAof~ 1 and converges to zero
satisfying part (i) of theorem 1.1.7 for the second part,sgpy |inkl} = 25 < ©
k=0

providedA # 1, hence(l —1A)~1 € B(c) if A € C such thatA # 1. Which implies

(1 —1A)~1 ¢ B(c) whenA =1.

3.3 The spectrum ofB operator onc

The matrixB =

Corollary 3.3.1. B € B(c)

O O WKFkNEFk =

O Wk wkr Nk O

Dok wRwE O o

wWkRrwFkr O O o

w= O O O o

1. nIin bk = 0 for each fixek, k=0,1,2,...
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(o]
2. lim 5 bpx=1asn— o
n—e o

3. /Al = suBof 3 [onkl} =1 <o

Theorem 3.3.2.The eigenvalue of B B(c) is the singleton seft1}.
Proof. Solving the systeBx= Ax, x# 8 in candA € C, then

100 0O0: Xo X0
3 0 00 - X1 X1
é% % 28: Z — A Z (3.3.1)
3 3 3
00133 ||x X
which gives
X0 =AXo

Ix0+ix1 = Axq
0+ 3x+ e =Ax
X1+ 3%+ 3% = AXg (3.3.2)

1 1 1
3Xn-2+ 3%n-1+ 3% = AXq

Solving 3.3.2, we have ik is the first non zero entry of, thenA = 1. ButA =

1 impliesxg = X1 = Xo = -+ = Xp = - -+, Which shows thak is in the span o =
(1,1,1,1,---) which tends to 1 am tends to infinity. Thereford =1 is an eigenvalue

of B € B(c). Whenx; is the first non zero entry of, A = 3. ButA = 3 implies

Xo = 0, Xo = 2X1, X3 = 6Xq, Xq4 = 16Xy, X5 = 44Xy, --- which shows thak is spanned

by {0,1,2,6,16,44,---} an increasing sequence which is not bounded above, hence
does not converge astends to infinity. Ifx,.2 is the first non zero entry fon =
0,1,2,3,--- , thenA = % solving the system giveg,=0forn=0,1,2,3,--- which

is a contradiction henck = % cannot be an eigenvalue. O

Theorem 3.3.3.Let T: c— c be alinear map and definéTc* — c*i,e T": /1 — {1by
T*(g) =goT, ge c* =/¢1. Then both T and Tmust be given by a matrix. Moreover

T* .41 — f4is given by the matrix,

(a)g A
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X(mA) vo vi W

= ap dpp Aip Ay - (3.3.4)
ap dpo2 A1z a2

, where

X (mA) = lima(8)— 5 limad¥
k=0

Vo =X (FhoT) (3.3.5)
and
ax = lim ank
n—oo

(Wilansky, 1984. pg. 267).

Corollary 3.3.4. LetB:c— c. Then B € B(¢;) and

100 0 O
1 1
015 3 O
ool 1 1
B* = 2 f f (3.3.6)
000 3 3
000 01
Proof. By Theorem 3.3.3
B =T* = < X((tl)'r;]mB) (V;t)o ) (3.3.7)
k)0

wherey (limB) = limg (J) — % limg &X is called the characteristic of a mati
K=o
5={1,111,...}, limg(d) =1 andd* = {0,0,0,0,...,1,0,0...}, having zeros
with 1 in thek!" position, limg ¥ = 0 andy limg 6 = 0. Hencey (imB) =1-0=1.
Vn=X(PhoT) = (PhoT)d— ¥ (PyoT)5X but for matrixB, (P,oT)d = 1, Vn and
kS0

5 (PhoT)ok=1ie
k=0
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(14040+0+---)=1-1=0
@+1+0+0+ )=1-1=0
(+ + +0+ -)=1-1=0
+3+3+3+0+0-)=1-1=0

Vo=1-
vi=1-
Vo=1—

(3.3.8)

I
H

V3 (0

=0,n>0

1 6
< 5 or ) (3.3.9)

hence the matrix becomes

Theorem 3.3.5.The eigenvalues of'B= B(¢1) is the sef{A € C: })\ — %} < %}

Proof. Consider the systef@*x = Ax, X 6 in /1 andA € C,

100 0 00 X0 X0
013 % 00 X1 X1
1 1 1
00 5 3 3 0 X2 X2
ooo i %1 3 | =A[ x (3.3.10)
000 0 3 3 X4 X4
000 O 03 X5 X5
which gives
X0 = AXo

X1+ %Xz-l— %Xg =AXg
X0+ X3+ 3% = AXp
%X3+%X4—|—%X5 =AX3 (3.3.11)
e+ 36+ 3% = Axg

Xn_2+ 3Xn_1+ 3% = AXn_p, fOrn>5
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solving the system, we have

3(A —1)x1 — 3%

X3 =
X4 =3(A — 3)% — X3
=3(A —1xz—
X% =3 ?)x3 X (3.3.12)
X = 3(A — 3)X4—Xs
Xn=3(A — 3)Xn—2—X1-1,N>5

which gives

Xg=33A —3)3%s—3%(A — 3)a—3(A — )% — Xg
x10=33(A —3)3x4 —32(A —3)%5—3(A — 3)x7 — Xo
x11=3*A — 3)*xs—3B3(A — 23— 3%(A — 1)%%6 — 3(A — 2)xs — X10

forneven x, = 3272(A — 1)3-2x,—

-3
Z 34(A = )" (k1) N> 6
1 Ll_z
fornodd x, =3"2 1A —1)"2 “Ixg— Z (A = )" (2x11),N>5

(3.3.13)
Each term is a geometric progression with common ratie 3(A — %)
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Z) [Xn| = [Xo| + [X1| + [X2| 4 |X3| + |Xa]
n=

n_3
l n 1. 2 1
272 52 k k
LD I E i Uy §)2 X4 kZO 3% (A - é) Xn— (2k+1)
n==~6 =
neven
co 1 %172 1
n-1_ n-1_
+ Z 32 1()\ — é) 2 1X3— Z 3k()\ _ é)kxn—(2k+1)
n=>5 k=0
nodd
<SSt 3 [Era-bizels v el
B n;) " Z 3 2 Z 3 3
neven nodd
A U © e Lu
+ Y Y A @t Y Y A3 %@y
=0 K=0
n= n=>5
neven nodd

asn — oo, this is a geometric series with the common raties 3(A — %). The
series converges only fif| < 1, thatis|3(A —3)| =3|A — 3| <lor|]A -3 <1 O

1-A 0 0 0 0
11
1 1.2 0 o0 o0
1 1 1.2 o 0
For matrix B, we hav8 — 1A = 3 f 31 L ,
0 3 i 374 O
o o i1 g
M = (B—1A)~1is given by
1 _
k B n=k
N
My = %ﬁD(njk, (0<k<n-1), (nke No) (3.3.14)
0, (k>n)
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This gives matrixM as in 2.3.8

Direct calculations confirms th@B—IA)M =M (B—1IA) =1 i.e
1-A 0 0 0 0
I 3-2 0 0 0
1 1 1
1 i 12 o0 0
(B—IA)M = 3 537 %
0 3 3 374 O
o 0 3§ §
1
= (3 0 0 0
2(1-2)(3-7) 32 o0 o
3-G-M} 1 1 o 0 .
(1-AG-MNG-A) - 3G-MGA) FA
—{3(1-(1-3))-(3-2) _ (1-(1-3)) 1 L g
FA-N)(3-MGF-A2 FE-AHE-A? 3342 52

in row 0 column O, we havél — A )(ﬁ) =1, the other row elements are zeros

)(3-2)

Row 1 column 1(% —A)(+=) =1, the other row elements are zeros
I

Row 1 column 0, we havé(:1:) — (3 -2 <2(1+> — 0 and
1

rown,( o011 -0 )With non zero entries whela=n—2, n—
1n
hence row n column 0O gives

1
()
-1
2(1-2)(3-2)
2-(G-M)}
3(1-A)(3-A)(3-A)
(0 - 03 3i-r0-) BTSN (3.3.15)
(14\)(%4)(%14)”*3 n-2
(=" D@
(1—/\)(%—)‘)%—)‘)”*2 n—1
(=1 DO
(-1 GG 17"
w.l.0.g suppose n is even then,
Dgojz . Dgojl n (%_)‘)D“O) _ (%_A)Dgof)z_DﬂfﬁDgO)
3(L-A)(3-A)(GF-A)"3 BL-A)G-A) (-2 (1-A)(3-A)(3-A)"L T 3(1-A)(5-A)(3-A)"2
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0 0)
(3-2)pY, bl +3(3pYY ~1(3-2)DY_,)
TN EN A2

0)

(3-2)Dy, D1 +D~(3-MD3 ) _
= 3(1_/\)(1_/\)(1_””72 =0foralln> 1.
Similarly, row n column 1 we have
0
1
1A
-1
3(3-M)(3-2)
0 oiii_xo _q)n-3 1 (3.3.16)
(o oddimno )l o op,
=2 )
(3-A)(3-A)n2 N2
(G VA N
(3-A)(3-A)n-17n-1
w.l.0.g suppose n is even then,
DY DY, + (%*A)Dnljl _ (%*)‘)Dnlf)stnlL*ngl)l
33-MG-)"2 3F-NG-A2 T G-HG-anT 3(3-A)(3-A)2
_ (3-2)01s D, 13030, 3(3-M)DyYy)
N 3(3-A)(3-A)"2
1 )p®,-b®,+p®, (1-A)Dk
— (340 an +1D“ (3 A)D“*s):Oforallnzz,
3(3-A)(5-A )
row n column k, 2< k <
0
0
1
-2
11 1 k-2 (K 3.3.17
(O 0 3 3 3 A0 ) ((17)3)n—k71DI§17k72 ( )
1n—k—1 k
((% ))\)nfk Dlgl—)k—l
(G ORI
(%,A)n7k+l n—k

w.l.0.g suppose n is even then,
k k

Dr(w k=2 Dr(1>k (*_)‘) (> (%_A)D )kfz_DU 1+3Dn%

3(%7)\)n—k—1 (% —A)n- (1 —A)n- k+1 (%7)\)
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w (]
A=
Ik |
>
\/
7
=~

row n column kK, fork = n,

o

(3.3.18)

‘|_\ o O -

[N
|
>

—1(0)+1(0)+ (3-A) (%) —1
This gives a matrix witla,, = O for all k # n andan, = 1, which is the identity matrix.

Similar calculations shows thi (B—1A) = I, henceM = (B—1A)~1
Theorem 3.3.6.The spectruna(B) of Be B(c) isthe sefA € C: A — %\ < %}U{l}

Proof. We show thatB— 1)~ € B(c) for all A € C such thafA — 3| > 1
fork =0, D(10) =1

DY — 3}~ (3= M3 = Hi-(3-2)}
A

0
DY = 3(3-3(1-30)~(3-2)} = {31~ (1-30))~ (3-2))
0
DY = 3{3-3(1-30) - (3-2) - (G-MN(A-3)} = 2{3(1-201-31) - (3 -
A)él—(l—B)\))}
DY = L{3-3(1-3) +3(1-3)2 - A -A) +2(3 - N)(2-320)} = H{31-
3(1-3A)+(1-30)H) - (3 -A)(1+2(1-31)}
n_q 01
DY) = T {% <Zz ak(1—3)\)"> —(3-2) (22 bk(1—3)\)"> }when nis even,
= k=0
an
DY = 5 {% ( 3 ak(1—3)\)k> —(3-2) < 3 bk1(1—3)\)"1> }When nis odd,
k=0 =0
whereay s andby s are integers.
Hence the!" row is given by
(1)“{% <zzlak<13A>k (%A)( zlbkusmk)}
_ *1)n D 0) _ k=0 —
0= NG aE T T ERE eI Ve ’
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n—1 n—1
(1)“{% (?w(lsmk) ~(3-) (Efbk1<13A>kl) }
(_1)n Dlgo) . k=0 k=0 ,

o= Hd oo T T A D0 T
asn — oo, the columam,, — 0 only if the denominator tends to infinity, and the de-

nominator tends to infinity provide@(3 —A)| > 1.

Similarly for k= 1, the denominator is given by"3'(3 —A)(3 — A)"~ which tends
to infinity provided|3(3 —A)| > 1or|3 —A| > 1

And for k > 2, the denominator is given by3(3 — A)"~*+1 which tends to infinity
provided|3(3 —A)| >1or|3—A| > 1. O

Which proves theorem 1.1.7 (i). Summing the entries of th&ima.3.8 along the
nth

row
S Ml =
< 1) (K 1,1 (k)
—1)"DY (—1)" Dy ()" %30y 1 —3(3-2)DY, )
(lfA)((%—))\)(%f)\)n—l + (l,)\)(l )\)nll > (%E)\l)nfkjl k-2 = &, SAY

for n> 0 sup,{sh} <K < oo, prowded)\ c C such thatz —A| > 1, he nce satisfies
part (iii). For part (i), we haveM = (B—1A) "t and(B—1A) (B—1A)"t = 1. Now
Md = z Mo, Whered = (1,1, ,1---)7. Also(B—1A) 1 (B—1A) = M(B—I)\) =
multiplying by on both sides1 (B—1A)d =19. SinceBd = d, we haveM (6 —A9d) =
00orM(1—A)d = 9d. Therefore

Mo = ﬁé (3.3.19)
That is . L
k; Mok = 37— (3.3.20)
hence Iri]m Z Mk = I /\ 175 <o providedA € C such thatt # 1.
Therefore( IA)~ 1 € B( ) if A € C such thati3 )\i > 3 Which implies(B —

1A)~1¢B(c) if A € Csuchthat: —A| < 3. Clearly, whem = 1, column O is infinite
therefore the inverse does not exist. Heog8) ={A € C:|A — 3| < 1}u{1}.

40



CHAPTER FOUR
THE SPECTRUM OF A N ORLUND OPERATOR B ON by,

4.1 Introduction

In this chapter, we determine the eigenvalues and the spedtf the matrixB on the
sequence spad®j by using Theorem 1.1.14:

00 m

a8l g = U0 3| 5 (D)

4.2 The spectrum ofB € B(bw)

Theorem 4.2.1.B: bvp — bv and Be B(bw) with [|BJ|,, = 1.

Proof. Using matrixB, lety, = 5 bnix, wherex, € bvy, we have
k=0

Yo = Xo
y1=3(Xo+X)

Yo = 3 (Xo+ X1+ X2)

Y3 = 3 (X1 + X2 + X3) (4.2.1)
_ 1

Y4 =3

(X2 + X3+ X4)

Yn= %(Xn—z-i-xn—l‘i'xn)a n>?2

In general,
Yo —Ynra| = 3|02+ X1+ %) = (Xn-1+Xa + X)) (4.2.2)
= % |Xn_2—Xn+1‘ , N > 2
This gives
3 W =¥ns1l < 3 Iyn—Ynral = 31003 +xe) — (a+xe +x3)]+
n= n=
21X+ X2 +X3) — (Xp+Xa +Xa) |+ +
%|(Xn72+Xn71+Xn>—(Xn,1+xn+xn+l>|_|_... (423)

< X0 —Xa| + 3 X1 — Xo| + 2 %2 — Xa| + 3§ [X1 — Xo| + 3 |X2 — X3 +
%|X3_X4‘+%|X2_X3|+%‘X3_X4‘+%|X4_X5|+"‘ %|Xn—xn+1|+"'
(o]

<3 |Xn—Xn+1]
n=2
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Z) [Yn—Ynia] < ZZ [Xn —Xn 1| < o0 (4.2.4)
n= n=
and| Yot | — '%(an+xn+xn+l) % — 1, hence
3(—2+Xn-1+%n) Xn
il 1 n>1 (4.2.5)
Yn

This is the case sinog — 0 asn — o so thatx, > X1 andx, < x,_1. Hencey, — 0
asn —» co, Thereforey Bx € bv. Direct computation shows that

m
1Bl v, bvo) = Sup Z 2 (brk — bn— 1k)' =sup(1,1,1,1,---)=1
and Ilmbnk =0, VK > O hence all conditions of Theorem 1.1.14 are satisfied. There-
fore B € B(bw, bw) O

Corollary 4.2.2. B € B(bw) has no eigenvalues.
Proof. by C co, B € B(cp)has no eigenvalues, see theorem 2.3.3 O

Theorem 4.2.3.Let T : bvg — bvp be given by a matrix A= (ank). Then T : bvy —
bvj is also given by a matrix. Moreover s the transpose of the matrix A acting on
bsi.e

do0 a10 a0

do1 ai1 a1

T = AT = (4.2.6)
dp2 A1z a2

, (Akanga, 2014)

Corollary 4.2.4. Let B: bvy — b, then B : by — bv;; moreover, B =BT acting on
bs.

Proof. Replace the matriR by matrixB in theorem 4.2.3 O

Theorem 4.2.5.The eigenvalues of Bc B(bs) are all A € C satisfying the inequality
A -1 <}
3l <3

Proof. Supposé8'x = Ax, solving forx, we have

a1y 1\0-1 _%_ kry _ 1\k
forneven x, =32"(A —3)27"% ZO 3 (A = 3)%-(241) (4.2.7)
n— 1_2

fornodd x,=3"2 (A ~ 17 xg— Z 3(A = )" (2K11), n>4



which is a geometric series with a common ratie 3 (A — %)

[Sli=] —

m m 272
Y [l =0l +xal+ e+ xa[+ Y [327HA - 32— T (A — M- @key)| +
n=0 n—4 =0
neven
L 1,051 2 Lk
S B77MA-37 - 3 A -3 @y
k=0
n=>5
nodd
3 m n n m n-1 n-1
<5 o+ 3 [BFA-DELel+ 3 35 |+
n= n=4 n=>5
neven nodd

mo 22 1\k il 2 1k 1\k
> kZ 1A =5 -+ Y T 3O =3 @iy| <o
n=4 *° n=>5
neven nodd
provided|3 (A —3)| <1 or|A — 3| < 3, hence the supremum exist.

Alternatively S |Xn| = [Xo| + |X1| + [X2| + |Xa| +
n=0

w n_
>3 =32 e 3 A -3 % ey +
n=4 k=0
neven
0 n%l_z
n-1 n-1
S B77MA-37 - ¥ A=)k
n=>5 =0
odd
3 n n— n—
<3 bal+ 3 [BEA-DEDel+ 3 [3T - |+
- n=4 n=>5
neven nodd
2 2%y 1k 2 "% 1k
> kzo 13X = 3) % 2an) |+ T kzo |3(A —3)"%— (2 1) |
n=4 " n=5 "
neven nodd

this is a geometric series with the common ratie; 3(A — %). This series converges
only if [r| < 1, that is|3(A — 3)| =3|A — 3| < L or|A — | < 3. Hence the partial

sums are bounded wheneyar— 3| < 1. O

Theorem 4.2.6.Let B: bvyp — bv, the spectruno (B) of B< B(bv) is the seA € C
such that{A € C:|A — 3| < $}u{1}.
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Proof. we show thatB— A1)t € B(bw), forall A € C satisfying])\ - %] > %

refer to matrix 2.3.8

The columns oM are null provideq)\ — %\ > %and)\ # 1, hence satisfying condition
(i) of theorem 1.1.14. Direct computation shows that

N
Zo MAk — Ma_1.k)

(o]

2

(4.2.8)

We have

2

8

(mnk - mnfl,k)
0

:Z+Z+Z (4.2.9)

n n—1
Mpyk— My—1,
kZO K kZO 1k| 5

n
Recall equation 3.3.13y my, = 12 SO that we have,
k=0

n=0 |k

Where
0<n<N (4.2.10)

1 1 1
=|— 4.2.11
Z |moo|—|-z 1 x| = Imool ’1_)\' ( )
And
N+1 N 1 1 1 1
=Y Myizk—m -y muk| = — — = n=N+1
; Z N-+1k — NN+ Z NKZ T Ty 14| |Toal +
(4.2.12)
While
00 N
Z: % > (Mhc—mh_1x) (4.2.13)
n=N+2 |K=0
= }mnoernlernz—mn 1,0~ Mh-11— Mh 1N’
n= N+2
which gives
@ | (1" (of-@-0pY) (1@, vl (cyr2p®,  (—qmNpN)
oRiz| ARG AGAE TR T GGG AT G NG ARE T Goarn
But,
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(-1™ 2, (-1 oy (-1 2D,

(-2 (D —(1-A)DpY, ~ L
G-t AANGNGA? GG

TG G T

Also

0 2
Dg‘)_ZDg)l %(% )‘)Dnjz
consequetly

0 2 2
0%, = 30, - 43110}

substituting in?? gives,

(—1)" [%D&”l—%(%—A)D‘ﬁz—a—A>D‘#M+<1—A><%—A D;>2+(%—A)%D<n>2—%<%—A>D<n2>3—<1—A><%—A>D‘nﬂ
n-1

2 2
A-ME-DG-A
Again
2 2
DZ; = %D( . 3(%_A)D§1—)3’

substituting in 4.2.14, we have

~(3-2) (302, - 33 -2)D%,) +3 (3-2) D2, - 13 -3 - 1D,
(1" =0
A-NG-MG -2
(4.2.15)
Hence
>n 1-NpN)
Z % n”Nl N (4.2.16)
n=N+2 3 )
Substitutingfom=N+2 N+3,N+4, N+5, ---, we get
(N) (N) (N) (N)
D/ DY D} D
= + + + T (4.2.17)
N NSy S S y Ay
which gives
1 1 1 1 2 1 3 1
3N T FG AR 3F AR PG AN EAAPFGAF PG AT EG AR
2 1
— + + 4.2.18
PE-A FGA 21



°° am
:n; 1y (4.2.19)
wherea/s are constants.
This is a geometric series which converge$3{3 —A)| > 1, hence the supremum
exist provided3(3—A)| > 1 or |3 —A| > 3. Therefore

N
DE\—)l— N

(o]

sup ’ ! '-1— +
N>o | |1—A n:%+2

exists for allA satisfying|3 —A| > 1 andA # 1. ThereforeM = (B—1A)~1 € (bw)
forall A € C such thafA — 1| > 1 andA # 1. HenceM = (B—14)~1 ¢ (bvp) for all
A € Csuchthaf |A — 3| < 2} u{1}. O

1
1
12

} (4.2.20)
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CHAPTER FIVE
CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

Summary of results, areas of applications and suggestiareas for further research
are given in this chapter

5.2 Summary of results obtained

These are the results obtained chapter by chapter.

In chapter two, we obtained the following results;

I The eigen value of € B(cp) is the singleton seft1}.

i. The spectrum of € B(cp) is the singleton seftl}.

il B € B(cp) has no eigenvalues.

iv.  The eigenvalues d8* € B(¢1) isthe sefA € C: |A — 3| < 2} uU{1}.
V. The spectrunw(B) of B € B(co) is the se{A € C:|A — 3| < 2} u{1}.

In chapter three, the following results were obtained;

i The eigen value of € B(c) is the singleton sef1}.

i. The spectrum of € B(c) is the singleton seftl}.

ii.  The eigenvalue oB € B(c) is the singleton seftl} .

iv.  The eigenvalues d* € B(/1) is the set{A € C: |A — %\ < %}.

V.  The spectrunw(B) of B € B(c) is the se{A € C: [A —3| < F}U{1}.

In chapter four, the following results were obtained,;

i B € B(bw) has no eigenvalues.

i. The eigenvalues dB* € B(bs) is the sef{A € C: })\ — %] < %}.

ii.  The spectrumo(B) of B € B(c) is the se{A € C: [A —1| <2} u{1}.

In conclusion, the spectrum is the same in all the cases,Jenilee sets of eigenvalues
differs.

5.3 Recommendations

The following are recommendation for future research:
(&) Investigating the spectrum of the operdarn the other sequence spaces
(b) Constructing the fine spectrum of the oper&amn sequence spaces
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(c) Investigating the spectrum of a generdlrNind operator

5.4 Areas of Application

The eigenvalues and the spectrum of a matrix has numeroulisapms in various
fields, a few areas are mentioned below.

5.4.1 Modelling population growth

Matrices can be used to form models for population growthe Tifst step in this
process is to group the population into age classes of equatidn. For instance,
if the lifespan of a member is L years, then the following remals represent the

X1
L L 2L (nfl)L . . . X2

age classed0,7), [+, %) - [5—,L], the age distributiox = . |represent the
Xn

number of population members in each group, the transitiamiris given by average
number of offspring produced by a member of the ith age in st fow and the
probability that a member of the ith age class will survivbgzome a member of the
I+1 th age class are in the other rows. TAg = X1 produces the age distribution
vector for the next period. To obtain a stable gowth patt#renAx; = A = X1 1.e
Xi+1 = AX a scalar multiple of the previous distribution.

5.4.2 Solution of system of first order linear differential ejuations

The system can be written in matrix form @s= Ay wherey is a function oft. The
solution is given by = e where); are the eigenvalues #fif it is a diagonal matrix.
If it is not diagonal then it is diagonalized and transformed

y=Pw
y =PW

W — P-1APW (5.4.1)
w = et

whereP is the diagonalization matrix amyj are the eigenvalues of the resulting diag-
onal matrix.
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5.4.3 Principal Axis Theorem

Principal Axis Theorem states that for a conic whose eqoat@3 + bxy+ cy? +
dx+ey+ f = 0, the rotation given byX = PX’ eliminates thexy—term whenP is an

A1 O
orthogonal matrix, withP| = 1, that diagonalize#\ i.e PTAP = < 01 ) ) with
2

A:( )

5.4.4 Application to summability of Sequences and Series

Nio
O NioT

A divergent sequence has no limitin the usual sense, in stnifitganethod, one aims
at associating with a divergent sequence a limit or a divérgeries a sum for instance
a divergent sequence= (xn) being given, we may calculate the sequefgg of the
arithmetic meang, = Ax,,, if y, converges ty then we say that, is summable ty
by A.

5.4.5 Quantum Mechanics

Let the HamiltoniarH of some system be given by an infinite mattx= (hjj), i, j =
1,2,--- considered as an operator on some infinite set of numberspodsible energy
values of the system are the eigenvaluesiofusually relative to/?) and the main
problem of pertubation theory is to estimate these eigelegal

5.4.6 Solution of Infinite Linear Systems

Infinite dimensional linear systems appear naturally whadysng control problems
for systems modelled by linear partial differential eqaat. Many problems in dy-
namic systems can be written in form of infinite differensgktems which leads to
infinite differential systems e.g Mathieu equation, Higuation e,t,c
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