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ABSTRACT 

In a limited radio spectrum, the future wireless technologies are supposed to deliver 

multimedia services such as video, data, and audio with a high data rate and virtually 

error free communication. The performance of radio signals that propagate through the 

wireless channel is limited by multipath fading, noise and interference and thus affect 

the signal quality. Adaptive coding and modulation (ACM) plays a vital role in 

improving the performance of wireless communication by adapting its transmission 

parameters such as coding rate and modulation order based on the quality of the 

wireless channel.  

 

Adaptive coding and modulation with Orthogonal Frequency Division Multiplexing 

(OFDM) systems allow the efficient use of available bandwidth to maximize data rate. 

In ACM techniques, both code rate and modulation order are varied dynamically to 

adapt the time-varying channel to improve capacity and reduce bit error rate (BER) in 

contrast to fixed systems that either enhance spectral efficiency or minimize BER. Due 

to the complexity and the uncertainty of the wireless channel, the conventional 

adaptive techniques, do not cope with the changing environment. Soft computing 

techniques, which do not require highly non-linear mathematical models, are 

commonly used to control and model uncertain systems. The fuzzy logic-based ACM 

is good in decision-making in an uncertain environment and performs better than 

adaptive and non-adaptive techniques but cannot learn from training examples. The 

neuro-fuzzy based approach combines the merits of both neural networks and fuzzy 

logic system. The neuro-fuzzy system grasps the learning capability of the artificial 
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neural networks to enhance the intelligent system’s performance using a priori 

knowledge.  

 

A special neuro-fuzzy method termed adaptive network based fuzzy inference system 

(ANFIS) is used as the model in our proposed algorithm. In this thesis, a neuro-fuzzy 

based adaptive coding and modulation for OFDM wireless systems is proposed and 

simulated in MATLAB environment. By analyzing the simulation results, the neuro-

fuzzy based model shows an average of 25.03% data rate/spectral efficiency 

improvement compared to the existing fuzzy logic model. It also shows that, the 

proposed approach outperforms compared to neural networks, adaptive and non-

adaptive techniques such that the BER and total transmit power remain under certain 

thresholds.  
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CHAPTER ONE 

1. INTRODUCTION 

 

This chapter provides a brief introduction to the background of the study, problem 

statement and objectives of the research work. In addition, a justification of the work, 

the scope and organization of the thesis are also presented.  

 

1.1. Background   

The emerging new electronic devices require improved wireless technologies to 

process large amount of information at higher data rates. A radio spectrum is used for 

data sharing to allow devices to effectively communicate with each other. The 

available radio spectrum is a limited resource and is usually shared among its users 

resulting in signal interference. In order to overcome such interference between users, 

the transmitted power is kept at a minimum level. Keeping both the frequency 

spectrum and transmitted power at low levels provides a limit to the data rate. 

Spectrally efficient data transmission schemes are becoming more common 

requirement for wireless communication that share the scarce spectrum to increase its 

performance. An adaptive coding and modulation is used to enhance spectral 

efficiency in wireless systems.   

 

The adaptive modulation and coding (ACM) is a technique employed to combat the 

effects of time-varying channel conditions imposed by fading, interference and noise 

on wireless communications. The performance of coding and modulation techniques 
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can be improved by adapting the transmission parameters such as code rate and 

modulation order to the time-varying channel conditions. The purpose of this 

transmission adaption is to increase the spectral efficiency, reduce BER and conserve 

the transmitted power [1]. The quality of channel should be estimated first to identify 

the best coding rate and modulation order. 

 

In ACM techniques, selection of the desired coding rate and modulation order depends 

on the estimated SNR and/or calculated BER as shown in Figure 1.1. When the 

estimated signal-to-noise ratio (SNR) is high, then a higher modulation order with 

higher coding rate can be used to increase spectral efficiency [2, 3]. In other words, if 

the BER is low and SNR is high, a higher coding rate and modulation order such as 

3/4 coding rate and 256QAM can be employed. On the other hand, during worst 

channel condition, lower coding rate and modulation order like BPSK and 1/4 code 

rate is used to maintain link availability. Thus, the purpose of adaptive transmission 

method is to improve the spectral efficiency and transmission link availability by 

increasing the channel capacity over the communication channel and to reduce the 

environmental interferences. 

 

Figure 1.1 Coding and modulation scheme selection mechanism 
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The future wireless systems are supposed to deliver high data rate transmission with 

error free communication. The high data rate transmission may result in Intersymbol 

Interference (ISI) that reduce the quality of communication. The ISI occurs when the 

transmitted signal arrives at the receiver with a delayed and attenuated version. In order 

to cancel such multipath distortion, an Orthogonal Frequency Division Multiplexing 

(OFDM) technique is used.  

 

The OFDM is a commonly used multiple carrier modulation(MCM) technique in 

wireless radio communications. In OFDM technique, a signal with high capacity is 

divided into many low capacity streams and then each data stream is modulated with 

different orthogonal subcarriers. The OFDM is a special form of spectrally efficient 

MCM technique, that employs densely spaced orthogonal sub-carriers and overlapping 

spectrums. Hence, the available bandwidth is used very efficiently without causing the 

ISI [4]. In adaptive coding and modulation technique, the transmission parameters are 

adapted to exploit the variations of the wireless channel for OFDM systems. These 

techniques are commonly employed over several wireless communication systems, 

such as LTE, IEEE 802.11n (WiFi) and IEEE 802.16 (WiMAX) standards to provide 

higher data rate. Depending on the quality of the channel, each subcarrier of the OFDM 

technique can be modulated and encoded with different coding rate and modulation 

order to maximize the throughput. In a WiMAX technology, a mobile user can provide 

the base station with feedback on the downlink channel quality and for the uplink, 

estimation of the channel quality is done by the base station based on the received 

signal fidelity. Thus, selection of the desired coding rate and modulation order is an 

important concern to have an enhanced system performance for OFDM systems.  
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In wireless communication system, adapting transmission parameters is done based on 

the quality of channel. In fixed coding and modulation scheme, the OFDM system uses 

single coding rate and modulation order so that either spectral efficiency or BER is 

improved. However, for an adaptive coding and modulation technique, both coding 

rate and modulation order are varied dynamically to behave on the time-varying 

channel to improve capacity and reduce BER. Since condition of the wireless channel 

is varying with time, an intelligent adaptive technique, which is good in decision-

making, is required. In other words, due to complexity, uncertainty and adaptive nature 

of the wireless channel, the conventional non-intelligent systems cannot cope with an 

adaptive environment. Soft computing techniques are preferred over the adaptive and 

fixed coding and modulation techniques in decision-making to approximate and 

improve real world problems. 

 

The most efficient soft computing systems used for decision-making in wireless 

communications are fuzzy logic, neural networks and neuro-fuzzy systems. The 

conventional adaptive coding and modulation techniques uses the if-else statements to 

select the desired modulation order and coding rate based on the received SNR and/or 

BER. However, the ordinary hardware decision-making techniques has limitations in 

predicting the exact quality of the channel and selecting the appropriate transmission 

parametrs. For example, when the received SNR is considered 0 to 10dB as ‘low’, and 

if the estimated input SNR is 10.1dB then it will not be considered as low SNR despite 

it is low. However, by using the soft-computing techniques in decision-making can 

improve the system performance.  
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Thus, by employing the neuro-fuzzy based approach in decision-making system, the 

ACM can be varied efficiently with the time changing conditions of channel to 

maximize throughput while maintaining target BER. In this research work, a neuro-

fuzzy based adaptive coding and modulation is proposed to improve the performance 

of OFDM wireless systems that takes estimated SNR, BER, modulation order and 

coding rate as inputs to select the desired modulation order and coding rate as output. 

In addition to this, a comparison to other techniques such as fuzzy systems and 

adaptive techniques show the superiority of neuro-fuzzy system.  

 

1.2. Problem Statement  

The performance of electromagnetic radio waves that propagate through the wireless 

channel are limited by multipath fading, noise and interference. The undesirable 

behaviour of the wireless channel condition impact signal attenuation and distortion 

and hence affects signal fidelity. The adaptive modulation and coding technique with 

OFDM systems is used to dynamically adjust the transmission parameters based on 

the channel condition to improve spectrum efficiency with target BER [1]. In this way 

selection of the desired coding rate and modulation order is an important concern to 

have an enhanced system performance for OFDM systems. When a modulation and 

coding rate with a high spectral efficiency is chosen during bad channel condition, the 

BER is enhanced. On the other hand, selecting transmission parameters with a low 

spectral efficiency might waste the capacity of the system during good channel 

condition. Consequently, the throughput of the system cannot be optimized. The 

ordinary hardware decision-making system, which is inefficient algorithm, is 

controlled by plain of if-else control statements. The fuzzy logic control model has 
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been found to be a good replacement for adaptive techniques. However, the design 

process of the fuzzy logic is a trial and error approach in determining the appropriate 

fuzzy rules and parameter tuning for the controller. Such an approach requires a large 

number of repetitions, and is therefore, time consuming and tedious. The neural 

networks have the learning and adapting capability; however, it requires adequate prior 

human knowledge to be initialized. Using neuro-fuzzy approach, solves the fuzzy logic 

and neural networks weaknesses and improves the system data rate/spectral efficiency. 

 

1.3. Objective of the Study  

1.3.1. Main Objective  

The main objective of this thesis is to enhance the performance of OFDM wireless 

systems using neuro-fuzzy logic in adaptive coding and modulation scheme to 

determine the desired modulation order and coding rate in time-varying channel 

conditions that maximize the spectral efficiency while meeting a target BER. 

 

1.3.2. Specific Objectives  

The specific objectives of the study are as follows:  

i. To investigate and identify parameters of adaptive modulation and 

coding scheme for performance improvement in OFDM systems  

ii. To design a neuro-fuzzy system that maximize the data rate of ACM 

for wireless systems 

iii. To analyze the performance of the proposed approach for the OFDM 

systems through comparison with the existing models using MATLAB 
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1.4. Justification  

Adaptive modulation and coding is being employed in WiFi, WiMAX and DVB-S 

wireless technologies, however, due to uncertainty and time-varying conditions of the 

wireless channel, an intelligent decision-making system is required to exactly predict 

the desired next modulation order and coding rate based on the quality of the channel. 

The use of artificial intelligence techniques, for instance neural networks, fuzzy logic 

and neuro-fuzzy has shown great potential in this field. With the involvement of soft 

computing, imprecise, uncertain, missing information and complex ill based systems, 

which have direct application in many engineering problems have become much easier 

to be implemented. Thus, in this work the neuro-fuzzy system is used to maximize 

spectral efficiency and improve QoS for a time- varying wireless systems.  

 

1.5. Scope of Work 

The aim of this research is to develop a neuro-fuzzy system based adaptive coding and 

modulation for performance improvement in OFDM wireless communication. A 

perfect knowledge of the channel and stationary channel impulse response during the 

OFDM frame is assumed. The research is done based on the practical OFDM 

specifications on an adaptive coding and modulation techniques. This thesis is limited 

to developing and simulating a model using MATLAB fuzzy logic toolbox.  

  

1.6. Organization of the Thesis 

The thesis records a detailed approach of the use of neuro-fuzzy for performance 

improvement in wireless systems. The organization of the thesis is as follows:  
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Chapter 2 covers the literature review and brief introduction of adaptive and non-

adaptive techniques in OFDM systems. In addition, soft computing-based techniques 

such as fuzzy logic, neural networks and neuro-fuzzy in relation to adaptive coding 

and modulation for wireless systems are discussed in this chapter.  

In chapter 3 the methodology of proposed neuro-fuzzy based adaptive modulation and 

coding for OFDM system is explained.  

Chapter 4 present the performance comparison of the simulation results of the 

proposed scheme to other existing models such as fuzzy logic and adaptive techniques, 

and discussion of the results.  

Chapter 5 gives the conclusion and recommendation of the thesis.  

 

1.7. Note on Publication 

A paper entitled “Neuro-fuzzy Based Adaptive Coding and Modulation for 

Performance Improvement in OFDM Wireless Systems” has been published in the 

International Journal of Applied Engineering Research. The paper is based on the 

research work presented in this thesis. A copy of the published paper is attached in the 

Appendix B. 
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CHAPTER TWO 

2. LITERATURE REVIEW  

 

2.1. Adaptive Coding and Modulation for OFDM Systems 

Wireless radio communication is a rapidly emerging technology, and new mechanisms 

to provide high capacity and improved quality of service are to be developed. One of 

the challenges in the random behaviour of the wireless channel is that it leads to signal 

attenuation, distortion and errors. Adaptive modulation and coding scheme plays a 

vital role in time-varying channel conditions to deliver enhanced data communications 

by adapting its transmission parameters. This section presents a review of adaptive and 

non-adaptive techniques and ACM analysis parameters to improve data transmissions.  

 

2.1.1. Performance Analysis of Adaptive Coding and Modulation Schemes  

i) SNR estimation  

For an additive white Gaussian noise (AWGN) channel model, a randomly generated 

noise is added to the transmitted signal before its reception. In any communication 

system, the noise power should not be excessively large compared to the signal power 

in order to have a good quality of service signal reception. The signal-to-noise ratio is 

defined as the ratio of signal power Pr to noise power Pn within the 

spectrum/bandwidth of transmitted signal (2B) and noise power spectral density of No. 

The SNR in dB is given by [5].: 

 
 )(log10)( 10

n

r

P

P
dBSNR =  

 

(2.1) 
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Alternatively, the received SNR is expressed as: 

 
 

BN

P
SNR

o

r=  

 

(2.2) 

 

ii) Channel model 

In order to investigate the performance of any communication system, an accurate 

description of the wireless channel is important to address the environment in which 

the transmission is made. The additive white Gaussian noise refers to noise that distorts 

the transmitted information when it propagates through a wireless channel. It consists 

of uniform and continuous distribution over a given bandwidth. The AWGN wireless 

channel has the lowest BER and is preferred over Rayleigh and Racian channel 

models. It reflects the proper relationship between SNR and channel capacity 

achievable under specific target BER. In addition to this, it can easily compensate any 

other wireless channel model [5].  

 

The information communication with high data rate over AWGN channel are limited 

by the random noise. A signal which is received in the interval 0<t<T can be given as: 

 
 )()()( tntstr +=  

(2.3) 

where 𝑟(𝑡) is the received signal, 𝑠(𝑡) is the transmitted signal and 𝑛(𝑡) is the sample 

of AWGN added at the channel with a known power spectral density. In practice, 

modelling of AWGN channel includes calculating the noise power from a given SNR 

and a known signal power. The information carrying signal is then added with a zero 

mean and unit variance noise before transmission.  
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iii) Channel coding 

The channel coding (also called error correction) is a method of enhancing the BER 

performance in digital communication systems especially when the power of the 

system is fixed and limited. In forward error correction (FEC) redundant data or bits 

are added to the transmitted signal at the transmitter [6, 7]. This redundant data allows 

the receiver to detect and correct a limited number of errors incurred by the wireless 

channel during transmission. The most commonly used FEC is convolutional coding 

scheme. With proper channel coding and decoding techniques, information can be 

transmitted with a rate near the Shannon capacity but with a small probability of error. 

The channel coding consists of channel encoder and decoder at the transmitter and 

receiver respectively.  

 

a) Convolutional encoder 

The channel encoder contains shift registers which are used to temporarily store and 

operate shifting of input bits and exclusive-OR logic circuits that generate the encoded 

output. In general, the registers consist of K (each with k-bit input) stages and n linear 

function generators as shown in Figure 2.1.  

 

Figure 2.1 Convolutional encoder [8] 
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A convolutional channel encoder is specified by (n, k, K) or (k/n, K) elements. A 

channel encoder with input k bits and output n bits is said to have a rate of k/n. The k/n 

ratio refers to coding rate (Rc) of the system and K is the constraint length of the 

encoder. The range of code rate is between 0 and 1. The data rate can be increased by 

using higher coding rate, but it enhances the BER. Also increasing the constraint length 

of encoder increases the quality of service [9].  For example, an encoder with two bits 

output for every single bit input, i.e. for 𝑘 = 1 and 𝑛 = 2, is expressed as a code rate 

of 1/2 as shown Figure 2.2. 

       

b) Viterbi decoding:  

The Viterbi decoding algorithm is commonly applied in decoding the convolutionally 

encoded data at the receiver side [10]. It uses maximum likelihood decoding technique 

in order to recover the transmitted bits by a trellis diagram. The decoded information 

is recovered with either a hard decision or a soft decision. Hard and soft decisions 

decoding techniques depend on the quantization type employed at the receiver.  

i. Hard decision: The received channel symbols are quantized to a single bit 

precision.  

 

Figure 2.2 Half convolutional encoder [11] 
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ii. Soft decision: It used to quantize at least two bits of precision and performs 

better than hard decision.  

 

iv) Modulation schemes 

Modulation is a process of embedding the information message on to a carrier signal 

by changing its carrier phase, frequency or amplitude or combination of these. The 

commonly used modulation techniques are Phase Shift Keying (such as BPSK and 

QPSK) and M-ary Quadrature Amplitude Modulation (such as 8QAM and 256QAM) 

[8]. In QAM the information message is encoded in both the amplitude and phase of 

the carrier signal, whereas in PSK the phase of the carrier signal is allowed to vary 

with fixed amplitude. The QAM scheme is the most powerful modulation technique 

employed in most wireless system standards such as WiFi and WiMAX [12]. 

 

v) Bit error rate (BER) performance  

In a radio communication, the transmitted signal may be affected by noise, 

interference, distortion and multipath fading resulting in undesirable errors at the 

receiver end. The bit error rate can be enhanced by increasing the transmit power, 

choosing a desired modulation order and by channel encoding schemes [8]. The BER 

is the rate of error that occurs during transmission of information bits. Assuming 

perfect coherent receiver detection and square signal constellation with size of M, the 

probability of bit error for M-ary QAM modulation scheme under AWGN channel is 

expressed as [8]:  

 
)( SNRQBER =    

 

(2.4) 
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where Q(z) is the complementary error function, α and β are constants given by: 

 
𝛼 =  

MM

M

2log

)1(4 − ,    𝛽 =  
)1(

log3 2

−M

M
 

 

(2.5) 

where SNR is the average received signal-to-noise ratio [8].  The Q function refers to 

the probability that a Gaussian variable x with zero mean and unit variance is more 

than z. It is given by [8]: 

 
 dxxzxpzQ e

z

2
2

2

1
)()( −== 




, x > 0 

 

(2.6) 

An alternative Q function obtained by Craig [8] is given as:  

 

 
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The BER of the OFDM system is expressed as a mean BER of each subcarrier. 
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vi) Capacity in AWGN channel  

A channel with additive white Gaussian noise is expressed as: 𝑦[𝑖] = 𝑥[𝑖] + 𝑛[𝑖], 

where 𝑥[𝑖] is input to the channel, 𝑛[𝑖] is an AWGN random process and 𝑦[𝑖] is the 

channel output at time 𝑖. For a fixed transmission technique, the spectral efficiency is 

the maximum limit of information bits a wireless channel can support per second per 

unit bandwidth. The spectral efficiency measured in bits/sec/Hz over AWGN channel 

is given by Shannon’s formula [8]: 
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The Shannon’s coding theorem shows encoding can be used to achieve a data rate that 

is close to capacity with small probability of error. For a given SNR and assuming 

ideal Nyquist pulses, the M-ary QAM spectral efficiency can be approximated as [13]: 

 
 c

n

b mRP )1( −=  
(2.10) 

where Pb is the bit error rate, n is the number of bits in the block, m is the number of 

bits per symbol and Rc is the code rate.  

 

2.1.2. Non-adaptive Techniques 

Fixed transmission strategy is commonly used in improving spectral efficiency when 

the estimated SNR is sufficiently high and fixed. The non-adaptive techniques are 

designed for worst-case wireless channel conditions [8]. In fixed modulation scheme, 

a single constellation size is used to enhance data rate. In addition, by employing 

forward error correcting (FEC) codes, the amount of error that may be introduced in 

the wireless system can be reduced. For a fixed modulation and coding, a single code 

rate and modulation order such as 64QAM and 2/3 Rc is employed. However, since 

the wireless channel is varying with time, the SNR will not remain constant at all times. 

These fluctuations of SNR may lower the performance of wireless communication. 

Thus, fixed techniques are usually employed to improve either the throughput or BER. 
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2.1.3. Adaptive Techniques  

In order to improve the performance of wireless communication system, different 

techniques that work with OFDM systems have been investigated. In this section 

review of adaptive modulation with fixed and adaptive coding techniques is presented. 

i) Adaptive modulation 

In adaptive modulation scheme, the constellation size is allowed to vary depending on 

the conditions of the wireless channel. Higher modulation orders are used to maximize 

the spectral efficiency during good channel condition [14]. However, the higher 

modulation schemes such as 64QAM have higher BER than lower modulation order 

schemes such as BPSK. When the channel condition is bad, a lower modulation order 

should be used to maintain the link availability.  

 

Adaptive modulation has been used for high capacity data transmission when OFDM 

wireless system is used. An adaptive transmission for OFDM system is proposed in 

[15]. Estimation of SNR as a switching parameter is done for each subcarrier. The QoS 

for adaptive modulation is degraded when modulation order is changed to a higher size 

as the SNR increases. Different QAM modulation techniques for different types of 

channels studied in [16] show superiority in BER and spectral efficiency. Using 

inverse fast Fourier transform of size higher than 512 for OFDM systems, the BER 

comparison shows an improvement over fixed technique [17]. Moreover, an adaptive 

modulation for OFDM system is proposed in [18, 19]. A SNR based switching 

threshold range for different QAM under AWGN channel is proposed by [20] for 

OFDM system. The constellation size is varied to improve the performance of wireless 

communications in terms of BER and spectral efficiency.  
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ii) Adaptive coding and modulation 

By estimating the wireless channel at the receiver and then feeding back estimated data 

to the transmitter, the transmission technique can be adapted based on the current 

channel condition as shown in Figure 2.3. Based on the quality of the channel, the 

transmitter adapts its coding and modulation schemes to improve throughput and 

maintain link availability [21].  

 

Figure 2.3 Adaptive system model 

 

An adaptive modulation and coding for LTE wireless communication have been 

proposed by [22] to increase downlink capacity. In [23] an adaptive modulation and 

coding for OFDM systems was presented. In this scheme, the transmitter selects an 

appropriate constellation size and coding rate based on the measured SNR to maintain 

constant BER. Moreover, in [24] the performance of OFDM systems with and without 

adaptive modulation was investigated with respect to the BER and spectral efficiency 

of various digital modulations such as 4PSK and 16QAM. A significant improvement 

is shown on data rate and reduction in BER over the fixed transmission techniques.  
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2.1.4. OFDM Systems  

In the Orthogonal Frequency Division Multiplexing (OFDM) technique, a signal with 

high capacity is divided into many low capacity streams and then each stream is 

modulated with different orthogonal subcarriers. Due to orthogonal nature of the 

subcarriers, the OFDM system is preferred over other multiplexing techniques and 

thus reduces the Intersymbol Interference (ISI) [4]. OFDM has been employed in 

several wireless technology standards such as LTE, IEEE 802.11n (WiFi) and IEEE 

802.16 (WiMAX) to provide high data rates [25]. Figure 2.4 shows the block diagram 

for an OFDM system. The serial input symbols are converted to parallel symbols onto 

the subcarriers. The Inverse Fast Fourier transform (IFFT) is used to convert the 

frequency domain to time domain. These parallel subcarriers are sampled and 

combined to create an OFDM signal. After applying the digital signal processing based 

inverse fast Fourier transform, the OFDM signal can be expressed as [26]: 
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where S(k) is the coded symbol at the kth subcarrier, s(n) is the time domain sample 

and N is the number of subcarriers of OFDM signals. In order to avoid the Intersymbol 

Interference (ISI), cyclic prefix is appended to the OFDM symbol [26]. Additive 

Gaussian noise is then added to the OFDM signal before transmission. The channel 

frequency domain response H(k) with a finite impulse response of h(n) is given by: 
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Figure 2.4 OFDM transmitter and receiver section 
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At the receiver side, the analogue received signal is converted to a digital format then 

the cyclic prefix is removed. Finally, the FFT system is applied to convert the time 

domain signal to the frequency domain signal. The frequency domain of the received 

symbol after the fast Fourier transform system is given by: 

  )()()()( kwkSkHkY += , 10 − Nk  (2.13) 

where, Y(k) is received OFDM symbol, H(k) is frequency response of the channel and 

w(k) is the channel noise. The received SNR for each subcarrier with overall signal-

to-noise ratio,   is given by: 

 
  2

k |H(k)=|  

 

(2.14) 

In adaptive OFDM system transmission, the same modulation and coding rate is 

employed to all subcarriers for the same block data [16]. The desired coding and 

modulation order to be used by the transmitter for its next OFDM block transmission 

is selected based on the current wireless channel quality. The instantaneous estimated 
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SNR is then used as a switching threshold for various coding and modulation 

techniques [17].  

 

2.2. Soft Computing Based Techniques for Adaptive Modulation 

and Coding Schemes 

Due to the complexity and uncertainty of the wireless channel, the conventional hard 

computing techniques cannot cope with the adaptive environment. The soft computing 

methods do not require mathematical models unlike the conventional techniques. Also, 

it is often used to model complex, uncertain and incomplete systems. Thus, the soft 

computing techniques are preferred over adaptive and non-adaptive systems in time-

varying conditions of the channel to approximate and improve real world problems. 

The most powerful soft computing techniques are fuzzy logic, neural networks and 

neuro-fuzzy systems. A brief overview and related works of these techniques are 

presented in this section. In addition, the knowledge gaps are also identified.  

 

2.2.1. Fuzzy Logic System  

Fuzzy logic-based systems are useful in decision-making by incorporating expert 

knowledge. The fuzzy logic systems allow for partial membership to a particular set 

for an object unlike the classical logic set theory that only takes two cases (e.g. 1 or 0, 

ON or OFF). The fuzzy logic inference system (FIS) performs numerical computation 

using membership functions for modeling of fuzzy set linguistic variables. The fuzzy 

logic is useful for imprecise, uncertain information and complex-ill based systems and 

incorporates human experience based on if-then fuzzy rules in decision-making [27].  
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i) Fuzzy inference system structure  

The basic structure of a FIS is shown in Figure 2.5. Basically, the fuzzy inference 

system consists of five components used to implement a fuzzy algorithm and resolve 

all of the associated vagueness. These are: 

a) a fuzzification interface that converts the crisp input into corresponding fuzzy 

sets using membership functions such as trapezoidal, bell or gaussian shapes;  

b) a rule base which consist of selection for fuzzy logic rules;  

c) a fuzzy set database that defines the fuzzy set membership functions used in 

fuzzy rules;  

d) an inference engine or reasoning mechanism which performs the inference 

procedure upon the rules to derive output or conclusion; and  

e) defuzzification interface that converts back the fuzzy sets to crisp output using 

center of gravity, mean of maximum or bisector area.  

 

ii) Types of fuzzy inference system 

There are three commonly used types of fuzzy system, namely [28]: 

a) Mamadani fuzzy system: - the output of this model are fuzzy sets. 

b) Singleton fuzzy system: - the complexity of defuzzification of a 

linguistic variable may be simplified by using singleton 

membership function to the output parameter. 

c) Takagi-Sugeno(TKS) fuzzy system: - the output of this TKS model 

is a linear function of the input variables plus a constant term. 
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Figure 2.5 Structure of fuzzy logic system 

 

Since the development of fuzzy logic concept, it has been used for modelling and 

making decisions in various wireless communication systems. Diverse solutions have 

been given on the problem of selecting the appropriate transmission parameters such 

as coding rate and modulation scheme for OFDM wireless communication systems 

based on the quality of the channel using fuzzy logic approach.  

 

A fuzzy logic based adaptive modulation to improve the performance of OFDM 

systems in a changing channel condition is presented in [29]. In this work, the SNR 

and modulation order are used as inputs to the fuzzy system to control the next 

modulation order for the transmitter and receiver blocks. The fuzzy systems target in 

decreasing the BER even in condition when signal-to-noise ratio increases. An 

improvement in BER and throughput is shown over adaptive and non-adaptive 

techniques.   

 

In [30] a modified adaptive modulation implementation for performance enhancement 

using a fuzzy based system is presented. By feeding back the best modulation scheme 

to the modulator and demodulator of the OFDM, the overall efficiency of the system 
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was improved. Fixed modulation gave good results when the channel conditions were 

fixed, but the modified adaptive modulation by using the fuzzy logic gives improved 

performance of the wireless communication to time-varying environment condition. 

The results showed that the fuzzy logic system enhances the performance of OFDM 

in terms of spectral efficiency and BER by adapting to the channel condition. 

 

An adaptive coding and modulation scheme using fuzzy logic for OFDM wireless 

communication to provide a better tradeoff between spectral efficiency and bit error 

rate is done by [31]. Firstly, an OFDM system is constructed under AWGN channel 

model. The BER is then calculated for each SNR while varying the modulation scheme 

in OFDM system. The calculated SNR and BER are used as input to the fuzzy logic 

system to determine the next modulation order as an output. Thus, the modulation 

technique that gives a better BER for a particular SNR was studied. The smoothness 

of the 3D rule surface proved that the rules are set very precisely and switching of the 

ACM can be done effectively. Thus, the performance of the fuzzy logic ACM is better 

than the fixed and ordinary adaptive coded modulation systems.  

 

Seshadri [32] presented fuzzy logic based adaptive modulation for OFDM system to 

improve performance of the system capacity in a Rayleigh channel fading. The system 

was simulated using MATLAB and the performance of OFDM tested under various 

channel conditions. Fuzzy logic system was applied in decision making to improve the 

performance of adaptive modulation in terms of spectral efficiency and BER. The 

fuzzy logic system consisted of SNR and modulation scheme as inputs to decide the 

correct modulation order that would match with the current channel condition. The 
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results showed that for OFDM systems the fuzzy rule based adaptive modulation 

performs better than the non-fuzzy logic based adaptive modulation.  

 

An adaptive modulation based on non-data aided SNR estimation is presented in [33] 

for OFDM systems using fuzzy logic. The developed fuzzy logic takes imaginary and 

real parts of the received signals to estimate the SNR from the noise and interference 

channel condition and existing modulation scheme from the database available in the 

receiver memory in order to control the new modulation order. Based on this, the 

receiver sends a feedback signal to the transmitter to adjust modulator to adapt to the 

time- varying channel condition. The performance of adaptive modulation such as bit 

error rate and data transmission capacity of the wireless OFDM system was found to 

be superior than ordinary adaptive and non-adaptive systems.   

 

Moreover, an adaptive coding and modulation that adapts code rate and modulation 

type using fuzzy logic approach in OFDM system was proposed by [34] to improve 

the capacity in an OFDM systems with a fixed transmit power and target BER for each 

subcarrier. The fuzzy logic considered SNR and BER as inputs to control the output. 

It is shown that fuzzy logic is a more powerful method for utilizing the channel 

capacity and bit error rate when the BER of 10-2, 10-3, and 10-4 are considered. 

 

In [35] adaptive coding and modulation using fuzzy logic for OFDM systems is 

presented. The authors investigated a new scheme to adapt coding rate and modulation 

order using fuzzy logic system to improve the throughput with a fixed target BER and 
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transmit power for each subcarrier of OFDM system. The simulation results showed 

that fuzzy logic is more preferable than the ordinary adaptive coded modulation.  

 

An adaptive resource allocation for OFDM systems using fuzzy and neural networks 

was proposed by [36]. The transmission parameters such as coding rate, power and 

modulation scheme are adapted based on the time varying channel conditions in order 

to maximize the data rate while meeting the BER constraint. The BER and SNR are 

used as input parameters to the fuzzy controller and neural networks to select the 

desired coded modulation under AWGN channel model. The fuzzy logic controller 

chooses the best and optimum code-modulation pair for the OFDM system based on 

the estimated BER and measured SNR to maximize data rate and reduce BER.  

 

An intelligent link adaption technique [37] and adaptive resource allocation using 

fuzzy and product codes for OFDM systems by [38] is proposed. Both coding rate and 

modulation order are allowed to vary and the decision is made using fuzzy logic. The 

QoS and SNR were used to maximize the throughput of the wireless system. A 

significant improvement is shown using soft computing intelligent systems compared 

to the adaptive and non-adaptive coding and modulation schemes.  

 

2.2.2. Neural Network Based Algorithms 

An artificial neural network (ANN) is an intelligent system developed for the purpose 

of information processing, which has a similar characteristic with biological neural 

systems. The ANN is commonly used to process information, which are non-linear, 

complex and incomplete. The neurons which are interconnected by weights are used 
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to mimic the human brain. The neural network that resembles the human brain, has the 

capability for learning, optimization abilities and adapt themselves to behave with the 

changing environment by adjusting the weights between the layers [28].  

 

The most popular architectures of neural networks are Radial basis function neural 

network (RBFNN), Multi-layer perceptron (MLP) network and neuro-fuzzy network. 

RBFNN is a multilayer feed forward network that consists of three interconnected 

layers: input layer, hidden layer as well as output layer. In RBFNN, radial basis 

functions are used as activation functions for each hidden layer of the neural network. 

The output of the RBFNN is the weighted linear superposition of the radial basis 

functions. RBFNN based adaptive modulation in OFDM systems was proposed in [39] 

to learn the features of M-QAM before recovering the original signal under noisy 

environment. An adaptive resource allocation for OFDM systems using fuzzy and 

neural networks were proposed by [36]. The transmission parameters such as coding 

rate, power and modulation scheme are adapted based on the time-varying channel 

conditions in order to maximize the data rate and reduce BER.  

 

2.2.3. Neuro-Fuzzy Approach  

Neuro-fuzzy system is an artificial intelligence system that combines both fuzzy logic 

and neural networks. It takes advantage of fuzzy logic systems (e.g. if-then rules and 

ease of incorporating expert human knowledge available in linguistic forms) and 

neural networks (e.g. learning capabilities, optimization abilities). Neural networks 

require adequate prior human knowledge to be initialized whereas fuzzy logic needs 

the fuzzy inference rules and parameter membership functions to be adjusted. In a 
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fuzzy based system, the fuzzy rules and membership functions are obtained by trial 

and error; this makes design of fuzzy systems a time-consuming task. The hybrid 

system uses back propagation learning technique of neural networks to train and 

automatically update membership functions. It improves the predictive capability of a 

system working in uncertain, imprecise and noisy environments. 

 

i) Adaptive Network based Fuzzy Inference System  

A special neuro-fuzzy method termed Adaptive Network based Fuzzy Inference 

System (ANFIS) [40] is used as the model in our proposed algorithm. The ANFIS 

comprises the fuzzy logic component as well as the neural networks. The fuzzy logic 

system considers imprecision and uncertainty of a system while neural networks takes 

the adaptability and learning capability of the system.  

 

ii) Neuro-fuzzy (ANFIS) structure  

The ANFIS structure illustrated in Figure 2.6 is based on the type 3 fuzzy inference 

system. Takagi and Sugeno’s (TKS) rule-based fuzzy if-then rules are used in type-3 

FIS. For simplicity, considering 𝑥 and 𝑦 as inputs and 𝑧 as an output, the TKS rule is 

given by: 

 𝐼𝑓 𝑥 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵 𝑡ℎ𝑒𝑛 𝑧 = 𝑓(𝑥, 𝑦)  (2.15) 

where A and B are fuzzy sets and 𝑓(𝑥, 𝑦) is crisp function. The function 𝑓(𝑥, 𝑦) is a 

polynomial of the input antecedent variables x and y. In this system, the output for each 

rule is obtained by adding constant value to the linear combination of the input 
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variables. The final output is then calculated by taking the weighted average of each 

rule's output.  

 

Figure 2.6 Type-3 ANFIS structure 

Usually 𝑓(𝑥, 𝑦) is assumed to be a first-degree polynomial then a linear Sugeno fuzzy 

model is formed. For this case, with two rules it can be expressed as: 

 𝑅𝑢𝑙𝑒 1: 𝑖𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠  𝐵1 𝑡ℎ𝑒𝑛  𝑓1 =  𝑝1𝑥 + 𝑞1𝑦 +  𝑟1 

𝑅𝑢𝑙𝑒 2: 𝑖𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠  𝐵2 𝑡ℎ𝑒𝑛  𝑓2 =  𝑝2𝑥 +  𝑞2𝑦 +  𝑟2 

 

(2.16) 

where x and y are input parameters, A1, A2, B1, B2 are membership functions, f1 and f2 

are output linear functions, and p1, p2, q1, q2, r1 and r2 are the consequent parameter 

set determined during training of the neuro-fuzzy system. 

 

The ANFIS structure consists of five layers corresponding to various functions. Each 

layer of the Type-3 ANFIS structure is presented as follows [40]: 

Layer 1: Every node in the first layer is an adaptive node with a function given as: 

 
 )(1 xO

iAi =  
(2.17) 
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where 𝑂𝑖
1 is the output of the 𝑖th node in the first layer, 𝑥 is input to the node 𝑖, 𝐴𝑖 is 

the linguistic variable associated with the bell-shaped node function and 𝜇𝐴𝑖
 is the 

grade membership function of Ai and is given by: 
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where {𝑎𝑖, 𝑏𝑖, 𝑐𝑖} is the premise parameters set that define membership functions 

Layer 2: Each node in this layer is a fixed circle node labeled by π and determines the 

firing strength of a rule by multiplying the incoming signals (membership functions). 

The firing strength of each fuzzy rule for this layer is given by: 
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(2.19) 

Layer 3: This layer is a fixed node used to compute the ratio of the 𝑖th rule’s firing 

strength to the total of the firing strengths, which is normalized value and is given by: 
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Layer 4: Each node in this hidden layer is an adaptive node with a function given by: 

 
 ,...2,1),(4 =++== iryqxpwfwO iiiiiii  

(2.21) 

where 𝑤̅𝑖 is the output of the layer 3 and {𝑝𝑖, 𝑞𝑖, 𝑟𝑖} is the consequent parameter set. 

Layer 5: This is the output layer with a circle node labeled by ∑ and determines the 

overall output by summing all the incoming signals, i.e.   

  = i iii fwO5
 (2.22) 

The output of the neuro-fuzzy system is expressed as: 
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iii) Hybrid learning algorithm 

In order to train the ANFIS, a hybrid learning technique which is a combination of 

least squares and gradient descent methods is used [41]. During the forward pass, each 

node output goes forward until the last layer and the design parameters are determined 

by the least square method. In the backward pass, the error signals propagate to the 

backward to update the premise parameters/membership functions by gradient descent 

technique. Thus, the least squares method and gradient descent technique are used to 

optimize design parameters and update the membership functions respectively. The 

output f in Figure 2.6 can be expressed as: 
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(2.24) 

where f is the linear output function and p1, p2, q1, q2, r1 and r2 are the design 

parameters set determined during the ANFIS training. 

 

An intelligent system based adaptive modulation for OFDM system was proposed by 

[42]. This proposed system takes modulation order and SNR as inputs to control the 

next modulation order. The performance of this system was analyzed in terms of mean 

square error, time taken and accuracy during training of the manual data. However, the 

developed system didn’t show its performance relating to the BER and spectral 
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efficiency, which are the main requirements of a wireless communications. An 

intelligent system that considers the real inputs which reveal the nature of the wireless 

channel is required to improve the performance of the wireless communications.  

 

2.2.4. Research Gaps 

After a comprehensive review of the existing literature, the following gaps have been 

identified in the area of adaptive coding and modulation for OFDM wireless systems.  

i) There is a limited research done on both adaptive coding and adaptive 

modulation as applied to OFDM wireless communication. It can be 

envisaged that employing coding rate to the adaptive modulation, the 

performance of wireless radio data transmission can be improved.  

ii) The efficiency of the intelligent system in OFDM depends on the exact 

number of input parameters used to develop intelligent system. By increasing 

the number of inputs (i.e. including BER and coding rate) to these systems, 

the performance of wireless communication could be improved.  

iii) There is limited work done towards ANFIS in both adaptive modulation and 

coding for OFDM systems. Due to limitations of fuzzy systems, more 

emphasis is required towards ANFIS by considering the real inputs that 

describe the nature of wireless channel. 

 

2.2.5. Summary of Literature Review   

From the literature review, it can be concluded that the soft computing techniques 

particularly fuzzy logic and neuro-fuzzy systems has an interesting preference over 

fixed and adaptive modulation schemes in OFDM wireless communications. These are 
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commonly used in decision-making systems for random time-varying wireless channel 

conditions. Developing neuro-fuzzy system for both adaptive coding and modulation 

techniques is still a major issue for wireless communication. The fuzzy based 

performance of the wireless system proposed by [34, 37, 38] is improved in this 

research by applying neuro-fuzzy based system controller. Moreover, the performance 

of OFDM systems presented by [42] is also enhanced by incorporating adaptive FEC 

coding to the wireless OFDM system.   

 

Therefore, in this research work, adaptive coding and modulation techniques for 

OFDM system using neuro-fuzzy logic with SNR, BER, modulation order and coding 

rate as inputs and data rate as the output are considered in order to enhance the 

performance of the wireless communication in terms of data rate and BER over time-

varying channel conditions.    
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CHAPTER THREE 

3. METHODOLOGY 

 

3.1. Introduction  

This chapter discusses the simulation model employed in this research work. An 

adaptive coding and modulation scheme-based controller using neuro-fuzzy system to 

achieve desired BER performance and channel data rate is investigated. In order to 

adapt the transmission of information over a time-varying channel, at first neuro-fuzzy 

system controller is applied to decide the desired modulation type and coding rate to 

maximize data rate at the receiver end while achieving the target BER. The transmitter 

then adapts its coding rate and constellation size based on the quality of the channel to 

improve the performance of wireless systems. The proposed block diagram is shown 

in Figure 3.1.  

 

Figure 3.1 Proposed block diagram 
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3.2. Implementation of Adaptive Coding and Modulation for OFDM 

Systems 

Based on the proposed block diagram shown in Figure 3.1, the randomly generated 

data source is encoded using a feed-forward convolutional encoder with different 

coding rates and then the convolutionally encoded data is modulated by M-QAM and 

M-PSK. The encoded and modulated symbols are fed to the OFDM transmitter. In the 

OFDM transmitter section, the first part is the conversion of serial symbol into parallel 

format and modulation by subcarriers. In the second part, inverse FFT is used to map 

the frequency domain to time domain. In this MATLAB simulation, the ifft function 

with a 256-point FFT is employed. A cyclic prefix is then added to the OFDM signal 

to avoid multipath delay that may give rise to ISI despite small loss of transmission 

energy as well as data rate. Lastly, after conversion back to serial, Gaussian noise is 

added to the OFDM signal.  

 

At the receiver side, after conversion of the analogue signal back to a digital format, 

the cyclic prefix is removed and then FFT is applied to convert the received signal to 

frequency domain. An adaptive demodulator and channel decoder are then used for 

de-mapping and removal of redundant bits added for error correction, respectively. In 

practice, the system is unable to reproduce the transmitted data exactly due to the noise 

introduced in the wireless channel. There may be some bits received in error. The BER 

is calculated for each SNR by varying coding rate and modulation order in OFDM 

system based on the system parameters shown in Table 3-1. The comparison of the 

performance of BER for adaptive modulation and coding techniques is investigated. 
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Table 3-1 System parameters 

Schemes  Parameter values  

SNR 0 to 35dB 

BER 10-6 to 0.01 bits/sec/Hz 

Modulation scheme BPSK, QPSK, 8QAM, 16QAM, 32QAM, 

64QAM, 128QAM, 256QAM, 512QAM 

FFT size 256 

Data rate or spectral efficiency 0.25 to 6.75 bits/sec/Hz 

Cyclic prefix 1/4 

Convolutional coding rate 1/4, 1/3, 1/2, 2/3, and 3/4 

Convolutional constraint length 3  

Channel model AWGN 

 

3.3. Design of Neuro-Fuzzy Based Adaptive Coding and Modulation  

Neuro-fuzzy incorporates the benefits of both a fuzzy inference system (FIS) and 

neural network by utilizing neural learning methods in adjusting the membership 

function parameters and the structure of the FIS. Using this hybrid soft computing 

method, an initial fuzzy logic model with its input parameters is first obtained from 

the input-output data of OFDM system. Neural network is then applied to update the 

initialized fuzzy rules and membership functions to create the final neuro-fuzzy 

method for the OFDM wireless systems. In this neuro-fuzzy approach, back 

propagation learning and least squares method is used to update membership functions 
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and optimize design parameters respectively. The general neuro-fuzzy approach 

system flowchart is shown in Figure 3.2. 

 

Figure 3.2 Neuro-fuzzy based system model flowchart 

 

3.3.1. Generation of I/O Data Pairs 

The proposed neuro-fuzzy system is trained by manual data generated from the 

simulations of adaptive coding and modulation for OFDM systems. Figure 3.3 shows 

selection mechanism of the desired coding rate and modulation order intersection pairs 

that fulfill different target bit error rate values such as 10-6, 10-5, 10-4, 10-3, 10-2 

demands. These pairs are obtained by drawing a straight line from the given SNR to 

the target quality of service points. The output is taken as the product of code-

modulation pairs.  

 

Table 3-2 shows a sample of I/O data pairs that are obtained as a function of SNR, 

BER, modulation order and coding rate to select the best modulation and coding rate 

to maximize the spectral efficiency of the wireless system. All the input-output data 

pairs are not important only those that maximize the throughput are taken based on the 

spectral efficiency optimization. 
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Figure 3.3 Generation of I/O pairs for different modulation schemes with 1/4 code 

rate  

 

Table 3-2 Sample of input-output pairs obtained from simulation 
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(2.8, 10e-5)

Inputs Output 

Received 

SNR (dB) 

Target 

BER 

Modulation   

schemes  

Coding 

rate 

Max Spectral 

efficiency (bits/sec/Hz) 

1.7 10-4 2QAM 1/3 0.33 

4.8 10-3 4QAM 1/2 1 

14.7 10-2 16QAM 3/4 3 

19.6 10-3 32QAM 2/3 3.33 

27.4 10-5 64QAM 3/4 4.5 

28.6 10-4 128QAM 3/4 5.25 

31 10-2 256QAM 2/3 5.33 

35 10-6 512QAM 3/4 4.5 
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3.3.2. Spectral Efficiency Optimization 

Assuming fixed transmit power, optimization of spectral efficiency ( ) for adaptive 

coding and modulation is given by [43]: 

 
𝑚𝑎𝑥 )(log2 MRc= such that TBERBER )(  

(3.1) 

where   is average SNR, cR is code rate, BER  is average BER, TBER  is target 

BER and M is modulation order. A communication link should normally operate at or 

below a certain target BER. To maximize the throughput of the adaptive coding and 

modulation scheme, the following are to be considered: 

i) For the same BER and SNR, better throughput is selected 

ii) For the same throughput, less modulation and coding rate is chosen that 

demand less SNR 

iii) The lookup table scheme may not have complete number of data pairs, 

then those missed parts are completed by the expert knowledge.  

 

3.3.3. Neuro-Fuzzy Architecture for Adaptive Coding and Modulation  

In this research work, a special neuro-fuzzy method termed Adaptive Network based 

Fuzzy Inference System (ANFIS) is used for modelling purpose. To implement and 

test the ANFIS system, MATLAB fuzzy logic toolbox has been selected as a 

development tool. It consists of a fuzzy logic designer, membership function editor, 

rule editor, neuro-fuzzy designer, rule and surface viewers.  

 

The fuzzy logic designer is a GUI tool that shows general information of a fuzzy 

inference system. The membership function editor displays and edits all of the 
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membership functions associated with all of the input and output variables. The rule 

editor allows a designer to build the fuzzy rules automatically. The rule viewer gives 

the better description and interpretation of all the FIS rules. The neuro-fuzzy designer 

is used to load FIS training data, save the trained FIS, open a new Sugeno-type system, 

generate the FIS, view the ANFIS structure or any other GUIs to interpret the trained 

FIS model. The output surface viewer represents a mapping of input variables to output 

variable.    

 

3.3.4. ANFIS System for Training Process   

The architecture of the ANFIS used to maximize the spectral efficiency has been 

developed and investigated as shown in Figure 3.4. It consists of five layers 

corresponding to various functions. The proposed model is trained with SNR, BER, 

coding rate and modulation order as inputs and data rate as an output which are 

generated from simulations of the OFDM system using parameters depicted in Table 

3-1. Both the fuzzy logic system principles and learning capabilities of neural networks 

are being employed to construct ANFIS. At the initial stage, a basic fuzzy logic system 

controller is built to utilize the linguistic fuzzy rules. Then, the IO data pairs are used 

to train the ANFIS controller. The stages involved in the ANFIS training process are:  

i) loading the I/O training data;  

ii) generate an initial fuzzy inference system model;  

iii) view FIS model structure;  

iv) select FIS model optimization method (hybrid method);  

v) choose the training epochs and training error tolerances;  

vi) train ANFIS and view adjusted membership functions and output surface.   
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Figure 3.4 ANFIS structure with four inputs and one output 

 

The range of fuzzy variables for the BER input values given by 10-6, 10-5, 10-4, 10-3 

and 10-2 should be spaced equally and quantifiable. To get this a logarithmic operation 

is performed as given in the following equation:   

 

pBER

pBER p

−=

== − 6,..,3,2,10log10

 

 

(3.2) 

In this proposed neuro-fuzzy based ACM, 135 first order Sugeno-type fuzzy inference 

rules have been constructed as follows: 

The general rule:  

 IF x1 is Ai1 AND x2 is Ai2 AND x3 is Ai3 AND x4 is Ai4 THEN 

iiiiii rxsxtxqxpf ++++= 4321  

    

(3.3) 

The specific rules:  

 IF x1 is A11 AND x2 is A12 AND x3 is A13 AND x4 is A14 THEN

1413121111 rxsxtxqxpf ++++=  

 
 

(3.4) 
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 IF x1 is A21 AND x2 is A22 AND x3 is A23 AND x4 is A24 THEN 

2423222122 rxsxtxqxpf ++++=  

 

where: 

i) pi, qi, ti, ki and ri are design parameters, 

ii) fi are the outputs within the fuzzy area specified by the fuzzy logic rules,  

iii) Aij are the fuzzy sets/membership functions for each input variables, and  

iv) xi is the input parameters to the neuro-fuzzy system and 𝑖 = 1,2,3, … 

 

Layer 1-Input node: Each node in this layer is an input node, that corresponds to one 

input parameter. These nodes bypass the input signals to the layer 2. The proposed 

fuzzy sets for the input variables SNR, BER and code rate are low, medium and high 

and that of modulation order is very low, low, medium, high, and very high. The output 

of the neuron i in the input node is obtained as:  

 
1111 )( iiii netnetfO ==
 (3.5) 

where
1

inet is the ith input to the node of layer one 

Layer 2- Input membership layer: Each node in this layer acts a linguistic label of one 

of the input variables in input node, i.e., specifies the membership functions for each 

input parameters. The generalized bell membership function is used to represent each 

fuzzy set variables. The output of neuron j in the layer 2 is given by: 

 
 

jb

j

j
jjj

a

cx
netfO

2

222

)(1

1
)(

−
+

==  

 

(3.6) 

where aj, bj and cj are parameters set that define shapes of jth membership function. 

Layer 3-Rule layer: Each node in this layer calculates the firing strength of a rule via 
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multiplication. Each node takes four inputs, to form 135 nodes in layer 3 and creates a 

fuzzy rule for all input variables. The output of the neuron k is obtained as follows: 

 

 
=

==

j

jjkk

kkkk

ywnet

netnetfO

333

3333 )(

 

 

 

(3.7) 

where 3

jy is jth input to the node layer 3 and 3

jkw  is assumed to be unity.  

Layer 4-Output membership function: Neurons in this layer represent fuzzy sets used 

in the consequent fuzzy inference rules. An output membership neuron receives inputs 

from the corresponding fuzzy rule neuron and combines them by using the fuzzy 

operation union. The output of neuron m is given by: 

 

kmkkm

kmkmmm
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netnetfO

34

4444 )max()(

=

==
 

 

(3.8) 

where wkm is the output action of the mth output associated with kth rule.  

Layer 5- Defuzification layer: in Layer 5 the sum-product composition is used to find 

the defuzzified output, i.e., crisp value. It calculates the output as the weighted average 

of the centroids of all output membership functions.    
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(3.9) 

where acm and bcm are centers and widths of the output fuzzy sets respectively. The 

values of bcm is assumed unity.   

 

The Sugeno type FIS editor with four inputs and one output is shown in Figure 3.5. 

The neuro-fuzzy system takes the SNR, BER, code rate and modulation order as inputs 

in order to control the data rate or spectral efficiency in a wireless communication.   
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Figure 3.5 Sugeno type FIS with 4 inputs and one output 

 

In a fuzzy logic system, the fuzzy sets of each input variable are specified by 

membership functions. A membership function is a curve that maps each input 

element to a membership value between 0 and 1. In the ANFIS system, because of its 

smoothness, a bell shape membership is considered for all IO variables. The number 

of membership functions is chosen so as to cover the entire input space. For SNR input, 

low, medium and high membership functions are considered as shown in Figure 3.6.   

 

Figure 3.6 Membership function of input SNR 
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Using Equation 3.2 the range of input variable for BER is given as -6 to -2 and the 

membership functions namely low, medium and high are considered as shown in 

Figure 3.7.  

 

Figure 3.7 Membership function of input BER 

 

For the modulation order input, five membership functions are taken namely very low, 

low, medium, high, and very high as shown in Figure 3.8. The modulation schemes are 

BPSK, QPSK, 8QAM, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, 512QAM 

with 1, 2, 3 to 9 number of bits per each modulation scheme respectively.  

 

Figure 3.8 Membership function of input modulation order 
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Figure 3.9 shows the membership functions of the input variable code rate with a range 

of 0.25 to 0.75. It contains low, medium and high membership functions. The output 

of the neuro-fuzzy model has only one membership function i.e. data rate. 

 

        Figure 3.9 Membership function of input code rate 
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CHAPTER FOUR 

4. RESULTS AND DISCUSSION 

 

This research work is done by simulation on a MATLAB environment. In this 

simulation, a perfect knowledge of the channel transfer function at the receiver is 

assumed. At any point of distance, the power of the signal is assumed to be more than 

that of the noise signal, i.e. the SNR is assumed greater than 0dB. Also, the channel 

impulse response is assumed to be invariant during an OFDM frame block.  

 

4.1. ACM Performance Results for OFDM Systems  

4.1.1. BER Results 

In this section, BER vs SNR plots for different modulation schemes are investigated 

with various code rates under AWGN channel. Each curve in these graphs represents 

the BER performance of a specific modulation and code pair. The results show that 

BER decreases sharply with the increase in the SNR. The lower modulation and coding 

techniques provide better performance with less SNR. On the other hand, when the 

received SNR is high, a higher modulation order and coding rate schemes are 

employed.  

 

In Figure 4.1 the BER versus SNR variations for each modulation schemes (such as 

BPSK, QPSK, 8QAM to 512QAM) are plotted with FEC 1/4 code rate. The higher 

modulation orders such as 128QAM are operated for a higher SNR wireless 

communication system. 
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Figure 4.1 BER Vs SNR for different M-ary QAM with 1/4 code rate 

 

Figure 4.2 shows SNR vs BER graphs for different M-ary QAM with 1/3 coding rate. 

To fulfill a target QoS, higher SNR is required with 1/3 coding rate compared to FEC 

of 1/4 coding rate.  

 

Figure 4.2 BER Vs SNR for different M-ary QAM with 1/3 code rate 
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The BER performance for various modulation schemes with 1/2 coding rate under 

AWGN channel are shown in Figure 4.3. The BER curves indicate that by increasing 

the code rate increases the required SNR to operate for a system.   

 

Figure 4.3 BER Vs SNR for different M-ary QAM with 1/2 code rate 

 

The BER performance comparison for different modulation schemes using rate 2/3 

and 3/4 convolutional codes is shown in Figure 4.4 and Figure 4.5 respectively.  

 

Figure 4.4 BER Vs SNR for different M-ary QAM with 2/3 code rate 
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Figure 4.5 BER Vs SNR for different M-ary QAM with 3/4 code rate 

 

The selection of the modulation order and coding rate depends on the quality of the 

wireless channel. The bandwidth efficient modulation and coding techniques are used 

during a good channel condition. On the other hand, lower coding and modulation 

scheme are used to improve the BER performance for less SNR. For example, for SNR 

of 20dB and target BER of 10-4, 16QAM with 2/3 or 3/4 code rate can be employed to 

improve capacity and maintain link.  

 

4.1.2. Effect of Channel Coding  

The performance of an OFDM system is degraded when a FEC convolutional encoder 

is not employed. The FEC coding rate improves the BER performance of the system. 

Table 4-1 shows the required SNR to meet the target BER=10-3 for various 

constellation sizes with 1/4, 1/3, 1/2, 2/3, and 3/4 code rates. The higher modulation 

schemes require higher SNR. In addition, increasing the code rate increases the 

required SNR to meet the target QoS for each modulation order.  
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Table 4-1 Required SNR for a set of code rates for target BER=0.001 

Modulation 

schemes 

Code Rate (RC) 

1/4 1/3 1/2 2/3 3/4 

BPSK 0.5dB 1.7dB 3dB 5.7dB 5.7dB 

QPSK 3.2dB 5.2dB 6.5dB 9dB 9.3dB 

8QAM 10.2dB 12.3dB 13.6dB 16.2dB 16.3dB 

16QAM 12.2dB 14dB 15.5dB 18.2dB 18.3dB 

32QAM 15.5dB 17.4dB 18.6dB 21.4dB 21.5dB 

64QAM 20dB 22dB 23.4dB 26.2dB 26dB 

128QAM 23.2dB 24.8dB 26.1dB 28.6dB 28.6dB 

256QAM 26.9dB 28.7dB 30.3dB 32.9dB 33dB 

512QAM 28.5dB 30.4dB 31.7dB 34.2dB 34.4dB 

 

Figure 4.6 shows a graphical representation of the required SNR to meet the target 

BER of 10-3 for various modulation schemes with different code rates as tabulated in 

Table 4-1. The results indicate, the coding rate approaches to one for a higher SNR for 

a given modulation scheme. In other words, to meet a target BER, higher modulation 

and coding is used during a good channel condition.  

 
Figure 4.6 Code rate Vs SNR for different modulation schemes for target bit error 
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Table 4-2 shows the required SNR to meet target BER of 10-2 for various modulation 

orders with 1/4, 1/3, 1/2, 2/3, and 3/4 code rates. The results show for a higher coding 

and modulation, the required SNR is less as compared to lower modulation and coding.  

 

Table 4-2 Required SNR for a set of code rates for target BER=0.01 

 

Modulation 

schemes 

Code Rate (RC) 

1/4 1/3 1/2 2/3 3/4 

BPSK - - 1dB 3.4dB 4dB 

QPSK 1.9dB 3.6dB 4.8dB 7dB 7.5dB 

8QAM 8.9dB 10.6dB 11.8dB 14dB 14.5dB 

16QAM 10.8dB 12.6dB 13.9dB 16.4dB 16.5dB 

32QAM 14.4dB 16dB 17.3dB 19.6dB 19.7dB 

64QAM 18.7dB 20.4dB 21.8dB 24.2dB 24.4dB 

128QAM 22dB 23.5dB 24.7dB 26.7dB 27dB 

256QAM 26.5dB 27.4dB 28.7dB 31dB 31.3dB 

512QAM 27.7dB 29.1dB 30.3dB 32.5dB 32.6dB 

 

Figure 4.7 shows the plots of the required SNR to meet the target BER of 10-2 for 

various modulation schemes with various code rates as tabulated in Table 4-2.  

 

Figure 4.7 Code rate Vs SNR for different modulation schemes for target bit error 
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For a low QoS, less SNR is required compared to high QoS for the same code-

modulation pair. For example, for 64QAM with 1/2 code rate, 23.4 dB and 21.8dB 

SNR is required to meet the bit error rate of 10-3 and 10-2, as seen from Figures 4.6 and 

4.7 respectively. Figure 4.8 shows the bit error rate comparison of 16QAM with 

different coding rates. For the same modulation order, the BER performance varies 

with coding rate. By reducing the code rate, less SNR is required to meet the desired 

target BER. The BER performance for the coded message is better compared to the 

un-coded information.  

 

Figure 4.8 BER Vs SNR for 16QAM for different coding rates 
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modulation pair for the adaptive coding and modulation schemes.  
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Table 4-3 Range of SNR values that give a target BER of 10-3 and 10-2  

 

Modulation QPSK QPSK QPSK 16QAM 16QAM 64QAM 256QAM 

Code rate 1/4 1/2 3/4 1/2 3/4 3/4 3/4 

Channel Range of SNR(dB) 

BER=10-2 <1.9 1-4.8 4-7.5 
11.8-

13.9 

14.5-

16.4 

19.7-

24.4 
>31.3 

BER=10-3 
0.5-

3.2 
3-6.5 

5.7-

9.3 

13.6-

15.5 

16.3-

18.2 
21.5-26 >33 

 

The spectral efficiency performance comparison with fixed and adaptive techniques 

with a target BER of 10-3 is shown in Figure 4.9 based on Table 4-3. The results show 

that, the spectral efficiency is proportional to the estimated SNR. In other words, the 

throughput is increased with increasing received SNR, however, after some values the 

spectral efficiency remain constant.  

 

Figure 4.9 Spectral efficiency Vs SNR for BER of 10-3 for fixed and adaptive 

techniques  
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Figure 4.10 shows the spectral efficiency (bits/sec/Hz) performance comparison with 

fixed and adaptive techniques for a target BER of 10-2 based on Table 4-3. The spectral 

efficiency is higher when SNR with 3/4 coding rate for QPSK, 16QAM, 64QAM and 

265QAM is more than 9dB, 18dB, 26dB and 30dB respectively. Moreover, increasing 

the constellation size (modulation order) with coding rate increase the performance of 

wireless systems. For example, 256QAM with 3/4 coding rate has higher throughput 

than the lower code-modulation pair schemes such as QPSK-3/4.    

 

Figure 4.10 Spectral efficiency Vs SNR for larger BER of 10-2 for fixed and adaptive 

techniques 
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SNR, coding rate and modulation order. The input and output parameters that are used 

to train the ANFIS system with their corresponding values are shown in Table 4-4.  

 ),,,( cRmSNRBERf=  
(4.1) 

where m is log2(M), M is the modulation/constellation size and Rc is the FEC 

convolutional coding rate.  

 

Table 4-4 Neuro-fuzzy parameters and their corresponding values 

 

 

4.2. Neuro-Fuzzy Based Performance Results   

Taking 10-5 as tolerance error and 50 as the number of epochs in the ANFIS training 

process the output is selected based on the constructed 135 fuzzy rules. Figure 4.11 

shows the neuro-fuzzy based rule editor. In this system the if-then rules are used to 

make decision in data rate optimization. The ANFIS rule viewer is shown in Figure 

4.12 and these gives a better description of all fuzzy rules. The first four columns 

indicate the membership functions of the input parameters and last column is the 

output data rate/spectral efficiency membership function.  
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Parameters 
Values 

SNR 0-35dB 

BER 10-6 to 10-2 bits/sec/Hz 

Modulation 

scheme 

BPSK, QPSK, 8QAM, 16QAM, 

32QAM, 64QAM, 128QAM, 256QAM, 

512QAM 

Coding rate 1/4, 1/3, 1/2, 2/3, 3/4 

Output Variable Spectral efficiency 0.25 to 6.75 bits/sec/Hz 
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Figure 4.11 Rule editor of fuzzy inference system 

 

 

 

Figure 4.12 Rule viewer of fuzzy inference system 

 

Figure 4.13 and 4.14 show different surface views. These 3D curves represent mapping 

of input variables against output variable. In other words, it dictates the smoothness 

and correlation between the input variables to select the desired output at a particular 

time depending on the quality of the channel. The surface view of combined effect for 

both SNR, and BER is shown in Figure 4.13. It indicates that by increasing the SNR 
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the data rate is also increased. In addition to this, for a poor QoS, the spectral efficiency 

is higher compared to a low target BER. For a BER of 10-2 and SNR of 35dB, a data 

rate of 6.75 bits/sec/Hz can be achieved. Data rate can also be increased by increasing 

the modulation order and coding rate as shown in Figure 4.14. The surface colors 

indicate the level of the output. As shown in both figures, the yellow, light blue and 

dark blue colors show the data rate is high, average and low, respectively. 

 

The neuro-fuzzy based adaptive modulation and coding scheme simulation results 

show a better performance over the works presented by [30, 44, 32]. In these 

investigations, a fuzzy logic system was used in decision-making to maximize the 

transmission data rate.  

 
Figure 4.13 Surface view for BER Vs SNR 

 
Figure 4.14 Surface view for MOD Vs CODE RATE 
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4.3. Performance Comparison of the ANFIS to Various Schemes 

The proposed neuro-fuzzy controller based adaptive coding and modulation for 

OFDM system is simulated in MATLAB and compared to existing fuzzy logic models 

and adaptive techniques. Figure 4.15 shows the performance results of neuro-fuzzy 

based adaptive coding and modulation for different target quality of services such as 

10-6, 10-5, 10-4, 10-3 and 10-2. These results are taken from the surface view for BER 

Vs SNR shown on Figure 4.13. For a fixed quality of service, higher data rate is 

obtained by increasing SNR. For a low QoS, higher spectral efficiency can be achieved 

compared to high QoS at high SNR. For example, for an SNR of 35dB, a spectral 

efficiency of 6.75 and 4.5 bits/sec/Hz can be achieved for a target BER of 10-6 and 10-

2, respectively. Increasing the quality of service reduces the data rate that can be 

transmitted. Hence, the data rate is inversely proportional to the bit error rate. 

 

Figure 4.15 Neuro-fuzzy based performance comparison 
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The Shannon capacity given in Eqn. 2.9 is compared to upper and lower limits of the 

proposed approach shown in Figure 4.16. At 20dB SNR, a data rate of 6.8, 4.5 and 

2.5bits/sec/Hz can be achieved for Shannon, neuro-fuzzy approach for QoS 10-2 and 

10-6, respectively.      

 

Figure 4.17 shows the performance comparison of the proposed neuro-fuzzy based 

adaptive coding and modulation to neural networks and fuzzy logic system [34] [45], 

switching threshold based adaptive modulation [19], adaptive coded modulation and 

non-adaptive techniques [23]. The simulation results show that the proposed scheme 

perfoms better compared to the other techniques in terms of spectral efficency or data 

rate for a target BER of 10-2 and fixed trasnmit power. Thus, the overall data rate of 

the OFDM system is maximized by varying code rate and modulation scheme such 

that the BER and total transmitted power remain under certain thresholds.  

 

Figure 4.16 Comparsion of proposed approach to Shannon capacity 
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Figure 4.17 Spectral efficency Vs SNR for various schemes for target QoS of 10-2 

and fixed transmit power 

 

Table 4-5 shows the data rate comparison of the proposed scheme to different existing 

models for SNR 5dB, 15dB, 25dB and 35dB. At 35dB SNR, a neuro-fuzzy based 

adaptive coding and modulation shows superiority in spectral efficency of 0.15, 0.45, 

1.25, 2.25, and 2.75 bits/sec/Hz compared to neural networks based ACM, fuzzy logic 

based ACM, switching threshold based adaptive modulation, adaptive coded 

modulation and non-adaptive techniques, respectively. By analazying the simulation 

results, the neuro-fuzzy model shows an average of 25.03% data rate improvement 

compared to the existing fuzzy logic model. It also shows that, the proposed approach 

outperforms compared to neural networks, adaptive and non-adaptive techniques such 

that the BER and total transmit power remain under certain thresholds.  
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Table 4-5 Data rate (bits/sec/Hz) comparison 

 

Schemes  5dB 15dB 25dB 35dB 

Neuro-fuzzy based ACM 1.4 2.85 5.1 6.75 

Neural networks based ACM 0.99 2.78 4.6 6.6 

Fuzzy logic based ACM 0.75 2.7 4.64 6.3 

Switching threshold based AM 0.3 1.8 3.8 5.5 

Adaptive technique 0.37 1.75 3.36 4.5 

Non-adaptive systems 0.5 1.9 3 4 
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CHAPTER FIVE 

5. CONCLUSION AND RECOMMENDATIONS 

 

5.1. Conclusions  

5.1.1. Adaptive Coding and Modulation for OFDM Systems  

In this research, the performance of OFDM systems in terms of spectral efficiency and 

BER using various coding rates and modulation schemes under AWGN channel was 

analyzed and compared to fixed and adaptive techniques. The advantage of channel 

coding over the uncoded message is also studied. The BER performance is improved 

by using FEC coding rate. However, selecting lower code rate can reduce spectral 

efficiency. During good quality of channel, higher coding and modulation orders can 

be used to improve data rate. Since the frequency spectrum is limited, ACM is applied 

to efficiently use the available bandwidth. By comparing the performance within 

different modulation and coding schemes, it is shown that BER can be improved by 

using lower modulation and coding technique but with less spectral efficiency. The 

performance comparison of ACM schemes based on results shown on Figure 4.9 and 

4.10 is summarized in Table 5-1.  

Table 5-1 Summary of the proposed system performance 

Code-modulation pair BER performance Spectral efficiency 

4QAM-1/4 Low BER Worst 

16QAM-1/2 Higher BER Low 

64QAM-3/4 Good for higher SNR Medium 

256QAM-3/4 Worst for lower SNR Good 

Adaptive techniques Maintain target BER Good 
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5.1.2. Performance Comparison of Neuro-Fuzzy Logic to Various Schemes  

In this research work, a neuro-fuzzy based adaptive coding and modulation for 

performance improvement in OFDM wireless systems is proposed and compared to 

other fuzzy models, adaptive techniques as well as fixed techniques. The performance 

comparison of spectral efficiency against SNR for various quality of services such as 

10-6, 10-5, 10-4, 10-3 and 10-2 is done. By using the learning ability of the neuro-fuzzy 

logic, the network is trained by the real data values that include SNR, BER, modulation 

order and code rate as inputs and data rate as output. The manual data is generated 

from simulation of the OFDM system for different coding rates and modulation 

schemes. As an efficient control mechanism, a neuro-fuzzy logic responds to an 

adaptive environment to decide the desired coding rate and modulation order to 

enhance system performance. In addition, neuro-fuzzy systems are suited for the 

situations that are imprecise, complex and missing certain information, also it can 

easily be implemented in hardware and it is suitable for real time systems. By 

analyzing the MATLAB simulation results, the neuro-fuzzy scheme shows an average 

of 25.03% data rate(bits/sec/Hz) improvement compared to the existing fuzzy logic 

model. In addtion to this, the proposed approach outperforms compared to neural 

networks, adaptive and non-adaptive techniques such that the BER and total transmit 

power remain under certain thresholds.  

  

5.2.  Recommendations and Future Work  

The proposed scheme suits the WiMAX wireless standards in which fixed and mobile 

users having different QoS and data rate demands are privileged. The performance of 

the neuro-fuzzy approach can be further investigated for different FFT and cyclic 
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prefix sizes. It can also be studied for Rayleigh and Rician fading channel noise 

models. Furthermore, the possibility of applying on-line learning method to track the 

variation of wireless channel can be investigated. A prototype model could also be 

implemented in VHDL code and downloaded to an FPGA.  
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APPENDICES  

APPENDIX A: MATLAB Programme Codes 

Matlab code for adaptive coding and modulation for OFDM systems with 1/4, 1/3 

and 1/2 coding rate 

% This code is prepared by Temalow Seife 

% Department of Electrical Engineering 

% Pan African University 

% September 2017 

% Simulation of adaptive coding and modulation for OFDM systems with 1/4, 1/3   

% and 1/2 coding rate. 

clc; 

clear all; 

close all; 

% ofdm specifications 

N = 256; % fft size 

n = 256; % number of data subcarriers 

CP=1/4;%cyclic prefix 

nbits = 256; % number of bits per OFDM block  

nblocks = 10^2; % number of ofdm blocks  

% specify the range of signal-to-noise ratio in dB 

SNR=[0:40]; 

% linear SNR 

lin_snr=10.^(SNR./10); 

% number of iterations 

niter=5; 

color_vec1 = ['b-','r-','k-','r-','g-', 'k-','r-','b-']; 

% Modulation orders 

M=[2 4 ]; 

% constraint length of the encoder 

constlen=3; 

% check the correct constellation size 

for i=1:length(M) 

    if ((rem(M(i),2)~=0)|| M(i)<2 || M(i)>512 ) 

        error('wrong modulation order') 

    end 

end 

% Input the convolutional coding rate 

code_rate=input('input the coding rate(1/4, 1/3, 1/2)'); 



72 

 

%check the correct coding rate 

if (code_rate~=1/4 && code_rate~= 1/3 && code_rate ~=1/2) 

        error('Enter the correct coding rate') 

end 

%selection of the polynomial for the encoder  

switch(code_rate) 

       case 1/4 

        codegen=[6 5 7 4]; 

       case 1/3 

        codegen=[6 5 7]; 

       case 1/2 

        codegen=[6  7]; 

 end 

%Effective signal-to-noise ratio 

SNR_eff = 10*log(lin_snr) + 10*log10(N/(N+N*CP)); 

for i=1:length(M) 

 BER=zeros(1,length(SNR_eff)); 

for snr=1:length(SNR_eff)     

    total_ber=0; 

    for runs=1:niter 

        % Data manupulation for the encoder input  

        msg = randi([0 1],25600,1);%nbits*nblocks random data 

        msg1=size(msg, 1); 

        num_bits=msg1; 

        num_bytes=num_bits/8;%number of byte 

        % polynomial to trellis structure 

        t = poly2trellis(constlen, codegen); 

        % convolutionally encode binary data. 

        code = convenc(msg,t);  

        % Modulatation of the encoded message 

        if (M(i)<=4)  

        h=modem.pskmod(M(i));  

        else 

        h=modem.qammod(M(i));  

        end 

        ymod=modulate(h, code); 

        y=ymod'; 

        % OFDM transmitter section  

        s3=size(y,2); 

        j=ceil(s3/N); 

        %serial to parallel conversion of symbols 
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        y=reshape(y,j, N);  

        % Applaying IFFT, 

        ifft_sig=ifft(fftshift(y.')); 

        ifft_sig=transpose(ifft_sig); 

        size_sig=size(ifft_sig) 

        % Appending cylic prefix 

        xt = [ifft_sig(:,[193:256]) ifft_sig]; 

        %total bits per iteration 

        total_bits=size(xt, 1)*size(xt, 2); 

        % Concatenating multiple symbols to form a long vector 

        ynew=reshape(xt.',1,total_bits); 

        % Adding AWGN channel noise  

        ncode = awgn(ynew,snr, 'measured'); % Adding noise 

        ynoise=ncode; 

        % Receiver   

        % formatting the received vector into serial symbols 

        ncode=reshape(ncode.',size(xt,2), size(xt,1)); 

        ncode=transpose(ncode); 

        % Removing the cyclic prefix 

        yt = ncode(:,[65:320]); 

        %Converting to freqency domain 

        fft_sig=fftshift(fft(yt.')); 

        fft_sig=transpose(fft_sig); 

        ff=size(fft_sig) 

        % Parallel to serial conversion for modulation 

        fft_sig=reshape(fft_sig, 1, j*N).'; 

        % demodulation 

        if (M(i)<=4)  

        w=modem.pskdemod(M(i));  

        else 

        w=modem.qamdemod(M(i));  

        end 

        z=demodulate(w, fft_sig); 

        % Quantize to prepare for soft-decision decoding. 

        dec=[0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.999];% decision points 

        qcode = quantiz(z,dec); 

        % Traceback length 

        tblen = 46;  

        delay = tblen;  

        % Convolutionally decode binary data using Viterbi algorithm  

        decoded = vitdec(qcode,t,tblen,'cont','soft',3);   
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        % Compute bit error rate and number of bit errors  

        [number,ratio] = biterr(decoded(delay+1:end),msg(1:end-delay)); 

        total_ber=total_ber+ratio; 

    end % number of niter loop 

    % compute average BER 

    BER(snr)=total_ber/(niter); 

end % snr loop 

% Plot graphs 

semilogy(SNR(1:end),BER(1:end),'-b*','lineWidth',1.2,  'MarkerSize',7); 

axis([0 40 10^-6 1]) 

legend('2QAM','4QAM', '8QAM', '16QAM','32QAM', '64QAM', '128QAM',  

'256QAM','512QAM'); 

grid on 

hold on 

xlabel('Signal-to-Noise Ratio(dB)') 

ylabel('Bit Error Rate') 

title('SNR vs BER') 

end 

 

Matlab code for adaptive coding and modulation for OFDM systems with 2/3, and 

3/4 coding rates 

 

% This code is prepared by Temalow Seife 

% Department of Electrical Engineering 

% Pan African University 

% September 2017 

% Simulation of adaptive coding and modulation for OFDM systems with 2/3, and 

3/4 coding rates. 

clc; 

clear all; 

close all; 

% ofdm specifications 

N = 256; % fft size 

n = 256; % number of data subcarriers 

CP=1/4;%cyclic prefix 

nbits = 256; % number of bits per OFDM block  

nblocks = 10^2; % number of ofdm blocks  

% specify the range of signal-to-noise ratio in dB 

SNR=[0:40]; 

% linear SNR 

lin_snr=10.^(SNR./10); 
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% number of iterations 

niter=5; 

color_vec1 = ['b-','r-','k-','r-','g-', 'k-','r-','b-']; 

% Modulation orders 

M=[2 4 ]; 

% constraint length of the encoder 

% check the correct constellation size 

for i=1:length(M) 

    if ((rem(M(i),2)~=0)|| M(i)<2 || M(i)>512 ) 

        error('wrong modulation order') 

    end 

end 

% Input the convolutional coding rate 

code_rate=input('input the coding rate(2/3, 3/4)'); 

%check the correct coding rate 

if (code_rate~=2/3 && code_rate~= 3/4) 

     error('Enter the correct coding rate') 

end 

%Effective signal-to-noise ratio 

SNR_eff = 10*log(lin_snr) + 10*log10(N/(N+N*CP)); 

for i=1:length(M) 

 BER=zeros(1,length(SNR_eff)); 

for snr=1:length(SNR_eff)     

    total_ber=0; 

    for runs=1:niter 

        % Data manupulation for the encoder input  

        msg = randi([0 1],25600,1);%nbits*nblocks random data 

        msg1=size(msg, 1); 

        num_bits=msg1; 

        num_bytes=num_bits/8;%number of byte 

        %selection of the polynomial for the encoder  

        switch(code_rate) 

        case 2/3 

         constlen=[3 3]; 

         codegen=[7 6 7  ; 7 4 5 ]; 

        case 3/4 

          constlen=[3 3 3]; 

          codegen=[7 6 4 5;3 5 7 6;5 4 7 3];  

          msg = randi([0 1],26112,1); 

          msg1=size(msg, 1); 

        end 
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        % polynomial to trellis structure 

        t = poly2trellis(constlen, codegen); 

        % convolutionally encode binary data. 

        code = convenc(msg,t);  

        % Modulatation of the encoded message 

        if (M(i)<=4)  

        h=modem.pskmod(M(i));  

        else 

        h=modem.qammod(M(i));  

        end 

        ymod=modulate(h, code); 

        y=ymod'; 

        % OFDM transmitter section  

        s3=size(y,2); 

        j=ceil(s3/N); 

        %serial to parallel conversion of symbols 

        y=reshape(y,j, N);  

        % Applaying IFFT, 

        ifft_sig=ifft(fftshift(y.')); 

        ifft_sig=transpose(ifft_sig); 

        % Appending cylic prefix 

        xt = [ifft_sig(:,[193:256]) ifft_sig]; 

        %total bits per iteration 

        total_bits=size(xt, 1)*size(xt, 2); 

        % Concatenating multiple symbols to form a long vector 

        ynew=reshape(xt.',1,total_bits); 

        % Adding AWGN channel noise  

        ncode = awgn(ynew,snr, 'measured'); % Adding noise 

        ynoise=ncode; 

        % Receiver   

        % formatting the received vector into serial symbols 

        ncode=reshape(ncode.',size(xt,2), size(xt,1)); 

        ncode=transpose(ncode); 

        % Removing the cyclic prefix 

        yt = ncode(:,[65:320]); 

        %Converting to freqency domain 

        fft_sig=fftshift(fft(yt.')); 

        fft_sig=transpose(fft_sig); 

        ff=size(fft_sig) 

        % Parallel to serial conversion for modulation 

        fft_sig=reshape(fft_sig, 1, j*N).'; 
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        % demodulation 

        if (M(i)<=4)  

        w=modem.pskdemod(M(i));  

        else 

        w=modem.qamdemod(M(i));  

        end 

        z=demodulate(w, fft_sig); 

        % Quantize to prepare for soft-decision decoding. 

        dec=[0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.999];% decision points 

        qcode = quantiz(z,dec); 

        % Traceback length 

        tblen = 46;  

        delay = tblen;  

        % Convolutionally decode binary data using Viterbi algorithm  

        decoded = vitdec(qcode,t,delay,'trunc','soft',3); 

        % Compute bit error rate and number of bit errors 

        [number, ratio]=biterr(decoded,msg);  

        total_ber=total_ber+ratio; 

    end % number of niter loop 

    % compute average BER 

    BER(snr)=total_ber/(niter); 

end % snr loop 

% Plot graphs 

semilogy(SNR(1:end),BER(1:end),'-m*'); 

axis([0 40 10^-5 1]) 

grid on 

hold on 

xlabel('Signal-to-Noise Ratio(dB)') 

ylabel('Bit Error Rate') 

title('SNR vs BER') 

end 

 

Matlab code for BER comparison for 16QAM with different coding rates 

 

% This code is prepared by Temalow Seife 

% Department of Electrical Engineering 

% Pan African University 

% September 2017 

% BER comparison for 16QAM with different coding rates 

clc; 

% specify the range of signal-to-noise ratio in dB 
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SNR=[0:30]; 

% linear SNR 

lin_snr=10.^(SNR./10); 

% number of iterations 

nruns=5; 

% Modulation orders 

M=16;%M=2 is BPSK, M=4 is QPSK and for M>4 is M-ary QAM 

% check the correct constellation size 

for i=1:length(M) 

    if ((rem(M(i),2)~=0)|| M(i)>512) 

        error('wrong modulation order') 

    end 

end 

% Input the convolutional coding rate 

code_rate=input('input the coding rate(1/4, 1/3, 1/2, 2/3)'); 

if (code_rate~=1/4 && code_rate~= 1/3 && code_rate ~=1/2 && code_rate~=2/3) 

        error('Enter the correct coding rate') 

end 

% ofdm specifications 

N = 256; % fft size 

n = 256; % number of data subcarriers 

CP=1/4;%cyclic prefix 

nbits = 256; % number of bits per OFDM block  

nblocks = 10^2; % number of ofdm blocks  

%Effective siganl-to-noise ratio 

SNR_eff = 10*log(lin_snr)+ 10*log10(n/N) + 10*log10(N/(N+N*CP)); 

for i=1:length(code_rate) 

 BER=zeros(1,length(SNR_eff)); 

for snr=1:length(SNR_eff)     

    total_ber=0; 

    for runs=1:nruns 

        % Data manupulation for the encoder input  

        msg = randi([0 1],25600,1);%nbits*nblocks 

        msg1=size(msg, 1); 

        num_bits=msg1; 

        num_bytes=num_bits/8;%number of byte 

        % Convolutionally encoding data 

           if code_rate == 1/4 

                constlen=3;% constraint length 

                codegen=[6 5 7 4];% polynomial of the encoder 

           elseif code_rate == 1/3 
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                constlen=3; 

                codegen=[6 5 7]; 

           elseif code_rate == 1/2 

                constlen=3; 

                codegen=[6  7]; 

           elseif code_rate == 2/3 

                constlen=[3 3]; 

                codegen=[7 6 7  ; 7 4 5 ]; 

            else  

                constlen=3; 

                codegen=7;  

            end  

        % polynomial to trellis structure 

        t = poly2trellis(constlen, codegen); 

        code = convenc(msg,t); % onvolutionally encode binary data. 

        % Modulatation of the encoded message 

        h=modem.pskmod(M);  

        ymod=modulate(h, code); 

        y=ymod'; 

        % OFDM transmitter section  

        s3=size(y,2); 

        j=ceil(s3/N); 

        %serial to parallel conversion of symbols 

        y=reshape(y,j, N);  

        % Applaying IFFT, 

        % ifft_sig=ifft(y.').'; 

        ifft_sig=ifft(fftshift(y.')).'; 

        size_sig=size(ifft_sig) 

        % Appending cylic prefix 

        xt = [ifft_sig(:,[193:256]) ifft_sig]; 

        total_bits=size(xt, 1)*size(xt, 2); 

        % Concatenating multiple symbols to form a long vector 

        ynew=reshape(xt.',1,total_bits); 

        % Adding AWGN channel noise  

        ncode = awgn(ynew,snr, 'measured'); % Adding noise 

        ynoise=ncode; 

        % Receiver  

        % formatting the received vector into serial symbols 

        ncode=reshape(ncode.',size(xt,2), size(xt,1)).'; 

        %Removing the cyclic prefix 

        yt = ncode(:,[65:320]); 
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        %Converting to freqency domain 

        fft_sig=fftshift(fft(yt.')).'; 

        ff=size(fft_sig) 

        % Parallel to serial conversion for modulation 

        fft_sig=reshape(fft_sig, 1, j*N).'; 

        % demodulation 

        w=modem.pskdemod(M);  

        z=demodulate(w, fft_sig); 

        % Quantize to prepare for soft-decision decoding. 

        dec=[0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.999];% decision points 

        qcode = quantiz(z,dec); 

        tblen = 46; delay = tblen; % Traceback length 

        % Convolutionally decode binary data using Viterbi algorithm  

        if (code_rate>0.5) 

            decoded = vitdec(qcode,t,delay,'trunc','soft',3); 

            [number, ratio]=biterr(decoded,msg);   

        else   

            decoded = vitdec(qcode,t,tblen,'cont','soft',3);   

            % Compute bit error rate and number of bit errors  

            [number,ratio] = biterr(decoded(delay+1:end),msg(1:end-delay)); 

        end 

         total_ber=total_ber+ratio; 

    end % number of runs loop 

    % compute average BER 

    BER(snr)=total_ber/(nruns/2); 

end % snr loop 

% Plot graphs 

semilogy(SNR,BER); 

axis([0 30 10^-6 1.4]) 

legend('1/4 code rate','1/3 code rate', '1/2 code rate', 'Uncoded msg'); 

grid on 

hold on 

xlabel('Signal-to-Noise Ratio(dB)') 

ylabel('Bit Error Rate') 

title('Comparison of 16QAM with different coding rate') 

end 


