A NEW GENERALIZATION OF
TRANSFORMED-TRANSFORMER FAMILY OF
DISTRIBUTIONS

SULEMAN NASIRU

DOCTOR OF PHILOSOPHY IN MATHEMATICS

(Statistics Option)

PAN AFRICAN UNIVERSITY
INSTITUTE FOR BASIC SCIENCES, TECHNOLOGY AND

INNOVATION

2018



A New Generalization of Transformed-Transformer

Family of Distributions

Suleman Nasiru

MS 400-0002/16

A Thesis submitted to Pan African University,
Institute for Basic Sciences, Technology and
Innovation in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in

Mathematics (Statistics Option)

2018



DECLARATION

This thesis is my original work and no part of it has been presented for another degree

award in any other university.

Signature: Date:

Suleman Nasiru.

The thesis has been submitted with our approval as university supervisors.

Signature: Date:

Prof. Peter N. Mwita,
Department of Mathematics and Statistics,

Machakos University, Kenya.

Signature: Date:

Dr. Oscar Ngesa,
Department of Mathematics and Informatics,

Taita Taveta University, Kenya.



DEDICATION

To my beloved wife Karim Zenabu, lovely daughter Nasira Nasiru, father Yakubu Suleman

and mother Sekinatu Seidu.

i



ACKNOWLEDGMENTS

I wish to express my heartfelt gratitude to my supervisors Prof. Peter N. Mwita and
Dr. Oscar Ngesa, for their advice and encouragements in the preparation and completion
of this write-up. My deepest gratitude goes to the African Union Commission for the
financial support, without which this study would not have been successful. T would like
to express special acknowledgment to the University for Development Studies for grant-
ing me study leave to pursue this academic journey. My sincere gratitude to my good
friend Bol Atem Manyuon Atem for his positive criticisms that helped to shape the final

outcome of this thesis.

I express my overwhelming gratitude to my wife Karim Zenabu and daughter Nasira
Nasiru for their prayers and unflinching support. No amount of words can describe your
contributions to my life. You are my source of inspiration and countless happiness. I can
only say Allah bless you for being there for me. A number of family members supported
and encouraged me in this journey. My acknowledgment would be incomplete without
showing appreciations to them. I express heartfelt appreciations to my father Yakubu
Suleman, mother Sekinatu Seidu, elder brother Abdallah Suleiman, father-in-law Abdul
Karim Kombert and mother-in-law Abdul Salam Abiba for their relentless support and

encouragements.

Finally, many thanks to my friends and colleagues, especially Mr. Sampson Wiredu,

Dr. Solomon Sarpong and Prof. Albert Luguterah for their diverse supports.

il



TABLE OF CONTENTS

DECLARATION .. i
DEDICATION . . .o ii
ACKNOWLEDGMENTS . ... e iii
TABLE OF CONTENTS . ... e X
LIST OF TABLES . ... . e xi
LIST OF FIGURES. . .. .. e e xiv
LIST OF ABBREVIATIONS ... .. xvi
ABS T R ACT . . xix
CHAPTER 1: INTRODUCTION ... .. e 1
1.1 Background of the Study ....... ... .. . 1
1.2 Statement of the Problem ........ ... .. ... .. ... .. .. . .. ... ... 3
1.3 General Objective ... ... .. 4
1.4 Specific Objectives. . ... ... 4
1.5 Significance of the Study ....... ... . . . 5
1.6 Literature Review ... ... ... 5
1.6.1 Method of Differential Equation ........... ... ... ............ 6

1.6.2  Method of Transformation............ ... ... ... .. ... ......... 6

1.6.3 Method of Quantile Function ................................. 7

1.6.4 Method of Generating Skewed Distributions .................... 7

v



1.6.5 Method of Adding Parameters ............. ... .. ... ... .. ...... 8

1.6.6 Beta-Generated Method .. ...... ... ... .. ... ... .. ... 9
1.6.7 Transformed-Transformer Method .......... ... .. ... ... .. ... ... 10
1.6.8 Summary of Review ....... ... . . 10

1.7 Thesis Outline ... ... . 10
CHAPTER 2: BASIC CONCEPTS AND METHODS................... 12
2.1 Introduction . ... ... ... . 12
2.2 Maximum Likelihood Estimation ............ ... ... ... ... ... ... ... 12
2.2.1 Properties of Maximum Likelihood Estimators .................. 13
2211 ConSistency . ..........ioiii 14

2.2.1.2  Asymptotic Normality ........... ... .. ... ... ... ... ... 14

2.2.1.3 Asymptotic Efficiency ......... .. .. ... L. 15

2.2.1.4 Invariance Property ....... ... .. ... ... . . . 16

2.2.2  Confidence Intervals for Parameters................ ... ... .. .... 16

2.3 Broyden-Fletcher-Goldfarb-Shanno Algorithm ......................... 16
2.4 Goodness of Fit Tests ... ... 18
2.4.1 Likelihood Ratio Test . ...... ... ... . . 18
2.4.2  Kolmogorov-Smirnov Test . .......... .. .. .. .. .. .. .. . . 19
2.4.3 Cramér-von Mises Test .. ... i 20

2.5 Information Criteria ....... ... ... 20
2.5.1 Akaike Information Criterion ............ ... .. .. ... .. .. ... ... 21
2.5.2 Bayesian Information Criterion............ ... ... .. .. .. ... ... 21

2.6 Total Time on Test ... ... 22
2.7 SUIINATY .« ottt e e e e e 24



CHAPTER 3: EXPONENTIATED GENERALIZED T-X FAMILY OF

3.1

3.2

3.3

3.4

DISTRIBUTIONS . ... 25
Introduction . ...... ... .. 25
Exponentiated Generalized T-X ........ ... ... ... .. .. . .. .. ... .. 25
EG Families for Different T-Distributions............ ... .. .. ... .. .... 28
3.3.1 EG Half Logistic-X Family ......... ... ... ... ... ... .... 30
Statistical Properties of EG T-X Family .......... ... ... .. ... ... ... 32
3.4.1 Quantile Function . ........ .. ... .. . . ... .. . 33
342 Moments. ... ... 33
3.4.3 Moment Generating Function .......... .. .. .. .. .. ... ... ..., 36
344 Entropy. ... ... 37
SUIMIMATY .« -« o oottt et e e e e e 39

CHAPTER 4: EXPONENTIATED GENERALIZED EXPONENTIAL

4.1

4.2

4.3

4.4

DAGUM DISTRIBUTION....... ... ... . . . . .. 40
Introduction ... ... ... . 40
Generalized Exponential Dagum ....... ... ... ... .. .. .. L. 40
Sub-models . .. ... 45
Statistical Properties. ... ... .. 48
4.4.1 Quantile Function ........ ... .. .. . . . 48
442 Moments. ... .. ... 49
4.4.3 Moment Generating Function ........ ... ... ... .. ... ... .... 51
4.4.4 Incomplete Moment ....... ... ... .. . .. .. .. .. o1
4.4.5 Mean and Median Deviations ........ ... ... ... .. ... .. ... 52
4.4.6 Inequality Measures ......... .. ... 54

vi



4.5

4.6

4.7

4.8

447 Entropy. ... ... 95

4.4.8 Stress-Strength Reliability . ....... ... ... .. .. ... . 56
4.4.9  Order Statistics .. ... 57
Parameter Estimation .. ....... .. . . 59
Monte Carlo Simulation ............ .. .. . . . 61
ApPpPLCations . . ... 65
4.7.1 Yarn Data. ... ... 65
4.7.2 Appliances Data .......... .. ... .. ... 69
SUIMIATY .« .+« ot ottt et e e e e e e e e e 73

CHAPTER 5: NEW EXPONENTIATED GENERALIZED MODIFIED

5.1

5.2

5.3

5.4

INVERSE RAYLEIGH DISTRIBUTION ................ 74
Introduction ... ... ... . 74
Generalized Modified Inverse Rayleigh......... .. ... .. ... ... ... ... 74
Sub-models . . ... 78
Statistical Properties. ... ... ... .. 80
5.4.1 Quantile Function .. ...... ... ... .. . 81
D.4.2 Moments. . ... 82
5.4.3 Moment Generating Function ............ ... ... ... ... ... ... 84
5.4.4 Incomplete Moment ......... ... . . . . . .. . 85
5.4.5 Mean and Median Deviations ............. ... ... ... .. ... ... 86
5.4.6 Inequality Measures .......... .. .. . . 87
DA ENITopY . oo 88
5.4.8 Stress-Strength Reliability ........... ... ... ... . ... ... 89
5.4.9 Order Statistics .. ... .. 91

vil



5.9

5.6

5.7

5.8

Parameter Estimation . ... ... .. 92

Monte Carlo Simulation ............ .. .. . . 94
Applcations . ... ... 97
5.7.1  Aidrcraft Data . ... ... . 97
5.7.2  Precipitation Data ........ .. ... . . . . . 101
SUIMIATY © .+« o oottt et e e e e e e e e e e 105

CHAPTER 6: EXPONENTIATED GENERALIZED HALF LOGISTIC

6.1

6.2

6.3

6.4

6.5

6.6

6.7

BURR X DISTRIBUTION ...... ... .. .. .. ... ... ...... 106
Introduction ... ... ... . 106
Generalized Half Logistic Burr X .. ... ... ... 106
Sub-models . .. ... 109
Statistical Properties. .. ... ... ... 111
6.4.1 Quantile Function . ....... ... ... . . . 111
6.4.2 Moments . ... ... 113
6.4.3 Moment Generating Function ........ ... ... ... .. .. ... .. .... 114
6.4.4 Incomplete Moment ....... ... ... ... .. .. 115
6.4.5 Mean and Median Deviations ........ ... ... ... .. .. ... .. ..., 116
6.4.6 Inequality Measures ....... ... ... ... 117
6.4.7 Entropy. ... ... 118
6.4.8 Stress-Strength Reliability .......... ... ... .. ... . 119
6.4.9 Order Statistics . ... 120
Parameter Estimation .. ........ . . . 122
Monte Carlo Simulation ............ .. .. . . . 125
Application . .. ... 127



6.8 SUMINATY . . . ..ot 131

CHAPTER 7: EXPONENTIATED GENERALIZED POWER SERIES

FAMILY OF DISTRIBUTIONS ......................... 132

7.1 Introduction ... ... ... . 132
7.2 Generalized Power Series Family ......... ... .. ... ... ... .. ... ... 132
7.3 Sub-Families . .. ... 137
7.3.1 Exponentiated Generalized Poisson Class . ................ ... ... 137
7.3.2 Exponentiated Generalized Binomial Class...................... 137
7.3.3 Exponentiated Generalized Geometric Class .................... 138
7.3.4 Exponentiated Generalized Logarithmic Class ................ ... 138

7.4 Statistical Properties. ... ... .. . 139
7.4.1 Quantile function ........ ... ... .. . 139
742 Moments. ... ..o 140
7.4.3 Moment Generating Function ............. ... .. ... ... ... ... ... 141
7.4.4 Incomplete Moment ........ .. .. .. .. ... ... 141
7.4.5 Residual and Mean Residual Life .. ........ ... ... ... .. ... ... 143
7.4.6 Stochastic Ordering Property .......... .. ... .. .. ... .. .. ... ... 144
7.4.7  Stress-Strength Reliability .......... .. .. ... ... .. ... .. ... 144
7.4.8 Shannon Entropy ......... ... .. 145
7.4.9 Order Statistics .. ... ... 147

7.5 Parameter Estimation .. ... ... .. ... .. . . 148
7.6 Extensions via Copula........ .. .. ... . . . . 149
7.7 Special Distributions .. ...... ... . 150
7.7.1 EGPIE Distribution ........ .. .. .. .. .. .. . . 151

X



7.7.2 EGBIE Distribution . ... ... 152

7.7.3 EGGIE Distribution .. ...... .. ... ... . 154

7.7.4 EGLIE Distribution ......... .. ... . . 155

7.8 Monte Carlo Simulation . ...... ... .. ... 157
7.9 Application .. ... 159
T.10 SUIMIMATY .« . ottt et e e e e e e e e e e e e 163
CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS.......... 164
8.1 Inmtroduction ..... ... .. . 164
8.2 COonCIUSIONS . . . oot 164
8.3 Recommendations ....... ... .. .. 166
REFERENCES . ... .. 167
APPENDICES . ... 176
Appendix Al: EGED Elements of Observed Information Matrix.............. 176
Appendix A2: NEGMIR Elements of Observed Information Matrix ........... 183
Appendix A3: EGHLBX Elements of Observed Information Matrix ........... 186
Appendix A4: R Algorithms . ....... ... 195
Appendix Ab5: Publications and Conferences .............. ... .. .. ... ...... 225



Table 3.1:

Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5:

Table 4.6:

Table 4.7:

Table 4.8:

Table 4.9:

Table 4.10:

Table 5.1:

Table 5.2:

Table 5.3:

LIST OF TABLES

EG T-X Families from Different 7" Distributions ...........

Summary of sub-models from the EGED distribution .......
First six moments of EGED distribution ....................

Failure time data on 100 cm yarn subjected to 2.3% strain

Maximum likelihood estimates of parameters and standard
errors for yarn ...... ... ... ..
Log-likelihood, goodness-of-fit statistics and information cri-
teria for yarn ....... ...
Likelihood ratio test statistic for yarn .......................
Failure Times for 36 appliances subjected to an automatic
life test .. ... .
Maximum likelihood estimates of parameters and standard
errors for appliances ........... ... ... ... .. ... ... ... .. ...
Log-likelihood, goodness-of-fit statistics and information cri-
teria for appliances. . ........ ... ... ...

Likelihood ratio test statistic for appliances .................

Summary of sub-models from the NEGMIR distribution .. ..
First six moments of NEGMIR distribution .................

Failure times data for the air conditioning system of an air-

x1



Table 5.4:

Table 5.5:

Table 5.6:

Table 5.7:

Table 5.8:

Table 5.9:

Table 5.10:

Table 6.1:

Table 6.2:

Table 6.3:

Table 6.4:

Table 6.5:

Table 6.6:

Table 7.1:

Table 7.2:

Table 7.3:

Maximum likelihood estimates of parameters and standard
errors for aircraft data ........ ... .. ... .. L.
Log-likelihood, goodness-of-fit statistics and information cri-
teria for aircraft data ......... .. ... ... .l
Likelihood ratio test statistic for aircraft data ...............
March precipitation in Minneapolis/St Paul ................
Maximum likelihood estimates of parameters and standard
errors for precipitationdata.................... ... ... ... ...
Log-likelihood, goodness-of-fit statistics and information cri-
teria for precipitation data ......... ... ... ... . L

Likelihood ratio test statistic for precipitation data..........

Summary of sub-models from the EGHLBX distribution .
First six moments of EGHLBX distribution .................
Fatigue time of 101 6061-T6 aluminum coupons ............
Maximum likelihood estimates of parameters and standard

errors for aluminum data ............ ... .. ... L.
Log-likelihood, goodness-of-fit statistics and information cri-

teria for aluminum data......... ... ... ... oL

Likelihood ratio test statistic for aluminum data ............

Useful quantities for some power series distributions ........
Monte Carlo simulation results: AE and RMSE for EGPIE
and EGBIE distributions................ .. .. ... ... ... ...
Monte Carlo simulation results: AE and RMSE for EGGIE

and EGLIE distributions .. ........... ... .

xii



Table 7.4:

Table 7.5:

Table 7.6:

Failure times of Kevlar 49/epoxy strands with pressure at

Maximum likelihood estimates of parameters and standard
errors of Kevlardata.............. ... ... ... ... ... ... ..... 161
Log-likelihood, goodness-of-fit statistics and information cri-

teria of Kevlar data . ....... ... . . . 161

xiii



Figure 3.1:

Figure 3.2:

Figure 4.1:

Figure 4.2:

Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:

Figure 4.9:

Figure 4.10:

Figure 5.1:

Figure 5.2:

Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:

Figure 5.7:

LIST OF FIGURES

Families of EG T-X distributions ........................

Density function plots of EGHLF distribution for some

parameter values......... ... ... ... .. ... .. ..

EGED density function for some parameter values
Plots of the EGED hazard function for some parameter

values. .. ...
AB for Estimators

RMSE for Estimators

AB for Estimators .......... ... .. ... ...
RMSE for Estimators ................ .. ... ... ............
TTT-transform plot for yarndata ........................
Empirical and fitted densities plot for yarn data..........

TTT-transform plot for appliances data ............... ...

Empirical and fitted densities plot for appliances data .. ..

NEGMIR density function for some parameter values . ...
Plots of the NEGMIR hazard function for some parame-

ter values ....... ... ...
AB for Estimators .......... .. .. .. ... . ..
RMSE for Estimators ............. .. ... .. ... ... .. ... ...
AB for Estimators ............ ... ... ... .

RMSE for Estimators ............ ...

TTT-transform plot for aircraft data .................. ...

Xiv



Figure 5.8:

Figure 5.9:

Figure 5.10:

Figure 6.1:

Figure 6.2:

Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:

Figure 6.8:

Figure 7.1:

Figure 7.2:

Figure 7.3:

Figure 7.4:

Figure 7.5:

Figure 7.6:

Figure 7.7:

Empirical and fitted densities plot of aircraft data........ 101
TTT-transform plot for precipitation data............. ... 102

Empirical and fitted densities plot for precipitation data . 105

EGHLBX density function for some parameter values . ... 108

Plots of the EGHLBX hazard function for some parame-

ter values ... ... 109
AB for Estimators .......... .. .. .. ... .. 125
RMSE for Estimators ............. .. ... ... ... .. .. .. ..., 126
AB for Estimators .......... ... ... ... .. .. .. ... 126
RMSE for Estimators ............... ... ... ... .. .. ... ... 127
TTT-transform plot for aluminum coupons data.......... 128
Empirical and fitted densities plot of aluminum data ... .. 131

Plots of EGPIE (a) PDF and (b) hazard rate function for
some parameter values ............... ... ... ... .. .. ..., 152
Plots of EGBIE (a) PDF and (b) hazard rate function for
some parameter values ............. ... ... .. ... ... ... ... 153
Plots of EGGIE (a) PDF and (b) hazard rate function for
some parameter values ............ ... ... ... ... ... ... ... 155
Plots of EGLIE (a) PDF and (b) hazard rate function for
some parameter values ............ ... .. ... L 156
TTT-transform plot for Kevlar dataset .................. 160
Empirical and fitted density and CDF plots of Kevlar datal62

P-P plots of the fitted distributions ................... ... 162

XV



LIST OF ABBREVIATIONS

AB Average Bias

AE Average Estimate

AIC Akaike Information Criterion

AlCc Corrected Akaike Information Criterion

BD Burr IIT Distribution

BFGS Broyden-Fletcher-Goldfarb-Shanno

BIC Bayesian Information Criterion

CDF Cumulative Distribution Function

DD Dagum Distribution

EG Exponentiated Generalized

EGB Exponentiated Generalized Binomial

EGBD Exponentiated Generalized Burr III Distribution

EGBIE Exponentiated Generalized Binomial Inverse Exponential
EGDD Exponentiated Generalized Dagum Distribution

EGE Exponentiated Generalized Exponential

EGEBD Exponentiated Generalized Exponential Burr III Distribution
EGED Exponentiated Generalized Exponential Dagum

EGEFD Exponentiated Generalized Exponential Fisk Distribution

xXvi



EGEIE

EGEIR

EGFD

EGG

EGGIE

EGHL

EGHLBX

EGHLF

EGIE

EGIR

EGL

EGLIE

EGMIR

EGP

EGPIE

EGPS

EGSHLBX

EHLBX

EKD

Exponentiated Generalized Exponential Inverse Exponential

Exponentiated Generalized Exponential Inverse Rayleigh

Exponentiated Generalized Fisk Distribution

Exponentiated Generalized Geometric

Exponentiated Generalized Geometric Inverse Exponential

Exponentiated Generalized Half Logistic

Exponentiated Generalized Half Logistic Burr X

Exponentiated Generalized Half Logistic Frétchet

Exponentiated Generalized Inverse Exponential

Exponentiated Generalized Inverse Rayleigh

Exponentiated Generalized Logarithmic

Exponentiated Generalized Logarithmic Inverse Exponential

Exponentiated Generalized Modified Inverse Rayleigh

Exponentiated Generalized Poisson

Exponentiated Generalized Poisson Inverse Exponential

Exponentiated Generalized Power Series

Exponentiated Generalized Standardized Half Logistic Burr X

Exponentiated Half Logistic Burr X

Exponentiated Kumaraswamy Dagum

XVvii



FD

HLBX

IE

IR

K-S

LRT

McD

MGF

MIR

NEGMIR

NGIW

PDF

PS

RMSE

SHLBX

SIC

TTT

T-X

WBXII

Fisk Distribution

Half Logistic Burr X

Inverse Exponential

Inverse Rayleigh

Kolmogorov-Smirnov

Likelihood Ratio Test

Mc-Dagum

Moment Generating Function

Modified Inverse Rayleigh

New Exponentiated Generalized Modified Inverse Rayleigh

New Generalized Inverse Weibull

Probability Density Function

Power Series

Root Mean Square Error

Standardized Half Logistic Burr X

Schwarz Information Criterion

Total Time on Test

Transformed-Transformer

Weibull Burr XII

XVviil



ABSTRACT

The development of generalized classes of distributions have attracted the attention of
both theoretical and applied statisticians in recent times due to their flexible statistical
properties. In this study, the exponentiated generalized transformed-transformer family
of distributions was proposed and studied. The statistical properties of the new family
were derived and various sub-families were defined. Some of the sub-families were used
to develop the exponentiated generalized exponential Dagum, new generalized modified
inverse Rayleigh and exponentiated generalized half logistic Burr X distributions. The
statistical properties of the proposed distributions were studied and inferences were made
on them. An extension of a sub-family of the exponentiated generalized transformed-
transformer was developed by compounding it with the power series class to obtain the
exponentiated generalized power series family of distributions. Monte Carlo simulations
were performed to investigate the properties of the maximum likelihood estimators for
the parameters of the developed distributions. The results revealed that the maximum
likelihood estimators for the parameters were consistent. Applications of the proposed
distributions were demonstrated using real data sets and their performance were com-
pared to other known competing models. The proposed distributions showed greater

flexibility and can be used to model different kinds of real data sets.

Xix



CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Parametric statistical inferences and modeling of data sets require the knowledge of ap-
propriate distributional assumptions of the data sets. Thus, classical statistical distri-
butions have been used in many areas of applied and social sciences to makes inferences
and model data. The usefulness of statistical distributions in several areas of research
includes: modeling environmental pollution in environmental science, modeling duration
without claims in actuarial science, modeling machine life cycle in engineering, modeling
survival times of patients after surgery in the medical science, modeling failure rate of
software in computer science and average time from marriage to divorce in the social
science. However, the data generating process in many of these areas are characterized
with varied degrees of skewness and kurtosis. Also, the data may exhibit non-monotonic
failure rates such as the bathtub, unimodal or modified unimodal failure rates. Hence,
modeling the data with the existing classical distributions does not provide a reasonable

parametric fit and is often an approximation rather than reality.

An alternative approach to overcome these challenges is to use nonparametric meth-
ods to model the data sets since they do not depend on distributional assumptions like
the parametric methods. However, the nonparametric methods have their own drawbacks
including: loss in power when the parametric method is appropriate, lack of imprecision

measurement, computational difficulties, difficult to calculate residual variability and loss



information (Allison, 1995; Blossfeld and Rohwer, 1995; Mallet, 1986; Schumitzky, 1991).
Because of these, the statistical literature in the recent decades has been continuously
flooded with barrage of methods for modifying existing classical distributions to make
them more flexible or developing new statistical distributions for modeling data sets from
different fields of study. Most of the techniques are geared towards producing distribu-
tions with heavy tails, monotonic and non-monotonic failure rates, tractable cumulative
distribution function (CDF) to make simulation easy and to model data with different
degrees of skewness and kurtosis. Some of the modified distributions in literature are:
exponentiated exponential distribution (Gupta and Kundu, 1999); exponentiated Weibull
distribution (Mudholkar and Srivastava, 1993); beta-normal (Eugene et al., 2002); and

beta-Pareto distribution (Akinsete et al., 2008).

The techniques for modifying the classical distributions are usually referred to as gen-
erators in literature and are capable of improving the goodness-of-fit of the modified
distributions. These features have been established by the results of many generators
(Cordeiro and de Castro, 2011; Jones, 2009; Eugene et al., 2002). Recently, Alzaatreh
et al. (2013) proposed an extension of the beta-generated family of distributions devel-
oped by Eugene et al. (2002) and called it the transformed-transformer (7-X) family of
distributions. According to Alzaatreh et al. (2013), the CDF of the T-X family is defined

as

~log(1-F())
G(x) :/0 r(t)dt = R{-log(1 — F(x))}, (1.1)

where r(t) is the probability density function (PDF) of the random variable T, R(t) is the
CDF of T and F(z) is the CDF of the random variable X. Although, the 7-X method

have been embraced by several researchers, Alzaghal et al. (2013) proposed an extension



of it in order to improve on some of the drawbacks of the 7-X method. The new family
defined by Alzaghal et al. (2013) is called the exponentiated 7-X family of distributions.

The CDF of this new family is given by

~log(1—Fe(x))
G(x) :/0 r(t)dt = R{—log(1 — F(z))}, (1.2)

where ¢ is a shape parameter introduced in the family to make it more flexible. However,
both the 7-X family and the exponentiated T-X family still have some drawbacks that

need to be addressed.

1.2 Statement of the Problem

The problem associated with the 7-X method of Alzaatreh et al. (2013) is that the CDF
of the family has no extra shape parameters for improving the flexibility of modified
distributions. For instance if the distribution of the random variable T" follows standard
exponential and that of X is exponential, then the resulting distribution will have no
shape parameter. However, to produce distributions with heavy tails and model data
with non-monotonic failure rates the resulting modified distribution should have extra
shape parameters. Thus, if the distributions of 7" and X in the 7-X family have no shape
parameters, then no additional flexibility is added to the new distribution. To overcome
these drawbacks, Alzaghal et al. (2013) introduced a new shape parameter ¢ in the 7-X
and called the new family exponentiated 7-X family.

The limitations of adding a single shape parameter is that it is unable to produce distri-
butions with heavy tails and control both skewness and kurtosis at the same. The need

for an additional shape parameter to produce heavy tail distribution and control both



skewness and kurtosis is important since lifetime data often exhibit these traits. This
study develops a new generalization of the T-X family of distributions by adding an ex-
tra shape parameter to provide greater flexibility and improve goodness-of-fit of modified

distributions when modeling lifetime data sets.

1.3 General Objective

The main objective of this study is to develop and derive the statistical properties of a

new generalization of the T-X family of distributions.

1.4 Specific Objectives

The specific objectives are:
1. To develop a new exponentiated generalized T-X family of distributions.

2. To derive the statistical properties of some distributions arising from this new family

of distributions.

3. To develop maximum likelihood estimators for the parameters of the new distribu-

tions.

4. To investigate the statistical properties of the estimators for the parameters using

simulation.

5. To demonstrate the applications of the new distributions using real data sets.



1.5 Significance of the Study

Statistical probability distributions are the foundation of statistical methodology in both
theory and practice. They form the backbone to every parametric statistical method
including inference, modeling, survival analysis, reliability analysis among others. For
instance, statistical distributions have been used in the engineering sciences to model the
life cycle of a machine. In the medical sciences, statistical distributions have been used
to study duration to recurrence of cancer after surgical removal. Another important area
of study where statistical distributions play a key role is extreme value theory. Statistical

distributions have been used in modeling extreme events such as earthquakes and floods.

The knowledge of appropriate distribution of real data sets greatly improves the sen-
sitivity, power and efficiency of the statistical test associated with the data sets. Hence,
developing new generators for modifying existing distributions to improve their goodness-
of-fit is imperative. Thus, in this study a new method for generalizing distributions called

exponentiated generalized T-X was developed and studied.

1.6 Literature Review

Several methods for developing new distributions have been proposed in literature. This
section presents a review on some of the general methods developed before 1980 and
those proposed since the 1980s. Those methods developed before the 1980 are: method
of differential equation, method of transformation and method of quantile function. The
methods developed since the 1980s include: method of generating skewed distributions,

method of adding parameters to existing distributions, beta-generated method and the



T-X method.

1.6.1 Method of Differential Equation

The methods developed prior to the 1980s can be classified as method of differential
equations, method of transformation and method of quantile. The early works of Pear-
son (1895) can be seen as the break through in this field. He proposed the differential
equation approach for developing probability distributions. With this approach every
member of a PDF satisfies a differential equation. Pearson (1895, 1901) classified these
distributions based on the shape of the PDF into a number of types known as Pearson
types I-VI. Later in another paper, Pearson (1916) defined more special cases and sub-
types known as the Pearson types VII-XII. Several well known distributions belong to
the Pearson type distributions. Among them are: normal and student t distributions
(Pearson type VII), beta distribution (Pearson type I) and gamma distribution (Pearson
type III). In addition to the differential equation approach, Burr (1942) developed an-
other method for developing probability distributions using different form of differential
equations. Burr’s system gave twelve solutions to the differential equation in the form
of CDF. Some common distributions from the Burr’s family are: the uniform, Burr III,

Burr X and Burr XII distributions.

1.6.2 Method of Transformation

Johnson (1949) proposed the method of transformation which sometimes is referred to
as translation in literature using normalization transformation. The Johnson’s family
include many commonly used distributions such normal, lognormal, gamma, beta, ex-

ponential among others. The Birnbaum-Saunders distribution is an important lifetime



distribution that belongs to the Johnson’s family and was originally developed to model
material fatigue (Birnbaum and Saunders, 1969). Athayde et al. (2012) employed the
Johnson’s system to develop various generalizations of the Birnbaum-Saunders distri-
bution including families of location-scale Birnbaum-Saunders, non-central Birnbaum-

Saunders and four parameter generalized Birnbaum-Saunders distributions.

1.6.3 Method of Quantile Function

The development of the lambda distribution led to the quantile method of proposing
probability distributions (Hastings et al., 1947; Tukey, 1960). The lambda distribution
was later generalized as the so called lambda distributions which were defined in terms of
percentile function (Ramberg and Schmeiser, 1972, 1974; Ramberg et al., 1979). Freimer
et al. (1988) addressed the similarities between the Pearson’s system and the generalized
lambda distribution. They indicated that the Pearson’s family does not include logistic
distribution while the generalized lambda distribution does not cover all skewness and
kurtosis values. In order to overcome these weaknesses an extended generalized lambda
was proposed by Karian and Dudewicz (2000) which contains both generalized lambda
distribution and generalized beta distribution. Some examples of other works based on
quantiles from Tukey’s lambda distribution can be found in Tuner and Pruitt (1978),

Morgenthaler and Tukey (2000) and Jones (2002).

1.6.4 Method of Generating Skewed Distributions

Azzalini (1985) proposed a method for developing skewed distributions by combining
two symmetric distributions. The initial idea of generating this family of distributions

appeared in an article by O’Hagan and Leonard (1976). This class of distributions were



called the skewed normal family. Azzalini (1986) stated that the earlier class of distribu-
tions can only produce tails thinner than the normal ones and proposed a broader class
of densities. Various generalizations of the skewed family have been proposed and stud-
ied extensively. Chang and Genton (2007) proposed a weighted approach of generating
skewed distributions that include Azzalini’s framework as a special case. Mudholkar and
Hutson (2000) developed the epsilon-skew normal family of distributions which contains
additional parameter to control the magnitude of skewness. Salinas et al. (2007) pro-
posed another extension by combining Azzalini’s skew normal family, the epsilon-skew
normal into a broad family of skewed distributions. Ferndndez and Steel (1998) developed
a method of introducing skewness into any continuous unimodal and symmetric distri-
bution by using inverse scaling of the PDF on both sides of the mode. Their method
does not affect the unimodality and at the same time permits the creation of flexible
distribution shape by a single scalar parameter. Ferreira and Steel (2006) introduced a
general framework of adding skewness into symmetric distribution based on inverse prob-
ability integral transformation. The Azzalini (1985) family and the inverse scale family

of Fernandez and Steel (1998) are members of this new family of distributions.

1.6.5 Method of Adding Parameters

The addition of parameters to existing distributions to make them more flexible started
with the work of Mudholkar and Srivastava (1993) on the exponentiated Weibull dis-
tribution. Gupta et al. (1998) gave a detail explanation of the exponentiated family
of distributions. Gupta and Kundu (1999, 2001) studied the exponentiated exponential
distribution. Nadarajah and Kotz (2006) studied a list of exponentiated distributions in-

cluding exponentiated exponential, gamma, Weibull, Gumbel and Fréchet distributions.



Marshall and Olkin (2007) proposed another method of adding an extra parameter to a
lifetime distribution. They studied in details the case of exponential and Weibull distri-

bution.

1.6.6 Beta-Generated Method

The beta-generated family of distribution was proposed by Eugene et al. (2002) by using
the beta distribution as a generator. This family of distributions can be described as
a generalization of the distribution of order statistics (Jones, 2004). Since the develop-
ment of the beta-generated family of distributions, many beta generated distributions
have been proposed in literature. Among them are: beta-normal (Eugene et al., 2002);
beta-Gumbel (Nadarajah and Kotz, 2004); beta-Fréchet (Nadarajah and Gupta, 2004);
beta-exponential (Nadarajah and Kotz, 2005); beta-Weibull (Famoye et al., 2005); beta-
Cauchy (Alshawarbeh et al., 2012); beta-exponentiated Pareto (Zea et al., 2012); beta-
generalized logistic (Morais et al., 2013); and beta-extended Weibull (Cordeiro et al.,
2012). Several generalized versions of the beta-generated families have been defined in
literature by changing the beta distribution with any distribution defined on a finite
support. Jones (2009) and Cordeiro and de Castro (2011) independently proposed the
Kumaraswamy generated family of distributions by replacing the beta distribution with
the Kumaraswamy distribution (Kumaraswamy, 1980). Alexander et al. (2012) defined
another generalization of the beta-generated family using the generalized beta type-I

distribution as the generator instead of the beta distribution.



1.6.7 Transformed-Transformer Method

The beta-generated and Kumaraswamy-generated families were developed using distri-
butions defined on the support [0, 1] as the generators. Alzaatreh et al. (2013) developed
a general method that permits the use of any continuous distribution as the genera-
tor. This new method is referred to as the T-X family of distributions. They defined
many families of distributions including the gamma- X, Weibull- X and beta-exponential-
X families. Due to the shortcomings of the 7-X family, Alzaghal et al. (2013) proposed
a new generalization of it and named it exponentiated 7-X family. Some members of
this family include: exponentiated gamma-X, exponentiated Weibull-X, exponentiated

Lomax-X and exponentiated log-logistic-X families.

1.6.8 Summary of Review

Although new distributions continue to appear in literature using the methods developed
before the 1980, it is difficult to generate new distributions that are more flexible and
simple enough for all practical needs. The drawbacks compelled researchers to shift from
using these methods to the methods developed since the 1980s. However, among those
methods proposed from the 1980 onwards, the T-X method provides greater flexibility

for modifying distributions and also generalizing most of the methods.

1.7 Thesis Outline

The thesis consists of eight chapters including this one. Chapter 2 presents some im-
portant concepts used throughout the thesis. Chapter 3 presents the exponentiated gen-

eralized T-X family of distributions. Chapter 4 presents the exponentiated generalized

10



exponential Dagum distribution. Chapter 5 presents the new exponentiated generalized
modified inverse Rayleigh distribution. Chapter 6 presents the exponentiated generalized
half logistic Burr X distribution. Chapter 7 presents the exponentiated generalized power
series family of distributions. Finally, chapter 8 presents the conclusions and recommen-

dations of the study.
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CHAPTER 2

BASIC CONCEPTS AND METHODS

2.1 Introduction

This chapter presents the concepts on the methods that were used to achieve the ob-
jectives of the study. The topics discussed include the principle behind the maximum
likelihood estimation, Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, goodness-

of-fit tests, information criteria and total time on test (TTT).

2.2 Maximum Likelihood Estimation

The maximum likelihood estimation method is the most widely used classical approach
for estimating the parameters of a probability distribution model and is based on a
likelihood function. The likelihood function attains its maximum at a specific value of
the parameters. Suppose that X, X, ..., X,, are independent and identically distributed
random variables of size n with PDF g(z; 9) where 9 = (91, Us, ..., ¥3) , k < n, is the

vector of parameters that govern the PDF. The joint PDF can be written as

n

g(9) = [ [ a(zss 9). (2.1)

i=1

When the random sample is collected, the joint PDF becomes a function of 9 and this

function is called the likelihood function. The likelihood function is then defined as
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n

L(d]a) = [[ el ). (2:2)

i=1

Practically, it is more convenient to deal with the logarithm of the likelihood function,

the log-likelihood function, denoted as £ and given by

U Pxy, x9y .., ) = Zlogg(wi; 9). (2.3)
i=1

Since logarithm is a monontone function, when the likelihood function is maximized, the
log-likelihood function is also maximized and vice versa. The estimates 9 are the values
of ¥ that maximize the likelihood function. The likelihood equations are obtained by

setting the first partial derivatives of ¢ with respect to 91, s, ..., J; to zero; that are

ol(9|xq, xa, ..., T,)
ov;

=0,i=1,2,...,k (2.4)

Solving the system of likelihood equations in (2.4) for ¥, s, ..., ¥, the maximum

likelihood estimates for the parameters are obtained.

2.2.1 Properties of Maximum Likelihood Estimators

The maximum likelihood estimators have some desirable properties under certain general

conditions. In this subsection, those properties are explained.
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2.2.1.1 Consistency

Suppose X1, Xo,..., X, are independent identically distributed random sample from a
population X with density g(x, ). If 9 is an estimator based on the sample size n, then
it depends on the sample size n. To show the dependency of 9 on n, 9 is written as U,,.
A sequence of estimators {@n} of 9 is consistent for ¥ if and only if the sequence {{9”}

converges in probability to 14, that is , for any € > 0

lim P (‘0,1 - 19’ > e) ~0. (2.5)

n—oo

It is worth noting that if the mean squared error goes to zero as n goes to infinity, then
{{9”} converges in probability to 9. Thus, if the variance of 9, exist for each n and is

finite, then

. 2
lim E [(ﬁn - 0) } —0, (2.6)
and for any € > 0, implies

lim ]P’(‘f}n—ﬁ’ > e) —0.

n—o0

The maximum likelihood estimators converge to the true parameter value as the sample
size increases.
2.2.1.2 Asymptotic Normality

The distribution of the maximum likelihood estimators converges to a multivariate normal

variate as the sample size increases. Hence,
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Vn(® —9) =5 N(0, I71(9)),
where 0 is a k-dimensional mean zero vector, Dist, represents convergence in distribution
and I(¥) is the k£ x k dimensional Fisher information matrix. The Fisher Information
matrix is defined as the negative expected value of the second partial derivate matrix of
the log-likelihood function evaluated at the true parameter 9. Thus,

[(89) = —F {%} _ / h {%} o(x) dz. (2.7)

[e.e]

The inverse of the Fisher information matrix yields the variance-covariance matrix of the

parameters.

2.2.1.3 Asymptotic Efficiency

In practice, it is possible to get more than one consistent estimator in a class of unbiased
estimators. Hence, the need to compare those estimators and select the one with the
least variance. The estimator with the least variance in this class of unbiased estima-
tors is referred to as the most efficient estimator. The maximum likelihood estimators
are asymptotically most efficient. Mathematically, if there exist an alternative unbiased

estimator 99, such that
4 Dist

Jn(® —9) 2 N(o, 171(Q)), (2.8)

then I71(£2) is greater than or equal to I~(19) always.
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2.2.1.4 Invariance Property

Suppose that f(1) is a differentiable function, then the maximum likelihood estimator of
f(19) is equal to the function evaluated at the maximum likelihood estimator of 1. This
means that if 9 is the maximum likelihood estimator of ¥, then f(19) is the maximum

likelihood estimator of f(4), and further

Vi (f@) = f@) 25 N <0, [%] (o) {%&;”D . (2.9)

2.2.2 Confidence Intervals for Parameters

Suppose 71, Yo, ..., Vi are the parameters of the distribution and ¥y, Yo, ..., Xii are
their corresponding variances. Making use of the multivariate normal approximation,
the approximate 100(1 — 1)% confidence intervals for the parameters are estimated as:
Y1 €N T Zy2VELL, V2 € Vo T Zn2V D22, -, Yk € Tk T Zys2v/ Sk, Where z,5 is the upper

nth percentile of the standard normal distribution.

2.3 Broyden-Fletcher-Goldfarb-Shanno Algorithm

When the maximum likelihood estimators for the parameters have no closed form, the
system of equations are solved using numerical techniques. This study employed the
BFGS method to solve such system of equations. The algorithm for the BFGS is an
iterative technique for solving unconstrained optimization problem and was independently
developed by Broyden (1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970). To
optimize a given function (¢), the process start with an initial guess say ¥y and an

approximate Hessian matrix H,. The following steps are then repeated as 19; converges
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to the solution.

1. First get a direction a; by solving

2. A one dimensional optimization is then performed to look for an acceptable step

size ~; in the direction found in step 1.
3. Set bz = v;Qa; and update "-9i+1 = ’191 + bz

i !
5 H, ., = Hy+ & - 220700
i+l 0+ ylb; b, Hb;

The algorithm’s convergence is checked by observing the norm of the gradient, |V£(;)].
In practice, Hg can be initialized with the identity matrix, Hy = I, to make the first step
equivalent to a gradient descent, but additional steps are refined by the approximation of
the Hessian, H;. Step one of the algorithm is performed using the inverse of H;, which
can be efficiently obtained by applying the Sherman-Morrison formula to the fifth step

of the algorithm. Hence,

by, b\ bib,
H = (I — Zl> H! (I— y’—b7’> - ,b’. (2.10)
Y,;0; Y,;0i Y,0;

Since, H ;rll is symmetric and the terms y,H; 'y, and b;yi are scalar, equation (2.10)

can be estimated more efficiently using the expansion

(by: + y;H; 'y,)(bib;) H;'yb, +byH;"

H ' =—H'+ i :
o ' (biyi)2 by,

(2.11)
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In a classical estimation problem such as the maximum likelihood, confidence interval for

the parameters can easily be obtained by inverting the final Hessian matrix.

2.4 Goodness of Fit Tests

Let X1, X5, ..., X,, be arandom sample from a given distribution, a goodness-of-fit test is
a method used to examine whether the random sample came from a specified distribution.
In this section, three goodness-of-fit tests used in the study were discussed. These are
the likelihood ratio test (LRT), Kolmogorov-Smirnov (K-S) test and Cramér-von Misses

test.

2.4.1 Likelihood Ratio Test

The LRT is used to assess how well a model fits a given data set. The test is used to
compare two models that are nested. Suppose that the random variable X has a PDF
given by g(z; ¥) with unknown parameter ¢J. The main goal is to test the following null
and alternative hypotheses; Hy : ¥ € ¥y and H; : 9 € 94, where 9y and 1, are parameter
spaces of the reduced and full model respectively. The test statistic for the test is given

by

_ 91 Lo (%)
w=—2log (le)) : (2.12)

where Ly and L, are the likelihood functions for the reduced and full model respectively.
Under Hy, w is asymptotically distributed as a chi-square random variable with degrees
of freedom equal to the difference between the number of parameters of the two models.

When the null hypothesis is rejected, it implies that the full model provides a good fit to
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the data than the reduced model.

2.4.2 Kolmogorov-Smirnov Test

The K-S test is used for testing whether a given random sample X;, X,, ..., X,, belong
to a population with a specific distribution. The test statistic measures the distance
between the empirical distribution function of the given sample and the estimated CDF
of the candidate distribution. The null and alternative hypotheses for the test are; Hy :
The sample follows the specific distribution and H; : The sample does not follows the
specific distribution. If G(x;) is the value of the CDF of the candidate distribution at
x; and CA}'(IZ) is the value of the empirical distribution at z;. The value of the K-S test

statistic is define by

~

K — S = max { )Gm) ~ G|, |G = )

},@:1,2,...,71, (2.13)

)

where

é(l‘l) _ Jj{wj - Ly < Ii}7

n

and £{-} is the number of points less than or equal to x; when z; are ordered from the
smallest to the largest value. The computed value of test statistic is then compared with
a tabulated K-S value at a given significance level to decide whether or not to reject the
null hypothesis. If there are more than one distribution to be compared, the distribution

with the smaller K-S value is the most appropriate to fit the given sample.
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2.4.3 Cramér-von Mises Test

The Cramér-von Misses test statistic, W*, is a test based on the empirical distribution.
Suppose G(z;; 9¥) is the CDF such that the form of G is known but the k-dimensional

parameter vector ¥ is unknown. The test statistic, W*, is obtained as follows:

~

1. First arrange the z;’s in ascending order and estimate G(z, ¥) = u;.

2. Estimate z; = & !(u;), where ®7!(+) is the quantile of the standard normal distri-

bution and ®(-) is the CDF.

3. Compute W2 = 3" (2, — B1)2 4 - Transform W? into W* = W2(1 + %2) to

obtain the test statistic.

When comparing models, the one with the smallest value of the test statistic W* is the

best.

2.5 Information Criteria

The consequences of increasing the number of parameters, usually improves the fit of a
given model and of course the likelihood also increases irrespective of whether the addi-
tional parameter is important or not. When the models to be compared are not nested,
the LRT is not the best option and therefore one has to employ other methods to compare
the models. The information criteria enable us to do this comparison when the models are
not nested. The most widely used information criteria are; the Akaike Information Cri-
terion (AIC), Corrected Akaike Information Criterion (AICc) and Bayesian Information

Criterion (BIC).
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2.5.1 Akaike Information Criterion

The AIC was first introduced by Akaike (1973) and developed further in Akaike (1974).
It is the most widely employed model selection tool used by researchers. To apply AIC,
one starts with some optional models, which are regarded as proper models for certain

data. The test statistic is given by

~

AIC = —2log L(0) + 2k, (2.14)

where £ is the number of estimated parameters for the model. The best model for the
data set is the one with the smallest value of AIC compared to others. One of the ad-
vantages of the AIC is that it has the ability to penalize models with many parameters.
For large sample, the AIC introduces good model selection. However, there are issues
of bias associated with the AIC. The AICc was therefore developed to overcome this
problem (Sugiura, 1978). Hurvich and Tsai (1989) proved that the AICc improved model
selections also in small samples. Also, when the model has a large number of parameters

then the AICc is preferred. The test statistic of the AICc is given by

2%(k + 1)

AlICc = AIC )
¢ +n—k—l

(2.15)

2.5.2 Bayesian Information Criterion

The BIC also known as Schwarz Information Criterion (SIC) in literature was developed
by Schwarz (1978). The main idea of BIC comes from approximating the Bayes factor

with the assumption that the data is independent and identically distributed. The test
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statistics for the BIC is given by

BIC = —2log L(f) + klog(n), (2.16)

where n is the sample size and log L(é) is the natural logarithm of the likelihood function.
The BIC has the power to penalize models with many parameters compared to the AIC
and AICc in both large and small samples. It is therefore important to use the BIC
together with the AIC and AICc when selecting a best model among competing models.
Like the AIC, the appropriate model is the one with the minimum BIC value compared

to others.

2.6 Total Time on Test

Researchers are often interested in how the shape of hazard rate function of a given data
set looks like. The TTT transformation, usually written as TTT-transform provides
researchers a graphical way of viewing the shape of the hazard rate. The method was
developed by Barlow and Doksum (1972) for statistical inference problems under order
restrictions. The technique was employed by Aarset (1987) to check if a random sample
is from a family of life distributions with bathtub shaped hazard rate. If G is the CDF

of a distribution, then the TTT-transform is defined as

G~(p)
H(p) —/0 S(u)du, p €10, 1], (2.17)
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where S(u) =1 — G(u) is the survival function. The scaled TTT-transform is computed

using

vc(p) = =y (2.18)

The curve of pg(p) versus 0 < p < 1 is the scaled TTT-transform curve. According to
Barlow and Doksum (1972), the shape of the hazard rate function can be classified as

one of the following using the scaled TTT-transform curve:

1. The hazard rate function is said to be increasing if the scaled TTT-transform curve

is concave above the 45° line.

2. The hazard rate function is decreasing if the scaled TTT-transform curve is convex

below the 45° line.

3. The hazard rate function exhibits a bathtub shape if the scaled TTT-transform

curve is first convex below the 45° line and then concave above the line.

4. The hazard rate function is upside down bathtub or unimodal if the scaled TTT-

transform curve is first concave above 45° line and then convex below the 45° line.

Given an ordered sample Xi.,, Xom, ..., Xpnp, the TTT test statistics are computed
using
TTT: =) (n—j+ D)(@jm — 2jo1m), i = 1,2, ..., n. (2.19)
j=1

The empirical scaled TTT-transform is given by

TTT;
TTT: = ——*, (2.20)
TTT,
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where 0 < TTT,, < 1. The empirical scaled TTT-transform curve is obtained by plotting

L against TTT;.

2.7 Summary

The chapter gave detailed explanation of the various techniques used in order to achieve
the objectives of the study. The method of maximum likelihood estimation and its
properties were discussed. The BFGS algorithm for optimizing the likelihood function
was also discussed. Measures of goodness-of-fit such as the LRT, K-S and the Cramér-
von Misses tests were all explained in this chapter. In addition, the information criteria
for model selection such as the AIC, AICc and BIC were discussed. Finally, the TTT-
transform for determining the nature of the hazard rate function of a given data was also

explained.
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CHAPTER 3

EXPONENTIATED GENERALIZED T-X

FAMILY OF DISTRIBUTIONS

3.1 Introduction

This chapter presents a new generalization of the T-X family of distributions called the
exponentiated generalized (EG) T-X family that extends the works of Alzaatreh et al.

(2013) and Alzaghal et al. (2013) on the 7-X family of distributions.

3.2 Exponentiated Generalized T-X

Let r(t) and R(t) be the PDF and CDF respectively of a non-negative random variable
T with support [0,00). Let —log[l — (1 — F%(z))¢] be a function of the CDF F(z) of any
random variable X such that:

~log[1 — (1 — F(2))] € [0,00)

—log[1 — (1 — Fi(z))9] is differentiable and monotonically non-decreasing
. (3.1)
—log[l — (1 — F4(z))] -0 asx — —ooand

—log[l — (1 — F¥(z))] = coasx — o0

\

where () = 1— F(z) is the survival function of the random variable X and ¢ > 0,d > 0
are shape parameters. The conditions stated in equation (3.1) are important for the

CDF of the EG T-X family of distributions to satisfy the basic properties of probability
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distribution. The CDF for the EG T-X family for a random variable X is defined as

~ log[1-(1- F¥(2))°] )
G(z) = /0 r(t)dt = R{—log[l — (1 — F%(z))]},c,d >0,z €R. (3.2)

By differentiating equation (3.2), the corresponding PDF of the new class is given by

fl@)(d = Fz)™ (1 = F(x))!

B = )

r {— log[1 — (1 — F’d(x))c]} ) (3.3)

Proposition 3.1. The EG T7-X PDF is a well defined density function.

Proof. It is worth mentioning that g(x) is nonnegative. Now, it is important to show
that the integration over the support of the random variable is one. Choosing the support

of g(x) to be (—o0, c0),

> [T f@)( = F)T (1 = Fia)! d( Ve
/Oog(x)d:v—/oocd = (- Fi()y r{—log[l — (1 — F%(x))} dx.
Letting t = —log[1 — (1 — F(z))¢], as * — —o0, t — 0 and when z — oo, t — o0.

In addition,

1—(1— Fi(x)) dt

M @~ F@) (1 Fia)

Hence,

This completes the proof.
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Employing similar naming convention as “7T-X distribution”, each member of the new
family of distributions generated from (3.3) is named EG T-X distribution. When the
parameter d = 1, the PDF in (3.3) reduces to

cf () F ()

sle) = Ty sl = Fo(@)} (34)

The density function in (3.4) is the PDF of the exponentiated T-X developed by Alzaghal

et al. (2013). When ¢ = d = 1, equation (3.3) reduces to

)

= Fa) r{=log(1 - F(z))}, (3.5)

glz) =

which is the PDF of the T-X distribution developed by Alzaatreh et al. (2013). The CDF
and PDF of the EG T-X distribution can be written as G(z) = R {—log[1 — (1 — F*(x))]}
= R(H(z)) and g(z) = h(z)r(H(z)), where H(z) and h(z) are respectively the cumula-
tive hazard and hazard functions of the random variable X with CDF [1 — (1 — F(x))¢]°.
Thus, the EG T-X distribution can be described as a family of distributions arising from
a weighted hazard function.

The hazard rate function plays an important role in describing the failure rate of a phe-
nomenon. [t is the instantaneous rate at which events occur given no previous events

(instantaneous failure rate). Mathematically, the hazard rate function is expressed as

. Pa<X<o+Az|X>2) g()
m(z) = AEEO Ax 1 -G(x) (3:6)

Hence, the hazard rate function of the EG T-X family is given by
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f@)(1 = F(x)" (1 = Fi(x))*'r {log[l — (1 — F(x))]}

7(z) = cd (1— (1= Fdx))) (1 = R{—log[l — (1 — Fié(x))})

(3.7)

Lemma 3.1. Let T be a random variable with PDF r(¢), then the random variable
a1
X =Qx {1 — [1 - (1- e*T)Z} ‘ }, where Qx(-) = F~!(-) is the quantile function of the

random variable X with CDF F(xz), follows the EG T-X distribution.

Proof. Using the fact that G(z) = R{—log[l — (1 — F%(z))]} gives the relationship
between the random variable T and X as T = — log[1 — (1 — F4(X))¢]. Thus, solving for

X yields X = Qx {1 — [1 — (1 —eT)i]é}.

Lemma 3.1 makes it easy to simulate the random observation of X by first generating

random samples from the distribution of the random variable 7" and then computing

X:Qx{l—[l—(l—e_T)

o=

}} which has the CDF G(x).

3.3 EG Families for Different T-Distributions

The EG T-X Family can be categorized into two broad sub-families. One sub-family
has the same T distribution but different X distributions and the other sub-family has
different 7' distributions but the same X distribution. Table 3.1 displays different EG

T-X distributions with different T distributions but the same X distribution.
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The EG T-X family houses several families of distributions. These include: EG gamma-
X, EG Weibull-X, EG beta-exponential-X, exponentiated gamma-X, exponentiated
Weibull- X, exponentiated beta-exponential-X, beta family, Kumaraswamy family and

exponentiated family. Figure 3.1 shows several sub-families of the EG T-X family of

distributions.
EG T-x family
EG gamma-X family £G Waibull-x family EG Beta exponentizl-x
family
d= 1! d=1 l d=1
Exponentisted gamma-X Exponentiated Exponentiatsd
family weibull-x family bats-exponential-X
famiby
e=1 =1 a=1 e=1 a=1
s=1
samma-x family KUMaraswamy-s weibull-x Kumaraswamy-G Beta-exponential-X
family family fFamily family
=1 r=1 a&/=l i=1
Exponential-x family Exponentiatad Exponential-x family Beta family
] : i Lok
(7= Y5 i (r=28)
A A
B= e=1 y=1 a=p8=1

Figure 3.1: Families of EG T-X distributions

3.3.1 EG Half Logistic-X Family

If the random variable T' follows the half logistic distribution with parameter A, then

r(t) = %t > 0,A > 0. Using (3.3), the PDF of the EG half logistic (EGHL)-X

family is defined as

A—1

_ 2edMf(2)(1 = F(2)) (1 = F(x) ! [1 - (1 - F(2))]
{14[1- (- Fi)]*}

g(x)
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Using the CDF of the half logistic distribution, R(t) = L and equation (3.2), the

14e— At

corresponding CDF of the EGHL-X family is given by

- (- F@)T

G(z) = — -
1+ [1—(1—Fd(z))]

The EGHL-X family generalizes all half logistic families of Alzaghal et al. (2013) expo-

nentiated 7-X family and Alzaatreh et al. (2013) T-X family. If the random variable X
a\b

follows a Frétchet distribution with CDF F(z) = e (%) ;o > 0,a > 0,b > 0, then the

CDF of the EGHL-Frétchet (EGHLF) distribution is given by

1 - {1 - [1 —(1-e )bﬂ}: o
1+{1— {1— (1—6_( )bﬂ }

The corresponding PDF of the EGHLF distribution is obtained by differentiating (3.9)

88

G(z) =

S

and is given by

8]le
8]

2a’bed )\ (1 - e_(

O RN (S DI
at+e(2)’ {1 + {1 - [1 —(1-e )bﬂc}x}

g(x) =

)

(3.10)

Some special cases of the EGHLF distribution are:

1. When A = 1, the EGHLF distribution reduces to EG standardized half logistic

Frétchet distribution.

2. When b = 1, the EGHLF distribution reduces to EGHL inverse exponential distri-

bution.

3. When ¢ = d = 1, the EGHLF distribution reduces to half logistic Frétchet distri-
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bution.

4. When ¢ = d = b = 1, the EGHLF distribution reduces to half logistic inverse

exponential distribution.

Figure 3.2 displays the density plots of the EGHLF distribution for different parameter
values. From Figure 3.2, it can be seen that the density of the EGHLF distribution

exhibit unimodal shapes with small and large values of skewness and kurtosis measure.

A
o Iy
@ 1
e 1 - - - —0E 5=
h 1 — a=105b=45¢c=55d=05%=5
! — a=105b=45¢c=05d=05%=5
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Figure 3.2: Density function plots of EGHLF distribution for some parameter
values

3.4 Statistical Properties of EG T-X Family

When new families of distributions are developed it is often customary to establish some
of the statistical properties of these new families. In this section, the quantile function,

moments, moment generating function (MGF) and Shannon entropy of the EG T-X
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family of distributions were derived.

3.4.1 Quantile Function

The quantile function plays a key role in simulating random samples from a given distri-
bution. The characteristics of a distribution such as the median, kurtosis and skewness

can also be described using the quantile function.

Lemma 3.2. The quantile function of the EG T-X family for p € (0,1) is given by

1

Qp) = Qx {1 — [1 ~(1- e—QT(p))%] Z

of the random variable X with CDF F(x) and Q7(-) = R7(-) is the quantile function of

}, where Qx(-) = F~!(-) is the quantile function

the random variable 7" with CDF R(t).

Proof. Using the CDF of the EG T-X family defined in equation (3.2), the quantile

function is obtained by solving the equation

R{-log[1 - (1= FQ()]} =,

for Q(p). Thus, the proof is complete.
The median of the EG T-X family is obtained by substituting p = 0.5 into Lemma 3.2.

Corollary 3.1. Based on Lemma 3.2, the quantile function for EGHL-X family is given
1

by, Q(p) = Ox 41 [1_ (1_ (1722))]

3.4.2 Moments

Moments are essential in any statistical analysis, especially in applications. They are used
for finding measures of central tendency, variation, kurtosis and skewness among others.
The following proposition gives the 7** non-central moment of the EG 7T-X family.
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Proposition 3.2. The r* non-central moment of the EG T-X family of distributions is
given by

Z Z 1)itktEm s T+ 1)T (2 +1)T (5 +1)
LRI mIT ( z—j+1)r(3—k+1)r(§—l+1)

i, k,l,m=0 j= OJ

E(T™), (3.11)

where 0,.; = (ihg)~ ZS LIs(r+1) =i hsd,,—s with 6,0 = hy, hi (i = 0,1,...) are suit-
ably chosen real numbers that depend on the parameters of the F'(x) distribution, E(T™)

is the m' moment of the random variable T', I'(+) is the gamma function and r = 1,2, .. ..

1
Proof. From Lemma 3.1, X = Qx {1 — [1 - (1- e*T)E] d}, where Qx(-) = F(-)isa
quantile function. Thus, Qx(-) = F~!(+) can be expressed in terms of power series using

the following power series expansion of the quantile.

= i ha', (3.12)
=0

where the coefficients are suitably chosen real numbers that depend on the parameters

of the F(z) distribution. For a power series raised to a positive integer r (for r > 1),

1=0 =0

where the coefficients 6, ; (for i = 1,2,...) are determined from the recurrence equation
O = (iho) ' S, [s (r +1) — i) hy b, and 6,0 = hj (Gradshteyn and Ryzhik, 2007).
Using equation (3.13), the r** non-central moment of the EG T-X family of distributions

can be expressed as

E(XT):M;:E{i(SM {1— (1—(1—6T)i>;]2}. (3.14)



1
N
Since 0 < (1 — (1 — e_T) ) ‘< 1, for T' € [0, 00), applying the binomial series expansion

() T(n+1)
(1—2) :ZE!F)(U—(;]—FU)Z’VKL

thrice,

YD+ )T (5+ 1) T (E+1) e

[1_<1_(1_6T)i>] MOZO;'WP —j+ DT (E—k+ )T (E=1+1)

But the series expansion of e='T is given by

[e.e]

Lr N (DT T
e =" —

m=0

Thus,

, .
] Z Z 'k‘l'm‘Fz—j+1)F(

k,lm=0 j= 0']

l
[1— (1--e))
Substituting equation (3.15) into (3.14) and simplifying, yields

Z Z Dithttmpms T+ 1D)T (L +1)T (2 +1)
R mIT ( z—j+1)r(3—k+1)r(§—l+1)

i, k,l,m=0 j= Oj

E(T™).

Using the m! moment of the half logistic distribution, the r** moment of the EGHL-X

family is given by Corollary 3.2.

Corollary 3.2. Using Proposition 3.2, the r** moment of the EGHL-X family is

B SR el ANES AR KL IO S e
SRmIT (i ]+1)F(a—k+1)r(——l+ /\ (n+1)"

i, k,l,m=0 j n=
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form=1,2....

3.4.3 Moment Generating Function

The MGF of the EG T-X family of distributions is given by the following proposition.

Proposition 3.3. The MGF of the EG T-X family of distributions is given by

X = (g D+ DT (L 1) T (R
Mx(z)= > $'1>H ' i+ (g )k(c )E(Tm).
b Tme0 0 PG RNImIT (i —j+ )T (3 —k+1)T (2 —1+1)
(3.16)
Proof. By definition, the MGF is given by
Myx(z) = E (7¥).
Using the series expansion of e*X, gives
=y = (3.17)
r=0
Substituting y,. into equation (3.17), yields
> )it szamr i+D)T(Z+1)T(5+1
Mx(z)= Y Z H' ' G+ DT )k(c )E(Tm),
T S R mID =+ ) (= k+ 1) T (5 —1+1)

which is the MGF.
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Corollary 3.3. Based on Proposition 3.3, the MGF of the EGHL-X family is

)ikt m s T i+ 1) T (5 +1) T (5 41)
Mx(2) = d
x(z) Z Zr' 'k'l‘m'F (i—j+1T (——k:—l—l)f‘(——l—l—l)x

r, 1, k,l,m=0 j=0

- m—l—l)
{ z:% m(n+1)" }

3.4.4 Entropy

Entropy is a measure of variation or uncertainty of a random variable. Entropy has been
used extensively in several fields such as engineering and information theory. According

to Shannon (1948), the entropy of a random variable X with PDF g(z) is given by

nx = —E{log (g(X))}.

Proposition 3.4. The Shannon entropy for the EG T-X family of distributions is given

by

nx = —log(ed) — pr +nr — E {logf {Fl <1 - (1 - (1= eT)ifi)] } T
<%l) E [1og (1 —(1- e_T)%ﬂ + (;) Elog(1—¢)], (3.18)

where pr and nr are the mean and the Shannon entropy of the random variable 7T'.

Proof. By definition

nx = (1= B {log [1 = (1 = F(X))'| } + (d = 1)E log (1 = F(X))] — log (cd) — B [log f(X)]

+ B {log[1- (1= (1= F(x))") |} = B {tog [ (~log (1 - (1 = F())*))] }.

(3.19)
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=

From Lemma 3.1, T = —log[l — (1 — F4(X))] and X = F~! {1 — [1 — (1 — B_T)ﬂ

b

Blog ) = 8 Qo [ (1= == )L G20
Ellog (1 - F(X))| = E {bg (1-0- e‘T)i)i] , (3.21)
E{log [1 (1= F(x)] } = B [log (1 - 7)7]. (3.22)
pfoe|1- (1-a-roi) |} - B, 3.23)
and
B o [ (1og (1~ (1~ F(2))))]} = E g (1) 321

Substituting (3.20) through (3.24) into (3.19) yields

nx = —log (cd) — g + nr — E{logf {Fl (1 - <1 - _6T)i);>} } '
(5 el ()t e

Substituting the mean and the Shannon entropy of the half logistic distribution into

(3.18), gives the Shannon entropy of the EGHL-X family.

Corollary 3.4. The Shannon entropy of the EGHL-X family is

nx = 2 — log (2¢d)\) — Qlof(z) - E{logf [F_l (1 - (1 - (1 _e_T)iy)} } i
(159) s (1= 0= (152 plios 1)

The mean of the half logistic distribution is ur = 21ng(2) and the Shannon entropy is

nr =2 — log(2).
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3.5 Summary

In this chapter, the EG T-X family which is an extension of the 7-X and the expo-
nentiated T-X families of distributions was proposed. The new family contains several
generalized classes of distributions as shown in Figure 3.1. The extra shape parameters
c and d provide greater flexibility for controlling skewness, kurtosis and possibly adding
entropy to the center of the EG T-X density function. Specific example of this new
family, namely EGHLF distribution was given and its relationship with other baseline
distributions established. Some statistical properties of the family such as the quantile,

moments, MGF, and Shannon entropy were derived.
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CHAPTER 4

EXPONENTIATED GENERALIZED

EXPONENTIAL DAGUM

DISTRIBUTION

4.1 Introduction

The development of generalized classes of distributions have received much attention
in recent times. This requires the use of different transformation techniques to modify
existing statistical distributions to make them more flexible. The Dagum distribution
(Dagum, 1977), like other existing statistical distributions have been modified using some
of these methods. In this chapter, the CDF of the EG exponential (EGE)-X family was

defined and used to generalize the Dagum distribution.

4.2 Generalized Exponential Dagum

Let T be a random variable with PDF Xe *,¢ > 0,\ > 0 and let X be a continuous
random variable with CDF F(z). The CDF of the EGE-X family of distributions is

defined as

where F(z) =1 — F(z).

For positive integers A and ¢, a physical interpretation of the EGE-X family of distri-
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butions CDF is given as follows. Equation (4.1) represents the CDF of the lifetime of a
series-parallel system consisting of independent components with the CDF 1— (1 — F(x))¢
corresponding to the Lehman type II distribution. Given that a system is formed by A
independent component series subsystems and that each of the subsystems is made up
of ¢ independent parallel components. Suppose X;; ~ 1 — (1 — F(z))?, for 1 <i < ¢ and
1 < j < ), represents the lifetime of the i component in the j** subsystem and X is the

lifetime of the entire system. Then,

P(X <z)=1-[1-P(Xy <z, ..., X, <)

=1-[1-PXy; < ff)]ka

and X has the CDF defined in equation (4.1).
Suppose the random variable X follows a type I Dagum distribution with CDF (1 +
ar=%) P x> 0,a>0,8>0,0 >0, then the CDF of the EGE-Dagum (EGED) distribu-

tion is given by

where the parameters «, (3, 6, A, ¢ and d are non-negative, with 5, 6, A, ¢ and d being
shape parameters and « being a scale parameter. The corresponding PDF of the EGED

distribution is given by

d c—1
aBMcdr 'K [1 - (1 - (1+ ax*9)7’6> }
g(z) = >0, (4.3)

{1 - {1 ~(1-a+ a:c—e)‘ﬁ)d}c}
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where

K=(1+ ax’g)f’gfl (1 - (1+ 043:"9)76> o .

Lemma 4.1. The PDF of the EGED distribution can be expressed in terms of the density

function of the Dagum distribution as

oo 0 o0

= )\cdz Zz%‘k fo(z; a, 0, Bry1), x > 0, (4.4)

i=0 j=0 k=0

where fp(z; a, 0, Bry1) is the PDF of the Dagum distribution with parameters «, 6 and

Br+1 = Bk + 1) and

(=)™ TN D(e(i + D) T(d(j + 1))
gtk + DITA = @) D(c(i+1) = j) D(d(i +1) — k)’

Wijk = Fla+1)=al

Proof. For a real non-integer > 0, a series expansion for (1 — 2)77!, for |z| < 1 is

= (—1)
(12 Z,Fn (4.5)
1=0

Applying the series expansion in equation (4.5) twice and the fact that 0 < (1+az7%)# <

1, implies that

[1 — <1 ~ 1+ aa:_e)ﬁ>d] - {1 — {1 — (1 — 1+ m—e)ﬁ>T}“ _
s oo (“1)H TN D(e(i+ 1)) (1 (1+az—) )"
2 ]Z AT —1) F(c((i 1)) ) | (4.6)

=0
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Substituting equation (4.6) into equation (4.3) yields

1 1)t r )T(c(i +1)) K*
g(x) = Aedaffxr"~ ZZ ilj F((c((z + 1))) )’

where

K= (1 ar )77 (1= (L ety ?)

_g\ dU+1)
Applying the series expansion again to <1 = (1 + oza:_e) B) gives the expansion

of the density as

oo 0 o0

= )\chZZwijk fo(z; a, 0, Bri1), x > 0.

i=0 j=0 k=0

Equation (4.4) revealed that the PDF of the EGED distribution can be written as a linear
combination of the Dagum distribution with different shape parameters. The expansion
of the PDF is important in providing the statistical properties of the EGED distribution.
The PDF of EGED distribution can be symmetric, left skewed, right skewed, reversed
J-shape or unimodal with small and large values of skewness and kurtosis for different
parameter values. Figure (4.1) displays the different shapes of the EGED distribution

density function.
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Figure 4.1: EGED density function for some parameter values

The survival function of this distribution is

A

S(z) = {1 - l1 - (1 - (1 +aa;—9)"8)d]c} >0, (4.7)

and the hazard function is

—1

B M0cdz 01K {1 N — ﬁﬂc
{1 - {1 -(1-a+ 0@‘9)‘5)10}

The plots of the hazard function displays various attractive shapes such as monotonically

T(x) =

, x> 0. (4.8)

decreasing, monotonically increasing, upside down bathtub, bathtub and bathtub followed
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by upside down bathtub shapes for different combination of the values of the parameters.
These features makes the EGED distribution suitable for modeling monotonic and non-

monotonic failure rates that are more likely to be encountered in real life situation. Figure

(4.2) displays the various shapes of the hazard function.

= =0.16 a=0.48 p=1.66 =568 c=23 d=19 = 3B BBa=12p=3.166=1.2 c=0.88 4=4.12
=T =2 38 a=9 B=2 38 6=0.32 e=0.1 d=14.36 — .ﬁ_:1ﬁ =9 64 =4 04 6=1.04 c=2.14 d=13 8
™ '—I'l'a.=|J.1n=‘I-i.E-8 B=0.16=3.64 c=08 =12 =f i=15¢=1452 p=3.16 5=1.12 ¢=0.24 d=20
- | —L1ipa0=006p=238=254c=1740=23 = =4 12p=15 p=158 8=182 c=0.1 0=5.68
]—|—|.;-.=L'I1u=‘|9|3=2 14 =514 =546 0=2.7 T T
T T b l
I %
1 ]
i TR i i "
\ I
1 : 1 ! b
1! _ A Y "
11 ! LD : |I A L
m 1 1 -
a I 3 1 ] % >
1! L LN
1! "\ "I' L %
= i J 5 », = 1| - \ 9
T w© | i IF‘ \ “Ff - I i
o i I: Lo = 4 " _—————— “
i | - ~— ]
:':l‘l N 1\\ T T
! I L Moy 1 ~
- Iy} . I
a ] | Y % j
5w
[ . N i a
1 i k. " Y. ™ -~ 1 #
IF A - - ™ — -
i n - il Sl 1 #
12 T - ™ ~ - . ’
] | lI| ~ g Fa
\l‘jl - - - PO - . . /"-
1! et T e I %
______ 1 s
a | L I i
=] i I -
I T I I | I I T I I | I
0 2 4 6 8 10 0 2 4 i 8 10
X X

Figure 4.2: Plots of the EGED hazard function for some parameter values

4.3 Sub-models

The EGED distribution consists of a number of important sub-models that are widely

used in lifetime modeling. These include:

1. The Exponentiated Generalized Dagum Distribution

When \ = 1, the EGED reduces to the exponentiated generalized Dagum distribu-

tion (EGDD) with the following CDF":
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G(r) = {1 - <1 - (1 +ax9)ﬁ)d} ;
fora, 8,0, d,c >0and z > 0.

. The Dagum Distribution
When A = ¢ =d =1, the EGED reduces to the Dagum distribution (DD) with the
following CDF"

G(z) = (1+ ozx_e)_ﬁ,
for a, 8,60, >0 and x > 0.

. The Exponentiated Generalized Exponential Burr III Distribution
When a = 1, the EGED reduces to the exponentiated generalized exponential Burr

IIT distribution (EGEBD) with the following CDF":

d1¢ A
G(m)zl—{l—{1—(1—(1%—3:_9)_5)] } :
for A\, 8,60,d, ¢ >0and x > 0.

. The Burr III Distribution
When o = A = ¢ = d = 1, the EGED reduces to the Burr III distribution (BD)
with the following CDF:

G(z) = (1+27") e
for 8,60, >0 and x > 0.

. The Exponentiated Generalized Burr III Distribution

When o = A = 1, the EGED reduces to the exponentiated generalized Burr II1
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distribution (EGBD) with the following CDF:

c

G(z) = {1 -(1-( +x_9)_ﬁ>d} ,

for 8,60,d,c >0and z > 0.

. The Exponentiated Generalized Exponential Fisk Distribution
When § = 1, the EGED reduces to the exponentiated generalized exponential Fisk

distribution (EGEFD) with the following CDF:

for a, A\, 0, d, ¢ >0and x > 0.

. The Exponentiated Generalized Fisk Distribution
When A = 8 = 1, the EGED reduces to the exponentiated generalized Fisk distri-

bution (EGFD) with the following CDF":
o -1\¢]°
G(z) = [1— <1—(1+0zx‘) ) } )

for a, 0, d, ¢ >0 and x > 0.

. The Fisk Distribution
When A = = ¢ = d = 1, the EGED reduces to the Fisk distribution (FD) with
the following CDF:

G(z) = (1+ ozx’e)fl :
for a, #, > 0 and x > 0.

47



Table 4.1 displays a list of models that can be derived from the EGED distribution.

Table 4.1: Summary of sub-models from the EGED distribution

Distribution « A 15} 0 c d
EGDD a 1 o] 0 c d
DD o 1 3 0 1 1
EGEBD 1 A Ié] 0 c d
BD 1 1 3 0 1 1
EGBD 1 1 I6] 0 c d
EGEFD ! A 1 0 c d
EGFD a 1 1 0 c d
FD o 1 1 0 1 1

4.4 Statistical Properties

In this section, various statistical properties of the EGED distribution such as the quan-
tile, moments, MGF, incomplete moment, mean deviation, median deviation, inequality

measures, reliability measure, entropy and order statistics were derived.

4.4.1 Quantile Function

The distribution of a random variable can be described using its quantile function. The
quantile function is useful in computing the median, kurtosis and skewness of the distri-

bution of a random variable.

Lemma 4.2. The quantile function of the EGED distribution for p € (0,1) is given by

-
|
S

Qx(p) = { ~ (1—(1—<1—<1—p>i)1);>_ﬂ—1 . (4.9)
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Proof. By definition, the quantile function returns the value x such that
G(zp) =P(X < z,) =p.

Thus,
1—{1— [1— (1— (1+axp9)ﬁ>d]c}A:p. (4.10)

Letting z, = Qx(p) in equation (4.10) and solving for Q) x (p) using inverse transformation

yields

When p = 0.25, 0.5 and 0.75, we obtain the first quartile, the median and the third
quartile of the EGED distribution respectively. The closed form expression of the quantile

makes it easy to simulate EGED random observations using the relation
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4.4.2 Moments

It is imperative to derive the moments when a new distribution is proposed. They play a
significant role in statistical analysis, particularly in applications. Moments are used in

computing measures of central tendency, dispersion and shapes among others.
Proposition 4.1. The r*" non-central moment of the EGED distribution is given by

oo o 0

I r T T
i, = Aedoe ZZszjk Bri1 B (ﬁkﬂ + 7 1— 5) <0, (4.11)

i=0 j=0 k=0
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where B(-,-) is the beta function and r = 1,2, .. ..

Proof. By definition

oo oo X

:/Oox’")\chZZw”ka (x; o, 0, Bry1)dx
0

1=0 7=0 k=0

=Aed Y DN wipe /OOO 2" oz o, 0, Busr)dz

i=0 j=0 k=0

where fp(z; a, 0, Brr1) = aBBpx 711 + ax9) P17t Letting y = (1 + az™f)~!
implies that if z — 0, y — 0 and if x — oo, y — 1. Also, dy = afz %11 + ax=?)2dx

and z = (ay)? (1 — y)~o. Thus,

LD Y R

= 0 k=0
. o0 o0 o0 r r
= Aedae Wijk Brt1 B (ﬂkﬂ + g - 5) , T <0,
i=0 j=0 k=0
where B(a, b) fo =11 — y)b1dy.

The values for the first six moments of the EGED distribution for selected values of the
parameters are displayed in Table 4.2. By fixing o = 5.0, § = 2.5 and ¢ = 10.5, the

values of the first six moments are obtained using numerical integration.

Table 4.2: First six moments of EGED distribution
r A=15,¢=85,d=75 A=45,¢=65,d=35 A=75,¢c=45,d=1.5

1 1.203056 1.228397 1.276269
11 1.448742 1.510330 1.631464
13 1.746298 1.858654 2.088834
[hy 2.107028 2.289379 2.678664
s 2.544777 2.822464 3.440476
[ 3.076518 3.482813 4.425910
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4.4.3 Moment Generating Function

The MGF of the random variable X having the EGED distribution if it exist is given by

the following proposition.

Proposition 4.2. The MGF of the random variable X is given by

Mx(2) = Acdiiii Wigh 5"’:!1 g (6k+1 + g, - g) <, (412)

where B(-,-) is the beta function and r = 1,2, .. ..

Proof. Using the identity

2:7“
r=0
0o 0o 00 0O

=333 S AR (s 1= ) <o

r=0 i=0 j=0 k=

4.4.4 Incomplete Moment

The incomplete moment plays an important role in computing the mean deviation, me-

dian deviation and measures of inequalities such as the Lorenz and Bonferroni curves.
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Proposition 4.3. The 7" incomplete moment of the EGED distribution is given by

oo 0 o0

z) = Aedad ZZZwijk Bri1 B ((1 +ar™ )7 Bry + g, 1— g) <6, (4.13)

i=0 j=0 k=0
where B(+;-,+) is the incomplete beta function and r = 1,2, .. ..

Proof. Using the identity

q
B(q;a,b) :/ y* (1 —y)" dy,
0

and the concepts for proving the moment, the incomplete moment of the EGED distri-

bution is

M. (z)=FE (X" | X <«x)

6\—1

> (1+az™") )
Z Wijk Bk-ﬁ-l / a§y5k+1+§—1 (1 . y)(1,§),1 dy
0

k=
oo 0

ZZ Wijk Br1 B { ( ( 1+ax™ )™ Bt + gv 11— g) ,m < 0.
0 k=0

Ji vl

MSS

di

=0

.
O

||
Q\*x
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4.4.5 Mean and Median Deviations

The variation in a population can be measured to some degree by the totality of deviations
from the mean and the median. If the random variable X follows the EGED distribution,

then the mean and the median deviations are given by the following propositions.

Proposition 4.4. The expected value of the absolute deviation of a random variable X

having the EGED distribution from its mean is
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oo o0 0

. 11
0 (z) =2uG(p) — 2\edat ZZZWW“B’““B (q : Bra1 + g’ 1— 5) ,0>1, (4.14)

=0 j=0 k=0
where ¢* = (1 +ap~?)~" and p =y, is the mean of X.

Proof. By definition

by (x) = / e - plgla)de

=2uG(p) — 2/0# rg(x)dx

. [e'e} [e’e] [e’e) . 1 1
= 2uG(u —2AcdanZZwmﬁkHB(q;ﬁk+1+5,1—5),6>1,

=0 j=0 k=0
where [ zg(x)dx is simplified using the first incomplete moment.

Proposition 4.5. The expected value of the absolute deviation of a random variable X

having the EGED distribution from its median is

[c O lENe S lNe ]

1 1 1
o) = p — 2Aeda Zzzwz‘jk Br1 B (q**; Brt1 + 7 1-— 5) ,0>1,  (4.15)

i=0 j=0 k=0

where ¢** = (1 + aM~?)~! and M is the median of X.

53



Proof. By definition

5a(z) = /Ooo > — M| g(x)dz
= /OM(M — x)g(z)dx + /Oo(x — M)g(z)dx

M

M
=1 — 2/ zg(z)dz
0

1 . 1 1
:ﬂ_QACdQGZZZWijkﬁk-HB (q 55k+1+57 1—5) ,0>1,

i=0 j=0 k=0

where fOM xg(z)dz is simplified using the first incomplete moment.

4.4.6 Inequality Measures

The most widely used approach for measuring the income inequality of given population
are the Lorenz and Bonferroni curves. The Lorenz curve, Lg(x) represents the fraction
of total income volume accumulated by those units with income lower than or equal to
the volume x, and the Bonferroni curve, Bg(x) is the scaled conditional mean curve, that

is the ratio of group mean income of the population.

Proposition 4.6. If X ~ EGED(a, A, 8,60, ¢,d), then the Lorenz curve Lg(z) is given

Aedat S S & 1 1
LG(-I') = Zzzwljk Bk-}-lB ((1 + Cmf_e)_l; ﬂ]ﬁ_l + 5, 1-— 5) ,0 > 1. (416)

)\d 1 oo o0 o0 1 ]
= C 049ZZZwij‘kﬂk—HB((l—f—Ozx_@)—l;ﬁk+1+5,1—5),Q>1,
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Proposition 4.7. If X ~ EGED(«, A, 3,0, c,d), then the Bonferroni curve Bg(x) is

given by

_ Acdat Sh g o o L1
B ( G ) ZzzwukﬁkﬂB ( (1+ax™ ") 5k+1+5, 1—5) 0> 1. (4.17)
=0 j=0 k=0
Proof.
Lg(l’)
B =
=G0
)\cda% o 1 1
B((1+az™")7h “o1-2),0>1
;;;%szﬁkﬂ ( +ax™) 7Bk+1+0, 9>, >

4.4.7 Entropy

Entropy plays a vital role in science, engineering and probability theory, and has been
used in various situations as a measure of variation or uncertainty of a random variable
(Rényi, 1961). The Rényi entropy of a random X having the EGED distribution is given

by the following proposition.

Proposition 4.8. If X ~ EGED(a, A, 3,6, ¢, d), then the Rényi entropy is given by

1 5155 N N 1-6 _ 6-1
I4(8) = 7= log | (ABed)’a'"0 ZZZ%";B@(“@* L)

(4.18)
where 0 #£ 1,0 >0, B(6 + k) + 152 >0, 0+ 22 > 0 and

(=)A= 1) + D)T(c(04+14) — 5+ 1)I(d(6 +5) — 6 + 1)
GRITOAN=1) =i+ 1) (c(0+i) — 06—+ 1)T(dO0+j)—d—k+1)

Wijk =
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Proof. The Rényi entropy is defined as

Ir(6) = 1i510g {/Ooog‘s(x)dm},é;él,5>0.

Using the same approach for expanding the density,

1 o0 o o0 [ee) ~ B
IR(0) = - 5log /0 (aAB@cd)5ZZZwijkx—5(e+1) (1+az?) B(6+K) 6d:13]

0o 00 00 00 BLK) -3
=1- 5log (ow\ﬁ@cd)(SZZZwijk/O AR (14 az™) * dx] :

Letting y = (1 + az™?)"!, when # — oo,y — 1 and when x — 0,y — 0. Also,

dy = 0Bz "1 (1 4+ az~?)"2dz and = = (ay)o(1 — y)~o. Hence,

R i 5 0 00 00 1 S5k 462 1 1\ 00+ 1)46+1
1,(6) = +—log | (aAffed) Zzzw / ) () (1 —2)?) dy
- e it S35 (0 0+ 15004 )]

L i=0 j=0 k=0

where 0 #£ 1,0 >0, 8(6 + k) + 152 > 0 and 6 + 2 > 0.

The Rényi entropy tends to Shannon entropy as 6 — 1.

4.4.8 Stress-Strength Reliability

The estimation of reliability is vital in stress-strength models. If X is the strength of a
component and X5 is the stress, the component fails when X; < X,. Then the estimate
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of the stress-strength reliability of the component R is P(Xy < X).

Proposition 4.9. If X; ~ EGED(«, A, 3,0,¢,d) and Xy ~ EGED(a, A, 3,0, ¢,d), then

the estimation of stress-strength reliability R is given by

R=1-)ed) > " (l:ikm’ (4.19)

where

Lo (ST (i + )T + 1)
IETGRIT (2N — ) (c(i + 1) — )T + 1) — k)

Proof. By definition

R— /0 " o(2)G(x)ds
:1—Amg@sumx

oo o0 o0

=1- / aAﬁ@ch Z Z I/ijkg;*efl (1 + 041’70) —B(k+1)—1 I
" i=0 j=0 k=0

oo o o0

=1- OMMZ Z Vijk/ a1+ omc’e)_ﬁ(“l)_1 dx
0

i=0 j=0 k=0

—1- )\cdi Yok

N (k+1)
i=0 j

k=0

NE

I
o

4.4.9 Order Statistics

Let X3, Xs, ..., X,, be a random sample from the EGED distribution and X;., <
Xo.n < ... < X,., are order statistics obtained from the sample. Then the PDF,
gp: n(1), of the p' order statistic X,,.,, is given by

1
B(p,n—p+1)

8y (2) = (G@)]" ™ L= G(a)]" 7 g(x),
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where G(x) and g(z) are the CDF and PDF of the EGED distribution respectively, and
B(-,-) is the beta function. Since 0 < G(z) < 1 for x > 0, using the binomial series

expansion of [1 — G(x)]"~?, which is given by

we have

8el2) = o — I (n - p) G g(o). (4.20)

Therefore, substituting the CDF and PDF of the EGED distribution into equation (4.20)

yields

n—p p+i—1 I+m
(=)™ nl(p+1—1)!

. = ca A 0, c, d
gpn(l') ~ i l' (m—i—l)'(p—1)'(n—p—l)'(p+l—m—1)'g(x’a’ m-‘rl,/Ba y G )7

(4.21)
where g(z; o, A1, 5, 0, ¢, d) is the PDF of the EGED distribution with parameters
a, 3,0, ¢, dand A\, = A(m+1). It is obvious that the density of the p'* order statistic
given in equation (4.21) is a weighted function of the EGED distribution with different

shape parameters.

Proposition 4.10. The r** non-central moment of the p** order statistic is given by

. . S . r r
11,7 = \Bedao Z Z Z Wijkim B <5k+1 + 9’ 1— 5) <0, (4.22)

where r =1,2,... and

(1) (n + DI (p + DI (A(m + 1)L (i + 1)T(d(5 + 1))

Wijkim = M (p— D)(n—p—DIT(p+1—m)T(Mm+1) —i)(c(i+ 1) — HT(d(G +1) — k)’
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Proof. By definition

) )
Mr(p:n) — / x”gp:n(m)dx
0

o n—p p+i—1 Itm
(=)™ nl(p+1-—1)!
Ja, A 0, c, d)d
/ Zmz:: Tm ¥ D1 = D (n—p D1+ 1—m = DS A 5. 0 ¢ djdr

Rt ( 1)l+mn' (p+1—1)
DNim+D)p—1)n—p—0Dp+l—m

/ ng(xu «, )\m+17 67 07 ¢, d)dl’
-1t

=0 m=0

Using the same method for deriving the non-central moment, we obtain

"(pim T o " T T
" = ABedad ZZZ Wijkim B <5k+1 tol- 5) 7 < 0.

4.5 Parameter Estimation

In this section, the maximum likelihood estimators for the unknown parameters of the
EGED distribution were derived. Let X, X5, ..., X,, be a random sample of size n from

the EGED distribution. Let z; = (14 ax;?), then the log-likelihood function is given by

¢ = nlog(a\Bled) — (0 +1) Zlog z) — (B+1) Zlog 2) 4+ (d—1) Zlog(l—z )
+(c—1);1og{1—(1—z;5” A—1) Zlog{l—{l—(l—z )}}
(4.23)

Taking the first partial derivatives of the log-likelihood function in equation (4.23) with

respect to the parameters o, A, 3, 6, ¢ and d, the score functions are:

S_i =3+ ;log {1-0-0-27%}, (4.24)
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8€_n u -8
%—E—F;log(l—zi )—1—()\—1)2

(c—1) Zn: (1- zz'_ﬁ)dlog(l - Zi_ﬂ), (4.26)

i=1 1- (1 - Zz‘_ﬁ)d

(2

o n < "~ z; " log(2) " dz (1 - 2 ") log (=)
55 _;1og(zi>+(d—1);1_—gi_ﬁ ~ (e~ 1); - (1_2'_5}1% +
" edz P(1— 2 )L = (1= 27%) ") log (=)
A=-1) T , (4.27)

i=1

n

n n -0 . —6, -1 .
x_n_ > loa(n) 3+ 1) 3 ) oaltn) _ (q_q)y @Ptia loaln)

Zi —
i=1 v i=1 1—z

afedr;lz P71 — 2771 — (1 — 27 P)9)e Hog ()
_— Lo gt

=1

" aBdr 02PN — 2Py T
(-1 bdz; 21—21—;@; og(:) (4.28)

=1

(% n n xi_g n Bxi_ezi_ﬁ_l n ﬂdxi_ezi_ﬂ_l(l . Zi—ﬂ)dfl
fa o PHDL DY T ey T

=1 ! i=1 % i=1 i
Bedx; 02 - 1( ;B)d - (1_2173)(1].:—1
_12 1—[1—(1—z ") ‘

(4.29)

The estimates for the parameters a, A, 5, 6, ¢ and d are obtained by equating the score
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functions to zero and solving the system of nonlinear equations numerically. In order to
construct confidence intervals for the parameters, the observed information matrix J(19)
is used since the expected information matrix is complicated. The observed information

matrix is given by

90 9 9% 9% 9% 9%
X2 Oxdc OXDd ONOB Ox06 OADa

20 o 9% 9% 9%
Oc? Ocdd  H8cOB  0cdf  HcOa

22 9% 9% 9%
92  9dOB 0dO6  Ddda

20 2 9
032 0B00  9BO«

o o
002 000
o
da?

where ¥ = (a, A, 3, 0, ¢, d)/. The expression for the elements of the observed information
matrix are given in Appendix Al. When the usual regularity conditions are fulfilled
and that the parameters are within the interior of the parameter space, that is not on
the boundary, \/n(9 — 9) Dist, Ng(0,171(9)), where () is the expected information
matrix. The asymptotic behavior is still valid when I() is replaced by the observed
information matrix evaluated at J(©). The asymptotic multivariate normal distribution

Ng(0, J-1(19)) can be used to construct an approximate 100(1—7)% two-sided confidence

intervals for the model parameters, where 7 is the significance level.

4.6 Monte Carlo Simulation

In this section, a simulation study was carried out to examine the average bias (AB) and
root mean square error (RMSE) of the maximum likelihood estimators for the parameters
of the EGED distribution. The quantile function given in equation (4.9) was used to gen-
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erate random samples from the EGED distribution. The simulation experiment was re-
peated for N = 1,000 times each with sample sizes n = 25, 50, 75, 100, 200, 300, 600 and
parameter values (a, A, 3, 0, ¢, d) = (2.5, 1.5, 0.4, 0.5, 1.0, 0.2) and (0.3, 0.5, 0.8, 0.2, 0.7, 1.5).
The AB and RMSE for the estimators of the parameters were computed using the fol-

lowing relations:

and

1. 2
RMSE — N;(m-@).

Figure 4.3 and 4.4 respectively show the AB and RMSE of the maximum likelihood
estimators of («, A, B, 0, ¢, d) = (2.5, 1.5, 0.4, 0.5, 1.0, 0.2) for n = 25, 50, 75, 100, 200,
300, 600. The AB for some estimators of the parameters decreases as the sample size
increases while it fluctuates for others. The RMSE for the estimators of all the parameters

showed a decreasing pattern.
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Figure 4.3: AB for Estimators
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Figure 4.4: RMSE for Estimators

Figure 4.5 and 4.6 respectively shows the AB and RMSE for the maximum likelihood
estimators of (o, A, 3, 0, ¢, d) = (0.3, 0.5, 0.8, 0.2, 0.7, 1.5) for n = 25, 50, 75, 100, 200,
300, 600. Just like the first case the AB decreases for estimators of some parameters as
the sample size increases whiles for others it fluctuates. The RMSE for the estimators on

average decreases for all parameters as the sample size increases.
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4.7 Applications

In this section, the applications of the EGED distribution were demonstrated using two
real data sets. The goodness-of-fit of the EGED distribution was compared with that
of its sub-models, the exponentiated Kumaraswamy Dagum (EKD) distribution and the
Me-Dagum (McD) distribution using K-S statistic and Cramér-von (W*) Misses distance

values, as well as AIC, AICc and BIC. The PDF of EKD distribution is given by

6—-1

ge) = axohe (14 x0) T = (1 2a) ] {1 ~[1-a+ /\x_5>_a]¢} ,

(4.30)
fora>0,A>0,6>0,¢>0,0>0, >0, and that of McD distribution is
g(w) = N (1 ) (1) (4.3)
B(a, b) ’ '

fora>0,b6>0,¢>0,A>0,6>0,6>0,x2>0.

4.7.1 Yarn Data

The data in Table 4.3 represents the time to failure of a 100 cm polyster/viscose yarn
subjected to 2.3% strain level in textile experiment in order to assess the tensile fatigue
characteristics of the yarn. The data set can be found in Quesenberry and Kent (1982)

and Pal and Tiensuwan (2014).
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Table 4.3: Failure time data on 100 cm yarn subjected to 2.3% strain level
86 146 251 653 98 249 400 292 131 169
175 176 76 264 15 364 195 262 88 264
157 220 42 321 180 198 38 20 61 121
282 224 149 180 325 250 196 90 229 166
38 337 65 151 341 40 40 135 597 246
211 180 93 315 353 571 124 279 81 186
497 182 423 185 229 400 338 290 398 71
246 185 188 568 55 55 61 244 20 289
393 396 203 829 239 236 286 194 277 143
198 264 105 203 124 137 135 350 193 188

The data set have an increasing failure rate as displayed by the TTT transform plot,

which has a concave shape as shown in Figure 4.7.
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Figure 4.7: TTT-transform plot for yarn data

The maximum likelihood estimates for the parameters of the fitted models with their
corresponding standard errors in brackets are given in Table 4.4. The parameters of most
of the fitted distributions were significant at the 5% significance level. This can be verified
by using the standard error test which states that for a parameter to be significant at the

5% significance level the standard error should be less than half the parameter value.
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Table 4.4: Maximum likelihood estimates of parameters and standard errors
for yarn

= = ~ =

Model a A A 0 ¢ d
EGED 0.026 75.310 0.017 3.513 45.692 0.090
(0.007) (0.007) (0.005) (0.631) (0.036) (0.011)
EGDD 1.992 10.430 1.733 75.487 0.223
(0.251) (13.022) (0.587) (27.669) (0.032)
DD 19.749 11.599 1.126
(10.814) (5.008) (0.069)
EGEBD 35.463 35.965 1.859 15.667 0.070
(0.271) (0.120) (0.666) (2.714) (0.011)
EGBD 24.801 1.196 73.9120 0.258
(15.068) (1.808) (22.832) (0.112)
EGEFD  20.662 34.477 5.217 16.438 0.65
(2.365) (0.278) (0.578) (2.708) (0.009)
EGFD 10.537 5.239 21.341 0.140
(1.115) (0.429) (4.089) (0.015)
A 5 i a b ¢
McD 0.027 0.600 93.780 0.333 25.042 16.276
(1.848 x 1072) (9.647 x 1072) (2.180 x 1075) (1.504 x 1071) (4.507 x 10~%) (4.654 x 1075)
& A 5 b 0
EKD 16.109 39.413 5.188 0.203 31.169
(1.295) (5.006) (0.961) (0.040) (11.023)

The EGED distribution provides a better fit to the yarn data than its sub-models, the
McD and the EKD distribution. From Table 4.5, the EGED distribution has the highest
log-likelihood and the smallest K-S, W*, AIC, AICc, and BIC values compared to the
other models. Although the EGED distribution provides the best fit to the data, the
MecD distribution, EGEBD and EGEFD are alternatively good models for the data since

their measures of fit values are close to that of the EGED distribution.

67



Table 4.5: Log-likelihood, goodness-of-fit statistics and information criteria for

yarn
Model l AIC AlICc BIC K-S W=
EGED -628.170 1268.336 1269.553 1283.967 0.124 0.249
EGDD -653.070 1316.137 1317.040 1329.163 0.172 0.948
DD -649.260 1304.517 1304.938 1312.333 0.164 0.821
EGEBD -630.870 1271.745 1272.648 1284.771 0.136 0.340
EGBD -653.030 1314.056 1314.694 1324.447 0.174 0.969
EGEFD -630.760 1271.523 1272.426 1284.549 0.139 0.339
EGFD -666.880 1341.757 1342.395 1352.177 0.236 0.760
McD -628.200 1268.399 1269.616 1284.030 0.128 0.285
EKD -653.960 1317.913 1318.816 1330.938 0.178 0.985

The LRT was performed to compare the EGED distribution with its sub-models. The

LRT statistics and their corresponding P-values in Table 4.6 revealed that the EGED

distribution provides a good fit than its sub-models.

Table 4.6: Likelihood ratio test statistic for yarn

Model Hypotheses LRT P-values
EGDD Hy: A=1vs Hy: Hy is false 49.801 < 0.001
DD Hy: AN=c=d=1vs H, : Hy is false 42.181 < 0.001
EGEBD Hy:a=1vs Hy: Hy is false 5.409 0.020

EGBD Hy: A=a=1vs Hy: Hy is false 49.721 < 0.001
EGEFD Hy: (8 =1vs Hy: Hy is false 5.187 0.023

EGFD Hy: A=p0p=1vs H: Hy is false 77.421 < 0.001

The asymptotic variance-covariance matrix for the estimated parameters

distribution for the yarn data is given by

J =

5.0338 x 107°
2.1232 x 107°
1.3887 x 107°

4.4786 x 1073

2.1232 x 107°
5.1601 x 10~
1.0316 x 107>

1.8887 x 1073

1.3887 x 107°
1.0316 x 10~°
2.2466 x 10~

1.2354 x 1073

2.5246 x 10~% 1.0648 x 10~* 6.9642 x 10~°

—7.5812 x 1075 -2.5628 x 107°—1.6719 x 107°—0.0067 —3.8023 x 10~* 1.1654 x 10~*
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0.0045 2.5246 x 10~*

0.0019 1.0648 x 10~
0.0012 6.9642 x 10~°
0.3985 2.2462 x 1072

0.0225 1.2662 x 103

of the EGED

—7.5812 x 107°
—2.5628 x 107°
—1.6719 x 107
—6.7451 x 1073

—3.8023 x 10~4




The approximate 95% confidence interval for the parameters a, A, 8, 6, ¢ and d of the
EGED distribution are [0.012, 0.040], [75.296, 75.324], [0.007, 0.027], [2.276, 4.750],

[45.621, 45.763] and [0.068, 0.111] respectively. It can be seen that the confidence intervals
for the parameters do not contain zero. This is an indication that all the parameters of
the EGED distribution were significant at the 5% significance level. The plots of the

empirical density and the densities of the fitted distributions are shown in Figure 4.8.
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Figure 4.8: Empirical and fitted densities plot for yarn data

4.7.2 Appliances Data

The appliances data was obtained from Lawless (1982). The data set consists of failure

times for 36 appliances subjected to an automatic life test. The data set are given in

Table 4.7.

Table 4.7: Failure Times for 36 appliances subjected to an automatic life test
11 35 49 170 329 381 708 958 1062 1167 1594 1925
1990 2223 2327 2400 2451 2471 2551 2565 2568 2694 2702 2761
2831 3034 3059 3112 3214 3478 3504 4329 6367 6976 7846 13403
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The T'TT transform curve of the data set displays a convex shape and then concave shape
followed by convex shape as shown in Figure 4.9. Thus, the failure rate function of the

data set has a modified bathtub shape.
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Figure 4.9: TTT-transform plot for appliances data

Table 4.8 provides the maximum likelihood estimates for the parameters with their corre-
sponding standard errors in brackets for the models fitted to the appliances data. Using
the standard error approach for testing for the significance of the parameters, it can be
seen from Table 4.8 that most of the parameters for the various estimated models are

significant at the 5% significance level.
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Table 4.8: Maximum likelihood estimates of parameters and standard errors
for appliances

= = ~ =

Model a A 3 0 ¢ d
EGED 0.001 27.193 4,560 2838  20.866  0.070
(1.000 x 10=4)  (0.001) (0.847) (0.123)  (0.010)  (0.003)
EGDD 7.977 0.404 3570  15.862  0.130
(0.651) (0.044) (0.391)  (5.196)  (0.021)
DD 0.018 1495.519 0.509
(0.0062) (1.058 x 10°7)  (0.056)
EGEBD 25.705 14.152 3412 8332  0.047
(0.514) (0.110) (0.247)  (1.934)  (0.009)
EGBD 9.504 3392  11.226  0.129
(3.205) (0.388)  (3.440)  (0.022)
EGEFD 13.048 27555 3561  9.084  0.047
(1.817) (0.071) (0.392)  (2.186)  (0.009)
EGFD 8.4843 3429 16533  0.143
(1.550) (0.711)  (5.833)  (0.034)
A 5 A a b ¢
McD 1.427 3.455 1.275 10505  0.064  500.556
(0.092) (0.212) (6.875) (56.906) (0.012)  (6.796)
a A 5 & 0
EKD 5.562 12.683 3.716 0.128  11.609
(1.517) (2.158) (0.755) (0.029)  (3.922)

From Table 4.9, it was clear that the EGED distribution provided a better fit to the
appliances data than the other models. It has the highest log-likelihood and the smallest
K-S, W*, AIC, AICc and BIC values. Alternatively, the EGEBD and EGEFD are good

models since their goodness-of-fit measures are close to that of the EGED distribution.

Table 4.9: Log-likelihood, goodness-of-fit statistics and information criteria for

appliances

Model 14 AIC AlCc BIC K-S W=

EGED -328.870 669.740 670.957 679.241 0.253 0.569
EGDD -340.910 691.818 692.721 699.736 0.264 0.882
DD -339.610 685.225 685.646 689.976 0.257 0.858
EGEBD -330.910 671.823 672.726 679.741 0.272 0.634
EGBD -341.520 691.037 691.675 697.371 0.268 0.881
EGEFD -330.730 671.460 672.363 679.377 0.269 0.625
EGFD -341.030 690.054 690.692 696.388 0.269 0.907
McD -356.480 724.955 728.950 734.456 0.347 0.986
EKD -341.650 693.295 694.198 701.213 0.269 0.925
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The LRT was performed in order to compare the EGED distribution with its sub-models.

From Table 4.10, the LRT revealed that the EGED distribution provides a better fit to

the appliances data than its sub-models. Although the LRT favored the EGEFD at the

5% level of significance, the EGED distribution was better than it at the 10% level of

significance.

Table 4.10: Likelihood ratio test statistic for appliances

Model Hypotheses LRT P-values
EGDD Hy: A=1vs Hy: Hy is false 24.078 < 0.001
DD Hy: AN=c=d=1vs H, : Hy is false 21.486 < 0.001
EGEBD Hy:a=1vs Hy: Hy is false 4.084 0.043

EGBD Hy: AN=a=1vs Hy: Hy is false 25.297 < 0.001
EGEFD Hy: 8 =1vs Hy: Hy is false 3.720 0.054

EGFD Hy: A=p0p=1vs H: Hy is false 24.315 < 0.001

The asymptotic variance-covariance matrix for the estimated parameters of the EGED

distribution for the appliances data is given by

1.7033 x 1076 1.5346 x 103 1.1045 x 1072 3.7492 x 10~°
1.5346 x 1078 1.4494 x 1078 8.8310 x 1076 5.7406 x 10~
1.1045 x 1073 8.8310 x 1076 7.1688 x 101 2.1348 x 102

3.7492 x 10~° 5.7406 x 1076 2.1348 x 1072 1.5185 x 102

1.2695 x 10° —6.6696 x 10~8
1.1008 x 107 —8.3473 x 1078
8.2348 x 1073 1.3547 x 107°

2.6827 x 1074 —2.8002 x 104

1.2695 x 1075 1.1008 x 107 8.2348 x 1073 2.6827 x 10~% 9.4629 x 107° —2.9359 x 10~7

—6.6696 x 1078—8.3473 x 10781.3547 x 107°—2.8002 x 1074—2.9359 x 107 8.4565 x 106

Thus, the approximate 95% confidence interval for the parameters o, A, 3, 0, ¢ and d of

the EGED distribution are [0.0008, 0.0012], [27.1955, 27.2005], [2.9005, 6.2195],

[2.5965, 3.0795], [20.8470, 20.8850] and [0.0643, 0.0757] respectively. The confidence in-

tervals for the parameters do not contain zero. This implies that the estimated parameters

of the EGED distribution were all significant at the 5% significance level. Figure 4.10
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displays the empirical density and the fitted densities of the fitted distributions.

0
3
3
8
8
=]
o
2
3
8
8
=]
0
&
8
S )
ra¥
< [N )
=] LI}
&
§ 1 l] 'u l\‘\ — Empircal
3] i —or
[ D DD
o g oW — EGESD
S owow — EGBD
= 1‘ N EGEFD
w EGFD
o Vomo W — EKD
b=y ow | W — McD
g YN
[=1 VoW PN
A -~
0 v Y
(=3 - o
S Sol TR TR
g N o
o ~ e e e
o -— e e
g8 —— :_-_-:"—":?’—“:':‘75 e
g -
o f T T T T T T 1
0 2000 4000 6000 8000 10000 12000 14000

Figure 4.10: Empirical and fitted densities plot for appliances data

4.8 Summary

In this chapter, the EGED distribution was proposed and studied. The distribution con-
tains a number of sub-models with potential applications to a wide area of probability
and statistics. Statistical properties such as the quantile function, moment, MGF, in-
complete moment, mean and median deviations, inequality measures, entropy, reliability
and order statistics were derived. The estimation of the parameters of the model was
done using maximum likelihood estimation and simulation experiments were performed

to investigate the statistical properties of the estimators. Finally, the usefulness of the

EGED distribution was demonstrated using two data sets.
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CHAPTER 5

NEW EXPONENTIATED GENERALIZED

MODIFIED INVERSE RAYLEIGH

DISTRIBUTION

5.1 Introduction
Recently, Khan (2014) proposed the modified inverse Rayleigh (MIR) distribution and
studied its theoretical properties. The CDF of this distribution is given by

F(z) = e_(%er%), a, 8, x>0, (5.1)

where the two parameters of the distribution are scale parameters. However, to control
skewness, kurtosis, model data with heavy tails and non-monotonic failure rates there is
the need for a distribution to have shape parameters. In this chapter, the CDF of the
EGE-X family was used to develop and investigate the theoretical properties of a new

model called the new exponentiated generalized MIR (NEGMIR) distribution.

5.2 Generalized Modified Inverse Rayleigh

Suppose the random variable X has the CDF defined in equation (5.1), then the CDF of

the NEGMIR distribution is given by
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8R

G(z)=1— {1 - {1 - (1 _e( *5))16?@ >0, (5.2)

where o > 0, 0 > 0, (o + 6 > 0) are scale parameters and A > 0, ¢ > 0, d > 0 are shape

parameters. Finding the first derivative of equation (5.2), the PDF of the NEGMIR

distribution is given by

(5.3)
Lemma 5.1. The NEGMIR distribution PDF can be written in a mixture form as
29 (oo} (o) o o N
g(z) = Aed (% + —3) Eihm & e”HD(E) 25 0 (5.4)
X X i=0 7=0 k=0 m=0

where

(ST (1) 0m D) T(e(i + 1) TG + 1)) )
St = 1 TRl T — ) T(ei + 1) ~ TG +1) k) @D =¢

Proof. For a real non-integer 7 > 0, a series representation for (1 — 2)77!, for |z| < 1 is

= (—1)
(12 Z,M (5.5)
=0

Using the series expansion in equation (5.5) thrice and the fact that 0 < 1 _e(5+3) <1,
yields,

8
w‘m
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(e 2\ ()T N+ D) A D) (2
B(x) = Aed <+> 2 2 2T = ) (el + 1) = TG+ 1) — k) (538),

~

But

0 k 1 om —2m
e~ 1) :Z i !) i (5.7)

m=0

Substituting equation (5.7) into equation (5.6), the mixture representation of the PDF

of the NEGMIR distribution is obtained as

The PDF of NEGMIR distribution can be symmetric, left skewed, right skewed, J-shape,
reverse J-shape or unimodal with small and large values of skewness and kurtosis for

different parameter values. Figure 5.1 displays the different shapes of the NEGMIR

distribution density function.
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Figure 5.1: NEGMIR density function for some parameter values
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The survival function of the NEGMIR distribution is

S(z) = {1 - {1 - (1 . e—(‘i%))T}A,x >0, (5.8)

(5.9)

The plots of the hazard function reveals different shapes such as monotonically decreas-
ing, monotonically increasing or unimodal for different combination of the values of the
parameters. These features make the NEGMIR distribution suitable for modeling differ-

ent failure rates that are more likely to be encountered in real life situation. Figure 5.2

displays the various shapes of the hazard function.
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Figure 5.2: Plots of the NEGMIR hazard function for some parameter values
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5.3 Sub-models

The NEGMIR distribution houses a number of sub-models that can be used in different

fields for modeling data sets. These include:

1. Exponentiated Generalized Modified Inverse Rayleigh Distribution
When A = 1, the NEGMIR reduces to the exponentiated generalized modified

inverse Rayleigh (EGMIR) distribution with the following CDF:

81Q

G(z) = [1 - (1 _e(

+92)>d}c
for a, 0, ¢, d >0 and = > 0.

2. Exponentiated Generalized Exponential Inverse Rayleigh Distribution
When o = 0, the NEGMIR reduces to the exponentiated generalized exponential

inverse Rayleigh (EGEIR) distribution with the following CDF:

6w =1-{1-[1- (1@

for A\, 0, ¢, d >0 and x > 0.

3. Exponentiated Generalized Inverse Rayleigh Distribution
When o« = 0 and A = 1, the NEGMIR reduces to the exponentiated generalized

inverse Rayleigh (EGIR) distribution with CDEF:
o \\ 4
G(z) = [1 — (1 - e_<a7>) ] ,

for 0, ¢, d >0 and x > 0.
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4. Exponentiated Generalized Exponential Inverse Exponential Distribu-
tion
When 6 = 0, the NEGMIR reduces to the exponentiated generalized exponential

inverse exponential (EGEIE) distribution with CDF:

for \, a, ¢, d >0 and x > 0.

5. Exponentiated Generalized Inverse Exponential Distribution
When 6 = 0 and A = 1, the NEGMIR reduces to the exponentiated generalized

inverse exponential (EGIE) distribution with CDF:

for a, ¢, d >0 and = > 0.

6. Modified Inverse Rayleigh Distribution

When A = c¢=d =1, the NEGMIR reduces to the MIR distribution with CDF"

for a, 8, > 0 and = > 0.

7. Inverse Rayleigh Distribution

When a =0 and A = ¢ = d = 1, the NEGMIR reduces to the inverse Rayleigh (IR)
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distribution with CDF:

for 6, > 0 and x > 0.

8. Inverse Exponential Distribution

When § =0 and A = ¢ = d = 1, the NEGMIR reduces to the inverse exponential

(IE) distribution with CDEF:

for a, > 0 and z > 0.

A summary of the various sub-models of the NEGMIR distribution are given in Table

5.1.

Table 5.1: Summary of sub-models from the NEGMIR distribution

G(z)=¢€ =,

Distribution A « 0 c d
EGMIR 1 Q@ 0 c d
EGEIR A 0 0 c d
EGIR 1 0 0 c d
EGEIE A « 0 c d
EGIE 1 « 0 c d
MIR 1 « 0 1 1
IR 1 0 0 1 1
IE 1 « 0 1 1

5.4 Statistical Properties

In this section, the quantile, moments, moment generating function, incomplete moment,
mean deviation, median deviation, inequality measures, reliability measure, entropy and

order statistics were derived. Apart from the quantile function, all other statistical prop-
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erties were derived using the parameter conditions a« > 0,60 > 0, A > 0, ¢ > 0 and

d> 0.

5.4.1 Quantile Function

In order to simulate random samples from the NEGMIR distribution, it is important to

develop its quantile function.

Lemma 5.2. The quantile function of the NEGMIR distribution for p € (0, 1) is

260

114d
_a+\l a2_4910g{1— {1-(1—(1_,));) } }
g —,a=0,0>0,

d
_log{l—[l—(l—(l—p))l\) ] }
= ,a>0,0=0.

o peeon ]

For the case of a > 0 and 6 > 0, the proof of the quantile is as follows.

,a>0,0>0,

-

ol

(5.10)

\

Proof. By definition, the quantile function is given by
G(zp) =P(X <) =p.

Hence,

§;+%+kg{1—{1—(y—u—pﬁ)

iF}:o. (5.11)
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Letting x, = Qx(p) in equation (5.11) and solving for Qx(p) gives
20

—a+ a2—4elog{1— {1— (1(1]9);)1}1}‘

Putting p = 0.25, 0.5 and 0.75, gives the first quartile, the median and the third quartile

Qx(p) =

of the NGMIR distribution respectively. Since the quantile of the NEGMIR distribution
is tractable, random observations from the distribution can easily be simulated using the

relation

20
Tp = : ,a>0,60>0.

—a+ a2—4910g{1— {1— (1— (1—p)i>1d}

5.4.2 Moments

Proposition 5.1. The r** non-central moment of the NEGMIR distribution is given by

e =Aed> Y > & [F(zm —r+1)+ mP(2m —r+2), (512

i=0 j=0 k=0 m=0

where r=1,2,...and

g, _ (_1)i+j+k+m (k =+ 1>r—m—1 g o —2m F()\) F(C(’i + 1)) F(d(j + 1))
igkm A R mI TN —4)D(e(i + 1) — 5)T(d(j + 1) — k) ‘
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Proof. By definition

io= [ el
0

0o 20 0o 00 00 00 .
:/0 x" ed (%—i——) &jkmx%me*(’““)(z)dx

x3 A
=0 j=0 0 m=0

oo oo 0 0

=Aedd D> DD G

=0 j=0 k=0 m=0

I
3> o [

=Aedd D> DD G

=0 j=0 k=0 m=0

_ ACdZZZZkam [/0 awr—2m—26—(kz+1)(‘;)dx+/0 9f 4" —2m—3 _kﬂ)(%)dx
i=0 j=0 k=0

=0 k=0 m=0

k=
Pl 2—8) o 2me~(HD(8) gy
x? a3

x

az"m? 4 29x7"_2m_3) e~ HD(2) o

Letting y = (kﬂ implies that if x — 0, y — co and if z — oo, y — 0. Also, z = %
and dx = ag(ckiyl Using the identity T'(a) = [~ t*'e~"dt,

oo oo 0 X

fp =Acd > Y 3T " &

i=0 j=0 k=0 m=0

[ /OOO C i 0 (a(k; 1))% ¢yt /Ooo a(k:zi ) (a(k; 1))MM e_ydy]

[c e Ne oo S lNe o]

S 3)3) I

i=0 j=0 k=0 m=0

[ 2™ (k+ 1) 2" 0(2m — v+ 1) + 200722 (k + 1)" 2" 7?0 (2m — r + 2)]

=Acd Y > NS & [F(Qm—rﬂ) + %F(Zm—r%—?)] .

i=0 j=0 k=0 m=0

The values for the first six moments of the NEGMIR distribution for selected values
of the parameters are displayed in Table 5.2. The values for the first six moments are
obtained using numerical integration. The following parameter values were used for the
computation. I : A=84,a=11.6,0=1.2,¢c=15.0,d=7511: A =37, a =4.28, 0 =

10.58, ¢ = 5.0, d = 3.25, and 111 : A = 4.5, a = 10.36, 6 = 5.1, ¢ = 14.04, d = 10.85.

83



Table 5.2: First six moments of NEGMIR distribution

r I 1T 11T
11 7.79800 5.54376 6.386897
1y 61.74888 32.40517 41.401826
115 496.43131 200.51399 272.412977
11 4051.39777 1320.04281 1819.550601
115 33558.88419 9307.36739 12339.260225
g 282109.99686 70922.61523 84971.961184

5.4.3 Moment Generating Function

Proposition 5.2. The MGF of the NEGMIR distribution is

:AME:E:E:E:E:Zﬂm[ %n—r+1%+aﬁ?:BF@m—r+2)

r=0 i=0 j=0 k=0 m=0

(5.13)

where

(1)t (b + 1) 0™ o P DA Te(@ + 1)) D(d() + 1))
Ak mI P T = 0) T(c(i + 1) — 5) T(d(j + 1) — k) ‘

5;}*km =

Proof. By definition

:AME:E:E:E:E:Zﬂm[ %n—r+1%+5ﬁ?:ﬁF@m—r+2)

r=0 i=0 j=0 k=0 m=0

Note that the following series expansion e = > 2 Z;fr was employed in the proof.
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5.4.4 Incomplete Moment
Proposition 5.3. The 7" incomplete moment of the NEGMIR distribution is

[e.e]

Mp(@) =Aedd D> % D En>

1=0 j=0 k=0 m=0

{r <2m—7“+1, O‘Uj 1)) + 042(139—1— i (2m—r+2, @)} . (5.14)

where r =1,2,... and ['(s, ¢) = fqoo u*"te %du is the lower incomplete gamma function.

Proof. Using the definition of incomplete moment of a random variable and the approach

for proving the moment of the NEGMIR distribution,

M,(z) = BE(X"|X <x)

= /Ox u"g(u)du

T [e.e]

- ACdZ Z Z Z &ijrm {/0 OzuT_Qm_Qe_(kH)(%)du + /o 29u’”_2m_36_(k+1)(3)du}
i=0 j=0 k=0 m=0

[c e Ne o lNe o B¢ o]

ST 3)3) 3) IR

i=0 j=0 k=0 m=0

> 1 alk+1)\"7" _, /°° 20 alk+1)\"7"
d Yd
[/1(k+1) (k+1) ( Y ) ¢ ey atk+1) ok + 1) Y -

T T

[c e O lNe o B¢ o]

S Y3 3) ) I

i=0 j=0 k=0 m=0

{F (zm—r+ 1, O‘(k; 1)) + aQ(si ot <2m—7’+2, @)} .
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5.4.5 Mean and Median Deviations

Proposition 5.4. The mean deviation of a random variable X having the NEGMIR

distribution is

oo o X oo

)= 0600 -t 3350 5" e 1 (am S 2 (o, D))

=0 7=0 k=0 m=0 H

where j = y; is the mean of X and

(= 1)k (k4 1)=m gm o1 =2m TN\ D(c(i + 1)) T(d(j + 1))
i R mIT(N = ) T(e(i + 1) — ) T(d(j + 1) — k) ‘

Proof. By definition

3(o) = [ o ulg(o)to
= [[n—ms@rtet [ e
= 2G() —2 / " rg(w)da

1=0 j=0 k=0 m=0

where [ zg(z)dx is simplified using the first incomplete moment.

Proposition 5.5. The median deviation of a random variable X having the NEGMIR

distribution is

So(x) = pu — 2)\cdiii i Efilom [ < Oé(k]\}L 1)> + oﬂ(:e—k 1)F <2m+ L O‘(k]\; 1))] 7

=0 j=0 k=0 m=0

(5.16)
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where M is the median of X.

Proof. By definition

do(z) = /000 |z — M| g(z)dz
_ /OM(M _ )a(a)dz + /OO@; ~ M)g(z)dz

M

M
=1 — 2/ rg(z)dz
0

o A A N N alk+1) 20 alk+1)
=1 — 2\ cd 2 &ijkm {F (Zm, % + o2 1>F 2m+1, ———= | |,

s
I
=)
<
I
<)
£
Il
o
Il
=)

where fOM xg(z)dz is simplified using the first incomplete moment.

5.4.6 Inequality Measures

Proposition 5.6. The Lorenz curve, Lg(z) is given by

[YETELS 359 39 31 1} CHICICE L) N TRy G

(5.17)

Proof. By definition

L, (x)= %/Ox ug(u)du

S S G [r (o MDY ot (s, )]

H 520 =0 k=0 m=0
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Proposition 5.7. The Bonferroni curve, Bg(z) is given by

i=0 j=0 k=0 m=0
alk+1) 20 a(k+1)
{F (2m, = LiPeT 1)F (2m L (5.18)
Proof. By definition
La(x)
B pu—
Aed SN &
— Z fz ka
nG(x) i=0 j=0 k=0 m=0 !
a(k+1) 260 (k+1)

5.4.7 Entropy

In this subsection, the Rényi entropy (Rényi, 1961) of the NEGMIR random variable X

was derived .

Proposition 5.8. The Rényi entropy of a random variable X having the NEGMIR

distribution is

oo o 0 0 0

re@d+m)+n—1
log (ahed) 5222 Z chkmn (2( 4]‘{)] 2;;”)% )1 , (5.19)

i= 7=0 k=0 m=0n=0 [a(

Ir(0) =

where § # 1, 6 > 0 and

Cijkmn =

(=1)iFatkEmem(§ 4 k)™ (2" D6 + DTSN — 1) + 1)I(e(6 +14) — 6 + DT(d(5 + §) — 5 + 1)
WGRIMITE —n+ D)T0AN—-1) —i+ 1)l(c(d+i) —d—j+ I +j)—d—k+1)
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Proof. The Rényi entropy is defined as

Ir(6) = 1i510g {/Ooog‘s(x)dm},é;él,5>0.

Using the same method for expanding the density,

cO 0O 00 00 00 2(6+m)+n
£@) = (@’ 3 35S G (_> ~0(3),

i= j=0 k=0 m=0 n=0

Hence,

cO 0O 00 00 1 2(6+m)+n R
Ir(6) = log (aAed) ZZZZZ@]W”/ (5) 6(6+k)(z)dx].

i= j=0 k=0 m=0 n=0

a(s +

Letting y = < , when z — 0, y — oo and when x — oo, y — 0. Also, ;—Land

a(d+k)

—z2d
dr = (6+k?:J) Thus,

[ o BENNe ol e o B¢ o lNe o]

1 5 y2(6+m)+n—2 7y
Ir(0) = 5 log | (ahed) Z Z Z Z ZCz]kmn/O a0t k)]2(6+m)+n71€ dy

i= j=0 k=0 m=0 n=0

o0 o0 [e.e] o0 [e.e]
1

(6+m)+n—1)
:1_510g Oé)\Cd(SZZZZZCUkmn 5+k;7]l 5+:+n 1]7

i= j=0 k=0 m=0 n=0

where ¢ # 1 and ¢ > 0.

The Rényi entropy tends to Shannon entropy as 6 — 1.

5.4.8 Stress-Strength Reliability

Proposition 5.9. If X, is the strength of a component and X5 is the stress, such that

both follow the NEGMIR distribution with the same parameters, then the stress-strength
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reliability is given by

[c e e Ol Sl O]

_1—aAchZZZ§”km @m+1)—1) -+ 261(2(m + 1)) . (5.20)

i= j=0 k=0 m=0 ak + 1)] ()= a ok + 1)]2(m+1)

where

(_1)i+j+k+m gm (k’ + ) +
WGUEIMIT(N — i+ 1) D(c(i +

E
E
>

Sijkm =
Proof. By definition

R = ]P)(XQ < Xl)
- / " g(2)G () de
0

=1 —/0 g(x)S(z)dx

=1-2d> > 3D Gijim [/ axZ(m+1)e—(k+1)(‘;)dx+/ 09— (3+2m) ,~(h+1)(£) 7,

i= j=0 k=0 m=0 0

(k:—i—l)

Letting y = , when z — 0, y — oo and when x — oo, y — 0. Also, x = (kyﬂ) and

—z2d
dr = a(k—i—ly)‘ Thus

oo 0 0 0

2(m+1)—2 () 202m+1
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—1—)\ch g E E gzkm/ eydy—i-/ e Ydy
J [ 0 (k+1)]2(m+1)—1 0 [Oé(k+1)]2(m+1)

i= j=0 k=0 m=0

oo 0 0 0

=1-2dd D D) ijim

i= j=0 k=0m=0

(o e XENNe oRNe o B¢ o)

= 1fa)\cdzzz Zgwkm

i= 7=0 k=0 m=0

(2(m+1)—1) 20T (2(m + 1))
a(k+ DD [k 4 1)
2(m+1)—1) 20T (2(m +1))
k + DD ek + 1))2m D
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5.4.9 Order Statistics

Order statistics have a very useful role in statistics and probability. Hence, in this section
the p order statistics of the NEGMIR distribution was derived. Suppose X;, Xo, ..., X,
is a random sample having the NEGMIR distribution and X;.,, < X5., < ... < X,.,
are order statistics obtained from the sample. The PDF, g,. (), of the p'" order statistic

Xp:n i8

£0nl@) = oy L0 () G@r e G2

Substituting the CDF and PDF of the NEGMIR distribution into equation (5.21) gives

noppti-l I+m
( D™ nl(p+1—1)! '
By Z Z im0 (p =1l —p— 0 (o + L —m = D18 @ Amtts 0.6 )
(5.22)
where g(x;a, A\py1, 0, ¢, d) is the PDF of the NEGMIR distribution with parameters
a, 0, c,dand )\, = A(m+1). It is clear that the density of the p'* order statistic given

in equation (5.22) is a weighted function of the NEGMIR distribution with different shape

parameters.

Proposition 5.10. The r** non-central moment of the p** order statistic is given by

o oo oo oo n—ppt+i-1
200 (2 — 1 + 2)
= \cd Z Pijklmg |: —r -+ 1) + Oéz(k‘ T 1) 5
1=0 j=0 k=0 ¢=0 [=0 m=0
(5.23)
where r = 1,2, ... and

(=pHHR (k4 1) 07199020 (n + DT (p + DT (A(m + 1)T(c(i + 1)T(d(j +1))

Pigkima = G kltmlq!(p — Di(n —p — DIT(p + 1 — m)D(Am + 1) — )D(c(i + 1) — DG + 1) — k)
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Proof. By definition

0 = [ i

0o n—pp+li—1 I+m
(—D)! ™ nl (p+1— 1)
[ L0, Amst, 0, ¢, d)d
/0 xlzgmzzol!(m+1)!(p1)!(npl)!(p+lm1)!g(x’a’ +1, 0, ¢, d)de
ol (1)l (p 41— 1)!

"g(asa, Ame1, 0, ¢, d)dz.
l!(m+1)!(p—1)!(n—p—1)!(p+Z—m—1)!/0 (w50 Amia, 0, ¢, d)dx

=0 m=0

[e=]

Employing the same method for deriving the non-central moment,

20T (2q — 1 + 2)
kima |2 — 1+ 1

5.5 Parameter Estimation

In this section, the estimation of the unknown parameter vector 9 = (A, «, 0, ¢, d)/ using
the method of maximum likelihood estimation was carried out. Let X, X,,..., X,

[ R
be a random sample of size n from NEGMIR distribution. Let z; = e (z ’%2) and

« 2]

22

zZi=1-— e_(”TiJr i >, then the log-likelihood function is given by
¢ =nlog(cd)) + (d—1) ) log(z) + (¢ —1) Y log(1 = z) + (A =1) ) "log [1 — (1 — z')]
i=1 i=1 i=1

- Q 0 - Qo 0
| — 4+ =] = — 4+ —=. .24
() -5 5) 5.2

i=1 g
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By differentiating the log-likelihood function with respect to the parameters A, ¢, d, «

and 6, the score functions are obtained as:

o n O e
ﬁ—x‘i‘;bg[l_(l_zi”’ (5.25)
o n L 4 " (1 —z%)°log(1 — z¢)
o=t ;1og (1-z)-(A—1) Zl G (5.26)

o n & " z¢log(z) "L czd(1 — 2z og(Z)
a7 g log(zi) — (¢ —1 — 4+ (A1 ! : ,
5 d—i—;og(z) (c ); — + ( )ZA:1 P
(5.27)
D Shrvsusnrs daD Binb i CRb D Dl Gl Db ey
=1 T; (x% + ;) i=1 i=1 i =1 i
- FA=1(] — zdye-1
(A1) ez Zld) : (5.28)
— [1—(1—zd)]
or “ 1 "1 "Lz "L dzzEtt
— = — =) S+ (d-1) ——(c—1))y ——t—r
00 a2 (% + %) = o = @iz = @i(1-2)
dzzd 1 (1 — 28yt
PRV u-z) (5.29)

Equating the score functions to zero and solving for the unknown parameters in the
system of nonlinear equations numerically yields the maximum likelihood estimates of
the parameters. For the purpose of constructing confidence intervals for the parameters,

the observed information matrix J(14) is used due to the complex nature of the expected
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information matrix. The observed information matrix is given by

9% 9% 9%¢ foads 9%t
IX2  9Xdc  IXdd ONda  OII6

920 92 9% 9%
Oc? 0cdd  OcOa  OcOb

J(9) = — 2t 9% 9%
0d>  ddoa  0do6

o2 0%

9a%  Dadb
Jould
062

The elements of the observed information matrix are given in Appendix A2. When the
usual regularity conditions are satisfied and that the parameters are within the interior
of the parameter space, but not on the boundary, the distribution of \/5(19 — ) con-
verges to the multivariate normal distribution N5(0,17(1)), where I(9) is the expected
information matrix. The asymptotic behavior remains valid when (1) is replaced by the
observed information matrix evaluated at J ({9) The asymptotic multivariate normal dis-

tribution N5(0, J~!(1)) is a very useful tool for constructing an approximate 100(1—n)%

two-sided confidence intervals for the model parameters.

5.6 Monte Carlo Simulation

In this section, the properties of the maximum likelihood estimators for the parameters
of the NEGMIR distribution were examined using simulation. The AB and RMSE of the
parameters were observed. The quantile function given in equation (5.10) was used to gen-
erate random samples from the NEGMIR distribution. The simulation experiment was
repeated for N = 1,000 times each with sample sizes n = 25, 50, 75, 100, 200, 300, 600
and parameter values (A, «, 0, ¢, d) = (0.5, 0.1, 0.8, 0.4, 0.5) and (0.4, 0.5, 0.5, 2.5, 1.5).

Figure 5.3 and 5.4 respectively shows the AB and RMSE for the maximum likelihood esti-
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mators of (A, a, 0, ¢, d) = (0.5, 0.1, 0.8, 0.4, 0.5) for n = 25, 50, 75, 100, 200, 300, 600.
The AB for the estimators of the parameters fluctuates upward and downward as the
sample size increases. However, the RMSE for the estimators of the parameters showed

decreasing pattern as the sample size increases.
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Figure 5.3: AB for Estimators
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Figure 5.4: RMSE for Estimators

Figure 5.5 and 5.6 respectively shows the AB and RMSE for the maximum likelihood es-
timators of (A, a, 6, ¢, d) = (0.4, 0.5, 0.5, 2.5, 1.5) for n = 25, 50, 75, 100, 200, 300, 600.
The AB for the estimators again exhibit an upward and downward pattern. The RMSE

for the estimators decreases in general.
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Figure 5.5: AB for Estimators
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Figure 5.6: RMSE for Estimators

5.7 Applications

In this section, the applications of the NEGMIR distribution were demonstrated using
real data sets. The goodness-of-fit of the NEGMIR distribution was compared with that
of its sub-models and the new generalized inverse Weibull (NGIW) distribution. The

PDF of the NGIW distribution is given by

£@) = (a g (1)) (1) (50 (1= 2 ) T e s0, a0

where n > 0, 8 > 0 are the shape parameters and o > 0, 8 > 0 are scale parameters of

the distribution.

5.7.1 Aircraft Data

The data comprises failure times for the air conditioning system of an aircraft from a
random sample of 30 observations. The data set can be found in Linhart and Zucchini

(1986) and Khan and King (2016). The data set is given in Table 5.3.
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Table 5.3: Failure times data for the air conditioning system of an aircraft
23 261 87 7 120 14 62 47 225 71

246 21 42 20 5 12 120 11 3 14
71 11 14 11 16 90 1 16 52 95

The data set exhibit a bathtub failure rate since the TTT transform plot is first convex
below the 45 degrees line and then followed by a concave shape above it as shown in

Figure 5.7.
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Figure 5.7: TTT-transform plot for aircraft data

The maximum likelihood estimates for the parameters and their corresponding standard
errors in bracket are given in Table 5.4. Some of the parameters of the fitted distribution
were significant at the 5% significance level. This can be confirmed using the standard

error test.
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Table 5.4: Maximum likelihood estimates of parameters and standard errors

for aircraft data

Model ) a 0 ¢ d
NEGMIR 0.082 18.949 3.736 0.132 11.356
(0.018) (2.491) (0.851) (0.025) (1.309)
EGMIR 29.072 1.569 0.326 0.674
(12.559) (0.566) (0.133) (0.153)
NEGIR 47.262 10.089 0.897 0.003
(0.00016) (0.0058) (0.1642) (0.00254)
NEGIE 0.062 1.734 13.278 6.537
(0.016) (0.234) (14.581) (1.014)
a B 0 )
NGIW 7.312 0.628 0.944 150.959
(2.226) (0.150) (0.994) (158.932)

The NEGMIR distribution provides a better fit to the data set than its sub-models and

the NGIW distribution. From Table 5.5, the NEGMIR distribution has the highest log-

likelihood and the smallest K-S, W*, AIC, AICc, and BIC values compared to the other

fitted models.

Table 5.5: Log-likelihood, goodness-of-fit statistics and information criteria for

aircraft data

Model l AIC AlCc BIC K-S W+

NEGMIR -146.52 303.046 306.698 309.882 0.1490 0.0701
EGMIR -151.92 311.842 314.342 317.312 0.2336 0.1636
NEGIR -158.36 324.723 327.223 330.192 0.3111 0.5359
NEGIE -156.42 320.840 323.340 326.309 0.2816 0.5021
NGIW -148.50 304.993 307.493 310.462 0.2270 0.1538

The LRT was performed to compare the NEGMIR distribution with its sub-models. The

LRT statistics and their corresponding P-values in Table 5.6 revealed that the NEGMIR

distribution provides a good fit than its sub-models.
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Table 5.6: Likelihood ratio test statistic for aircraft data
Model Hypotheses LRT P-values

EGMIR Hy: AN=1vs Hy: Hy is false 10.797 0.001
NEGIR Hy:a=0vs Hy: Hy is false 23.677 < 0.001
NEGIE Hy:0=0vs Hy: Hy is false 19.794 < 0.001

The asymptotic variance-covariance matrix for the estimated parameters of the NEGMIR

distribution is given by

3.1913 x 107* 1.3474 x 1072 8.2089 x 10™* 6.003 x 10~° —8.4330 x 103
1.3474 x 1072 6.20503 1.2358 3.7437 x 1072 0.6235
J7h =] 8.2089 x 10~ 1.2358 0.7243 1.4159 x 1072 0.4879

6.003 x 1075 3.7437 x 1072 1.4159 x 1072 6.3063 x 10~* 1.0517 x 1072

—8.4330 x 1073 0.6235 0.4879 1.0517 x 1072 1.7138

Hence, the approximate 95% confidence interval for the parameters A, «, 0, ¢ and d are
[0.0468, 0.1168], [14.0665, 23.8311], [2.0681, 5.4043], [0.0827, 0.1811] and [8.7900, 13.9218]
respectively. From the estimated confidence intervals, it can be seen that none of them
contains zero. Thus, the estimated parameters of the NEGMIR distribution were all
significant at the 5% confidence interval. Figure 5.8 displays the empirical density and

the fitted densities of the distributions.
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Figure 5.8: Empirical and fitted densities plot of aircraft data

5.7.2 Precipitation Data

The data was first reported by Hinkley (1977) and consists of 30 observations of March

precipitation (in inches) in Minneapolis/ St Paul. The data set is given in Table 5.7.

Table 5.7: March precipitation in Minneapolis/St Paul
0.77 1.74 0.81 1.20 1.95 1.20 0.47 1.43 3.37 2.20

3.00 3.09 1.51 2.10 0.52 1.62 1.31 0.32 0.59 0.81
2.81 1.87 1.18 1.35 4.75 2.48 0.96 1.89 0.90 2.05

The precipitation data shows an increasing failure rate since the TTT transform plot is

concave above the 45 degrees line as shown in Figure 5.9.
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Figure 5.9: TTT-transform plot for precipitation data

The maximum likelihood estimates for the parameters of the fitted distributions and
their corresponding standard errors in brackets are shown in Table 5.8. The NEGMIR
distribution had all its parameters to be significant at the 5% significance level except
d which was significant at 10%. The parameters of the EGMIR, NEGIR and NEGIE
distributions were all significant. The parameters of the NGIW distribution were also

significant, except 6.
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Table 5.8: Maximum likelihood estimates of parameters and standard errors

for precipitation data

=

=

Model A a 0 ¢ d
NEGMIR 0.225 3.022 2.246 0.112 24.039
(0.102)  (0.515) (0.281) (0.052)  (12.399)
EGMIR 1.658 2.918 0.235 1.877
(0.138) (0.355) (0.051) (0.146)
NEGIR 0.087 1.305 0.219 10.813
(0.018) (0.181) (0.028) (1.555)
NEGIE 8.228 9.708 0.258 0.092
(4.261)  (2.387) (0.086) (0.022)
o p 0 U
NGIW 2.202 3.292 4,635 x 107 5.822
(0.448)  (1.087) (0.002) (0.014)

Table 5.9 revealed that the NEGMIR distribution provides a better fit to the precipitation

data compared to its sub-models and the NGIW distribution since it has the highest log-

likelihood, smallest K-S, W*, AIC, AICc and BIC values.

Table 5.9: Log-likelihood, goodness-of-fit statistics and information criteria for

precipitation data

Model l AIC AlCc BIC K-S W

NEGMIR -37.870 85.738 89.390 92.744 0.076 0.014
EGMIR -42.750 93.492 96.101 99.097 0.208 0.138
NEGIR -40.210 88.421 91.030 94.025 0.282 0.071
NEGIE -40.460 88.912 91.521 94.517 0.140 0.070
NGIW -39.66 87.326 89.935 92.931 0.125 0.066

The LRT was performed to compare the NEGMIR distribution with its sub-models. The

results as shown in Table 5.10 revealed the NEGMIR distribution provides a better fit to

the precipitation data than its sub-models.
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Table 5.10: Likelihood ratio test statistic for precipitation data

Model Hypotheses LRT P-values
EGMIR Hy: \A=1vs Hy: Hy is false 9.754 0.002
NEGIR Hy:a=0vs Hy: Hy is false 4.682 0.030
NEGIE Hy:0=0vs H: Hy is false 5.174 0.023

The estimated asymptotic variance-covariance matrix of the NEGMIR distribution for

the precipitation data is given by

0.010 0.003 —1.033 0.017 0.004
0.003 0.003 —0.307 —0.001 —0.003
J7h =1 -1.033 —0.307 153.725 0.287 0.099
0.017 —0.001 0.287 0.265 0.046

0.004 —0.003 0.099 0.046 0.079

The approximate 95% confidence interval for the parameters A, «, 6, ¢ and d are [0.025, 0.424],
2.012, 4.032], [1.696, 2.797], [0.011, 0.214] and [0, 48.340] respectively. The confidence
intervals for the parameters A, o,  and ¢ do not contain zero. However, the confidence
interval for the parameter d contains zero. Thus, all the estimated parameters of the
NEGMIR distribution were significant at the 5% significance level with the exception of
the parameter d. Figure 5.10 displays the empirical density and the fitted densities of

the distributions.
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Figure 5.10: Empirical and fitted densities plot for precipitation data

5.8 Summary

In this chapter, a five-parameter distribution called NEGMIR distribution was proposed.
The parameters of the model were estimated using the method of maximum likelihood
estimation and simulation studies were performed to examine the statistical properties
of the estimators. The applications of the model were demonstrated using real data sets
and the empirical results showed that the NEGMIR distribution provided a better fit to

the data compared to other candidate models as revealed by the various goodness-of-fit

tests and model selection criteria.
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CHAPTER 6

EXPONENTIATED GENERALIZED

HALF LOGISTIC BURR X

DISTRIBUTION

6.1 Introduction

The Burr X distribution is a member of the classical system of distributions developed

by Burr (1942). The CDF of the Burr X distribution is given by

Fz)=(1-e )8 >0, a>0,8>0, (6.1)

where o« > 0 and 3 > 0 are scale and shape parameters respectively. In this chapter, a
generalization of the Burr X distribution called the EGHL Burr X (EGHLBX) distribution

was developed and studied.

6.2 Generalized Half Logistic Burr X

Suppose the random variable X has the CDF defined in equation (6.1), then the CDF of

the EGHLBX distribution is given by
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where a > 0 is a scale parameter and A, 3, ¢, d > 0 are shape parameters. The corre-

sponding PDF is given by

cqA—1
2 2\ B d
AN Bedr Ae= (@) [1 — [1 — (1 — (1 — ¢ (ax) > ) ] ]

g(z) = . ,z>0,  (6.3)

{1+ ll - {1 - <1 _a _e_(w)ﬁyﬂA}

where

c—1

e (o)) [ -]

Lemma 6.1. The EGHLBX density function has a mixture representation of the form

g(l’) = 2Xced wijkmeX(x; «, ﬁm+1>7 x> 07 (64)

where fpx(z; a, Bma1) is the PDF of the Burr X distribution with parameters o and

Bms1 = F(m+1) and

(=1 PG 4+ 2)T (A + D)T(e(j + D)T(d(k + 1))
Ak (m+ DITAG + 1) — J)0(c(G + 1) — )Tk + 1) — m)’

Wijkm =

Proof. For a real non-integer n > 0, the following identities hold:

o (=D'T(m)
(1—2)1t= UEDE 2l < 1, (6.5)
=0
and
= (=DFT(n+k
(1+2) :Z M” )k <1, (6.6)
k=0
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Using equations (6.5) and (6.6), and the fact that 0 < (1 —e~(®®*)% < 1, the PDF of the

EGHLBX distribution can be written as

Wijkm [Bx (T3 @) Bmi1), © > 0.

Equation (6.4) revealed that the PDF of the EGHLBX distribution can be written as

a mixture of the Burr X distribution with different shape parameters. The PDF of the

EGHLBX distribution can be symmetric, left skewed, right skewed, J-shape, reversed

J-shape or unimodal with small and large values of skewness and kurtosis for different

parameter values. Plot of PDF of the EGHLBX density function is shown in Figure 6.1.
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Figure 6.1: EGHLBX density function for some parameter values

The survival function of the EGHLBX distribution is

2{1 —
S(z) =

1 (1 - (1 - @(axV)B)d] }

1+ {1 - [1 - (1 —(1— e(m)Z)B)T}A,
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and the hazard function is given by

2)0?Bedz A~ (@) [1 - [1 - (1 -(1- e(m)?j)d] ]
o

The hazard function of the EGHLBX distribution exhibit different shapes such as bath-

-1

T(x) = , x> 0. (6.8)

tub, monotonically increasing or monotonically decreasing for different combination of

the parameter values. Figure 6.2 displays the various shapes of the hazard function of

the EGHLBX distribution.
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Figure 6.2: Plots of the EGHLBX hazard function for some parameter values

6.3 Sub-models

The sub-models of the EGHLBX distribution were discussed in this section.

1. Exponentiated Generalized Standardized Half Logistic Burr X Distribu-

tion
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When A = 1, the EGHLBX distribution reduces to the exponentiated generalized

standardized half logistic Burr X (EGSHLBX) distribution with the following CDF":

1 (1 - (1 — @<ax>2>5>d] c

G(z) = %)

2 [1 _ (1 (- e(azﬁ)ﬁ)d}

for a, B, ¢, d >0 and x > 0.

. Exponentiated Half Logistic Burr X Distribution
When d = 1, the EGHLBX distribution reduces to the exponentiated half logistic

Burr X (EHLBX) distribution with the following CDF":

for a, 8, A\, ¢ >0 and x > 0.

. Half Logistic Burr X Distribution
When ¢ = d = 1, the EGHLBX distribution reduces to the half logistic Burr X

(HLBX) distribution with the following CDF:

1— [1 — (1 _ e—(w)?)ﬁr

ol 1+ [1- (- e—(ax)z)'gr\ 7

for a, B, A >0 and z > 0.

. Standardized Half Logistic Burr X Distribution
When A = ¢ = d = 1, the EGHLBX distribution reduces to the standardized half

logistic Burr X (SHLBX) distribution with the following CDEF:
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| eten)’
G(z) = 5 (_ i e(am))Q),B?

for a, 8, > 0 and = > 0.

Table 6.1 shows the summary of sub-models that can be derived from the EGHLBX

distribution

Table 6.1: Summary of sub-models from the EGHLBX distribution

Distribution A Q 15} c d
EGSHLBX 1 o B c d
EHLBX A « B c 1
HLBX A a o] 1 1
SHLBX 1 o 6] 1 1

6.4 Statistical Properties

In this section, the quantile function, moments, MGF | incomplete moment, mean de-
viation, median deviation, inequality measures, reliability measure, entropy and order

statistics were derived.

6.4.1 Quantile Function

The quantile function is a useful measure for describing the distribution of a random
variable. It plays a key role when simulating random numbers and can also be used to

compute the median, kurtosis and skewness of the distribution of a random variable.
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Lemma 6.2. The quantile function of the EGHLBX distribution for p € (0, 1) is

1 i)
Qx(p)za —log¢1—|1- 1—(1—<m€>> : (6.9)

Proof. By definition, the quantile function is given by
G(zy) =P(X <) =p.

Thus,

N
1 1—p\*
I—|1—-f1-(1-(—= 6.10
p a2 8 1+p (6.10)

Letting =, = Qx(p) in equation (6.10) and solving for Qx(p) gives

Qx(p) =~ |~logq 1~ |1~ 1—(1—(1%;)?

By substituting p = 0.25, 0.5 and 0.75, the first quartile, the median and the third quartile

-
Q=
@

of the EGHLBX distribution were obtained respectively. The closed form expression of
the quantile function makes it easy to simulate the EGHLBX random variable using the

relation
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6.4.2 Moments

Proposition 6.1. The r*" non-central moment of the EGHLBX distribution is given by

Wijikml
p, = 2\ feda™ ] > , (6.11)
; =0 k=0 m=0 =0 (I+1)2+!
where r = 1,2, ... and
] (—1)FHIFkFEmHD (4 2)D(A (i + 1) (e(f + 1)T(d(k + 1)T(B(m + 1))

ikt = RmIT (i + 1) — )T (e(G + 1) — BTk + 1) — m)D(B(m + 1) — 1)

Proof. By definition

= / x"2Xed Z Wijkm [Bx (T3 @) Bpog1)d
0 m=0

=0 j=0 k=0

= QACdZZZ Zwijkm /OO z" fpx(z; o, Bmy)de,
0

i=0 j=0 k=0 m=0

.

where fpx(z; @, Bmy1) = 20425m+1517€7(w)2(1 - ef(ax)Q)Bm“*l' But

Hence,

M; _ 4)\0&25061 Zw:jkml/ $T+16_(l+1)(ax)2dx.
0

i=0 j=0 k=0 m=0 1=0

Letting y = (I + 1)(ax)? implies that if z — 0, y — 0 and if z — oo, y — oo. Also,
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1 _1
r=——+ and dv = —~>—+dy. Hence,
a(l+1)2 20(141)2

'l o JNe'e) o] 8} 3 r
2 L B A
=4 ﬁcdzzzzg%’ml/ (a(z+1>5> " 20+ Dy

=0 j=0 k=0 m=0

[c o IENe ol e o BN o lNe o]

= 4\ Bcdz 0 ;Z lz:wwkml/ aw(gf N +1e—ydy
om

=0 j= 0 (=0

oo o o0 oo o 1
o333 YYD ”’}milf )

1=0 j=0 k=0 m=0 [=0

The values for the first six moments of the EGHLBX distribution for selected values of

the parameters are displayed in Table 6.2. The values for the first six moments were

obtained using numerical integration. The following parameter values were used for the

computation. [: A =13, a=02,=12,¢=89,d=23511: =47 o=

35, c=45 d=105,and IIl: A = 7.8, a = 2.5, B = 3.5, c = 2.5, d = 10.3.

Table 6.2: First six moments of EGHLBX distribution

r I 11 111
1 2.106170 1.445147 0.300764
L4y 4.556683 2.101419 0.091317
i3 10.113806 3.073818 0.027968
[hy 23.005018 4.521645 0.008636
15 53.577152 6.687550 0.002687
L 127.661348 9.942582 0.000842

6.4.3 Moment Generating Function

Proposition 6.2. The MGF of the EGHLBX distribution is
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Proof. By definition

o0 z?"z'f'

Note that the following series expansion e** = ) = was employed in the proof.

6.4.4 Incomplete Moment

Proposition 6.3. The " incomplete moment of the EGHLBX distribution is

o o o o o Wik V(5 + 1 (L 1) (a)?)

M, (z) = 2\Beda™ Z . > T : (6.13)

where r = 1,2,... and y(s, #) = [ u*'e “du is the lower incomplete gamma function.

Proof. Using the definition of incomplete moment of a random variable and the approach

for proving the moment of the EGHLBX distribution,

/ ur+1€—(l+l)(au)2du'
0

Letting y = (I 4+ 1)(cu)? implies that if u — 0, y — 0 and if u — z, y — (I + 1)(ax)?.

Also, u = ——+ and du = —“>—+dy. Thus,

I
a(l+1)2 20(141)2
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SO N (1+1) (a)? .
M, (z) = 4o Bed W —ec Yd
(=) ped2_ /0 2ar2(l1)501 Y

e e o e e W V(5 + 1L (L4 1) (ax)?)
= 2)\Beda ZZZZZ il R .

6.4.5 Mean and Median Deviations

Proposition 6.4. The mean deviation of a random variable X having the EGHLBX

distribution is

where 1 = //1 is the mean of X.

Proof. By definition

ia) = [ o = plgta)ds
_ / " (4 — o)e(x)d + / "o - we()ds
= 2uG(p) — Q/OM xg(z)dx

= 2uG () — 4\Beda™ Z Z Y% Wiikml ’Y((lail;;;)(@ﬂ) )

where [ zg(z)dx is simplified using the first incomplete moment.

Proposition 6.5. The median deviation of a random variable X having the EGHLBX

distribution is
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2 A A A W 31+ 1)(aM)?
52(1’):ﬂ—4)\50da_1z Z zykml’y(g ( §>( ) )7 (615)
i=0 j=0 k=0 m=0 1=0 (I+1)2
where M is the median of X.
Proof. By definition
2(o) = [ o = M gla)ds
0
M [e%S)
- / (M — 2)g(a)de + / (x — M)g(a)ds
0 M
M
=pu— 2/ zg(z)dx
0
00O 00 00 00 0O Wk §7 aM 2
:,u—4)\ﬁcdoflz Z zykmlfy(z ( 3)( ) )’
i=0 j=0 k=0 m=0 1=0 (I+1)>
where fOM xg(z)dz is simplified using the first incomplete moment.
6.4.6 Inequality Measures
Proposition 6.6. The Lorenz curve, Lg(z) is given by
2)\ﬁCdC( 0O 00 00 00 00 :}kml'y % l—{—l)(@ﬂf) )
Lo(r)= =) 3 Y Yy . (6.16)

1=0 j=0 k=0 m=0 [=0 l+1)

Proof. By definition

Lw) = [ ug(uydu

2)\ cda™ & Wiikmi 2> l+1)(0‘$))
T DD ” -

1=0 j=0 k=0 m=0 (=0 )
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Proposition 6.7. The Bonferroni curve, Bg(z) is given by

_ 2ABeda™ A o e — iw:jkml’ﬂ% (I+1)(ax)?)

Bale) = ; (6.17)
Proof. By definition
LG'(.CE)
B =
G

_ 2ABeda ™ A o e — i w:jkm17<%7 (I+1)(ax)?)
pG(z) i=0 j=0 k=0 m=0 1=0 (I + 1)% '
6.4.7 Entropy
In this subsection, the Rényi entropy of the random variable X was derived (Rényi, 1961).

Proposition 6.8. The Rényi entropy of a random variable X having the EGHLBX

distribution is

1 ANBed)’ a0t S X @ik (20 4+ )D(S(N — 1) + i + 1) (&L
IR((S) - 1-4 log ( 2) Z Z - S+1 . . :
i= j=0k=01=0m=0 (0 +m) 2 T20)I(6(A-1)+Xi—j+1)

(6.18)
where 6 # 1, 6 > 0 and

()RR (e — 1) + ¢ + DP(0(d — 1) + dk + DT(6(8 — 1) + Bl + 1)
Pikim = R mIT(8(c — 1) + ¢j —k + )T(0(d—1) +dk — I+ 1)DG(B — 1)+ Bl —m + 1)

Proof. The Rényi entropy is defined as

Ir(0) = 1i510g {/Ooogé(x)dx},é#l,5>0.
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Using the same method for expanding the density,

iiktm (20 + )T (6N — 1) + Xi + )2 _ >
3(p) = (ANBaled) Pijkl (6+m)(ax)?
g'(@) = (Afased) ) _ ) m;) TROTEA— 1)+ hi—j+1)

Hence,

o o o @ik (26 + DT (6N — 1) + Ai + 1)
T2OTEA -1+ xi—j+1)

Letting y = (6 +m)(ax)?, when x — 0, y — 0 and when z — 0o, y — oo. In addition,

1 —1

1 1

r=—2—1 and dv = —~2—. Thus,
a(6+m)2 2a(6+m)2

1 o= m o o @ikt (26 + )T (S(A = 1) + i + 1)

log {(‘Mﬁ@z“l)‘S ' L26)D(6(A = 1) + Xi — j +1)

00071 SN A o= i CijkimI (20 + )T(6(A — 1) + i + 1)I(2EL)
S+1

2 = =0 k=0 1—0 m=0 (6 +m) 2 I'(26)T'(6(A —1) +Xi —j+1)

The Rényi entropy tends to Shannon entropy as 6 — 1.

6.4.8 Stress-Strength Reliability

Proposition 6.9. If X; is the strength of a component and X5 is the stress, such that

both follow the EGHLBX distribution with the same parameters, then the stress-strength
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reliability is given by

I'(n+1
R=1-2)\3cd > CijkzmnM, (6.19)
i j n=0

where

Cijklmn -

(1)t 4 3)(A( + 2))T(e(j + 1)) (d(k +1))D(B( + 1))
IEmMINIT(N + 2) — ))D(c(j + 1) — k)T (d(k + 1) — OT(B( + 1) — m)

Proof. By definition

R = IP)(XQ < Xl)
= /000 g(z)G(x)dx
—1- /0 " o(0)S(a)dz

oo xS 0

[o¢]
_ 2
—1— 4)\50d Cijklmna2(n+1)/ x2n+1€ m(ax) dr.
i=0 j=0 k=0 (=0 m=0 n=0 0

Letting y = m(ax)?, when r — 0,y — 0 and when * — oo, y — oo. In addition,

M\»—A

T = 1andalx—

m2 2am 2

dy Hence,

o0 [e.9] [e.9] o0 o0 o0 n

—1—4>\Bcd;;;;§:{)§%mmnaz(nﬂ/0 me—ydy

oo xS xS 0 0

C(n + 1
=1- QABCd Z Czyklmn )
=0

mnt
=0 j=0 k=0 m=0 n=0

6.4.9 Order Statistics

In this subsection, the order statistics of EGHLBX distribution was derived. Suppose

X1, Xo, ..., X, is random sample from EGHLBX and X;., < X5., < ... < X,,., are
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the corresponding order statistics. The PDF, g,. ,(z), of the p™ order statistic X,., is

) = o S0 (") GOP ). 620

Substituting the CDF and PDF of the EGHLBX distribution into equation (6.20) and

using similar concept for expanding the density gives

0o oo oo oo n—ppts—1 q+v+w+t+s+u

' gowtsu
gpn () =2Xed Y DN DN D P ,uww, ESIrE ?)(q ; _S)!fBX(a:; @, Bet1),

q=0 v=0 w=0 t=0 s=0 u=0

(6.21)

where fpx(z; @, Bip1) = 2028 1ze~ @) (1 — e=(@2)*)Bri1-1 g the PDF of the Burr X

distribution with parameters a and ;47 = B(t + 1) and

Fp+s+q+1I'(p+s)L(Ag+u+1)I(c(v+1))I(d(w +1))
Fp+s+ 1Dl (p+s—u)lANg+u+1)—v)(c(v+1)—w)(dw+1)—1t)

Waevwtsu =

It can be seen that the density of the p!* order statistic is a weighted function of the
density of the Burr X distribution with different shape parameters. Equation (6.21) can
be used to obtain several structural properties of X,.,. For instance, the ' moment of

the p' order statistic.

Proposition 6.10. The r** non-central moment of the p** order statistic is given by

M;(p:n) —

[c. o e Ol e OB e e

o nopprsl 1)sHatvtwtttutan () 4 s 4 I(Z+1
D DN 0 ¢+ a5 +

it um0 im0 ez a0 sldtulvlwltl(z + Di(p = 1)!(n = p— 5)(p+ 5)!(z + 1)

I

(6.22)

121



where r = 1,2, ... and

o _ Fip+s)I'(AMg+u+1)'(c(v+1)I'(d(w+ 1))I(B(t + 1))
wtsir = pp 45 —w)T(ANg+u+1) —o)D(e(v +1) — w)D(d(w + 1) = )T(B(t+ 1) — 2)°

Proof. By definition

N;(P:n) — /0 xrgp;n(x)da:

0o oo oo 00 n—pp+s—1 q+v+w+t+s+u

= /0 7"2)\(:qu0 >

v=
q=0 v=0 w=0 t=

t=0 s=0 wu=0
s—

0
oo oo n—ppts—1 q+v+w+t+s+’u

Z l|||l —
« = = slglulvlwl( t+Dlp—1ln—p—s

U=

Using the same approach for deriving the non-central moment,

1
RN A N S i )S+q+’u+w+t+u+zn!(p+ s 4+ Q)!w;thquF(% + 1)

1P = 2)Beda ZZZZZZ Z

n'quwtsu
; d
U)Z%ZZ slg 'u'v'w' t+ 1) ( 1) ( — 8)!fBX(337 «, 5t+1) x

nlw + >
il I / z" fpx(x; o, Brg1)dx
0

=0 4=0 v=0 w=0 1=0 5=0 u=0 S 'u‘v'w't'(z+1)( —Dl(n—p—s)(p+s)(z+1)

6.5 Parameter Estimation

In this section, the unknown parameters of the EGHLBX distribution were estimated
using the method of maximum likelihood estimation. Let X;, X, ..., X,, be a random
sample of size n from the EGHLBX distribution. Let z; = e(@@)? and zi=1-— e_(a’”i)Q,

then the log-likelihood function is given by

¢ = nlog(4cda®BA) + (B — 1) Zlog Zi) -1) Zlog(l - Zf) +(c—1) Zlog[l —(1— Ziﬁ)dH-

A—l)znjlog[l—(l—(l—z) —2210g1+(1—(1—(1—z +Zlog:cl Z 2.
=1

=1 i=1

(6.23)
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Differentiating the log-likelihood function with respect to the parameters A, ¢, d, 8 and

a, the score functions are obtained as:

O n N (1 Py S 2= (= (= 2) )P logll — (1 — (1~ 2))]
a/\—)\+;1g[1 (1—(1-2")%)1 ; Tl 0—G PP ,
(6.24)
O S loglt— (1= )% — (A— 1) (= (=2 loglt — (- 5)]
e i=1 ' i=1 1- (1 - (1 - Zﬁ)d)c
L2M (1= (1= )1 = (1= (1= )P ogl — (1 — 7))
2 TH = (- (- )0 | (6:25)
ol " " (1= 2 10e(1 — 2P
55 =7 —l—ZZlog(l—z’B)—(c—l);( 1 )(1 g;@)d )
- c(1—20)(1 - (1 = 2/))log(1 - 27
" 1); L= (1—(1-2))%)e
"oNe(1— 21— (1= 2P)He 1 — (1 = (1 = 27)DH)PTlog(1 — 2P)
2 T [I— (1= (1= )P -0
H n < L 27 log(;) e dE (12 og(z)
85_6+;10g(22) (d 1); 1_2%3 ( 1); 1_(1_5%3)d
" edz? (1 - 20) (1 — (1= 27)h)e L og(%)
Ana (- )y "
S 2)edz] (1 - 7)1 (1 = (1= 2)) e 1 = (1= (1 = 2)) " log(%)
2 L= (1— (1= ) - 02
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ol  2n = 9 " 2aa?z; " 201595222-25_1
—— = 201> -1 S d— fbluted et lad N
TR ICE RN O S )Y v

=0
i=1 ¢ i=1 1 - Z

- 2aﬁdx%zi,€f_1(l - Ef)dfl - 2aﬁcdw3ziéiﬁ_l(l - Ef)d*1(1 —(1- Ef)d)“l
c=1)) —A=1)

= 1-a-g) = 1= (1= (=2
z”: dopedriziz] (- 2)" 1 - (1= 2D - (1= (1= Z)HPT

7 7

1+ [1— (1= (1=z2")d)ep

i

(6.28)

i=1

The maximum likelihood estimates for the parameters are obtained by equating the score
functions to zero and solving the system of nonlinear equations numerically. To be able
to construct confidence intervals for the parameters, the observed information matrix
J(9) was used because of the complex nature of the expected information matrix. The

observed information matrix for the parameters is given by

e 9% 9% 9 9
X2 DXOc 9xdd OXOB OADa

20 92 9 9%
Oc? Ocdd  OcOB  Ocda

J(rﬁ) = — 2% %0 20
8d®  9doB  9dda

o2 ou

082 9Boa
%
Oa?

The elements of the observed information matrix are given in Appendix A3. When the
usual regularity condition holds and the parameters are within the interior of the param-
eter space, that is not on the boundary, the distribution of \/ﬁ({ﬁ? — 1) converges to the
multivariate normal distribution N5(0,17'(1)), where I(9) is the expected information
matrix. The asymptotic behavior is still valid when I(1) is replaced by the observed
information matrix estimated at J(«9). The asymptotic multivariate normal distribution

N5(0, J~1(¥9)) is an important distribution for constructing an approximate 100(1 — )%

two-sided confidence intervals for the model parameters.
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6.6 Monte Carlo Simulation

This section presents the results of simulation experiment used to examine properties
of the maximum likelihood estimator for the parameters of the EGHLBX distribution.
Random samples for the simulation were generated using the quantile function in equa-
tion (6.9). The properties of the estimators were investigated by computing AB and
RMSE for each of the parameters. The simulation experiment was replicated for N =
1,000 times each with sample sizes n = 25, 50, 75, 100, 200, 300, 600 and parameter val-
ues (A, a, B, ¢, d) = (0.8, 0.6, 0.2, 1.5, 3.5) and (2.5, 4.6, 1.2, 3.5, 0.5). Figure 6.3 and
6.4 respectively displays the AB and RMSE for the maximum likelihood estimators of
(A, «, 0, ¢, d) = (0.8, 0.6, 0.2, 1.5, 3.5) for n = 25, 50, 75, 100, 200, 300, 600. The AB
for the estimators fluctuate upward and downward while the RMSE for the estimators
generally decreases as the sample size increases.
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Figure 6.3: AB for Estimators
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Figure 6.4: RMSE for Estimators

Figure 6.5 and 6.6 respectively displays the AB and RMSE for the maximum likelihood es-
timators of (A, «, 3, ¢, d) = (2.5, 4.6, 1.2, 3.5, 0.5) for n = 25, 50, 75, 100, 200, 300, 600.
Both the AB and RMSE for the estimators of the parameters fluctuates upward and

downward as the sample size increases.
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6.7 Application

In this section, the application of the EGHLBX distribution was demonstrated using real
data set. The goodness-of-fit of the EGHLBX distribution was compared with that of
its sub-models and the Weibull-Burr XII (WBXII) distribution. The data were obtained
from Birnbaum and Saunders (1969) and consists of the fatigue time of 101 6061-T6
aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per

second. Table 6.3 displays the data set.

Table 6.3: Fatigue time of 101 6061-T6 aluminum coupons
70 90 96 97 99 100 103 104 104 105 107 108 108 108 109

109 112 112 113 114 114 114 116 119 120 120 120 121 121 123
124 124 124 124 124 128 128 129 129 130 130 130 131 131 131
131 131 132 132 132 133 134 134 134 134 134 136 136 137 138
138 138 139 139 141 141 142 142 142 142 142 142 144 144 145
146 148 148 149 151 151 152 155 156 157 157 157 157 158 159
162 163 163 164 166 166 168 170 174 196 212
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The PDF of the WBXII distribution is given by

k,—cc—l 1+ gck_lﬂ—l e
g(r) = afeks™ e |( x(jn e e >0, (6.29)

where «, s > 0 are scale parameters and 3, ¢, k > 0 are shape parameters. The data
set has an increasing failure rate since the TTT transform plot is concave above the 45

degrees line as displayed in Figure 6.7.
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Figure 6.7: TTT-transform plot for aluminum coupons data

Table 6.4 shows the maximum likelihood estimates for the parameters of the fitted dis-
tribution with their corresponding standard errors in bracket. The parameters of the

EGHLBX distribution were all significant at the 5% significance level.
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Table 6.4: Maximum likelihood estimates of parameters and standard errors
for aluminum data

Model A Qa 15} ¢ d
EGHLBX 0.882 0.012 9.448 1.168 1.994
(0.332) (0.001) (0.042) (0.467) (0.119)
EGSHLBX 0.003 2.198 1.767 122.752
(2.206 x 107%) (1.538 x 1071) (9.060 x 10~2) (1.063 x 10~)
EHLBX 24.734 0.006 2.173 1.673
(1.461 x 1073) (3.523 x 10™4) (9.794 x 1072) (1.275 x 107})
HLBX 15.583 0.005 2.356
(1.091 x 1073) (3.328 x 107%) (2.561 x 1071)
SHLBX 0.023 1200.502
(1.773 x 1074) (3.178 x 10719)
a B 8 k ¢
WBXII 34.698 0.672 145.356 0.011 13.453
(2.078) (0.225) (9.697) (0.014) (3.878)

The EGHLBX distribution provides a better fit to the aluminum coupons data than its
sub-models and the WBXII distribution. Table 6.5 revealed that the EGHLBX distribu-
tion has the highest log-likelihood and the smallest K-S, W*, AIC, AICc, and BIC values

compared to the other fitted models.

Table 6.5: Log-likelihood, goodness-of-fit statistics and information criteria for
aluminum data

Model 14 AIC AlCc BIC K-S W
EGHLBX -455.790 921.575  922.206 934.650 0.050 0.038
EGSHLBX -458.540 925.087 925.504 935.547 0.078 0.083

EHLBX -459.400 926.795 927.212 937.255 0.085 0.111
HLBX -467.580 941.153 941.401 948.999 0.150 0.075
SHLBX -627.260 1258.517  1258.639  1263.747  0.381 0.625
WBXII -455.960 921.919 922.551 934.995 0.060 0.046

The LRT was performed to compare the EGHLBX distribution with its sub-models. Ta-
ble 6.6 showed that the EGHLBX distribution provides a good fit to the data than its

sub-models.
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Table 6.6: Likelihood ratio test statistic for

aluminum data

Model Hypotheses LRT P-values
EGSHLBX Hy: A=1vs Hy: Hy is false 5.512 0.019
EHLBX Hy:d=1vs Hy: Hy is false 7.220 0.007
HLBX Hy:c=d=1vs Hy: Hy is false 23.579 < 0.001
SHLBX Hy: AN=c=d=1vs Hy : Hy is false 342.940 < 0.001

The asymptotic variance-covariance matrix for the estimated parameters of the EGHLBX

distribution is given

0.110

0.039

by

—4.787 x 107 2.203 x 10~°
—1.056 x 1072 5.387 x 107°

—0.128

—4.787 x 107* —1.056 x 102

6.338 x 107*  1.944 x 102

—1.680 x 107* —3.512 x 1073

—0.128

5.387 x 107° 6.338 x 107* —1.680 x 10~*

1.757 x 1073 1.944 x 1072 —3.512 x 1073

0.218

—0.043

—0.043

0.039

0.014

Thus, the approximate 95% confidence interval for the parameters A, a, 3, ¢ and d are

[0.231, 1.533], [0.009, 0.015], [9.366, 9.530], [0.253, 2.082] and [1.761, 2.227] respectively.

The estimated confidence intervals for all the parameters do not contain zero.

This

implies that the estimated parameters of the EGHLBX distribution were all significant

at the 5% significance level. The plots of the empirical density and fitted densities of the

fitted distributions are shown in Figure 6.8.
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Figure 6.8: Empirical and fitted densities plot of aluminum data

6.8 Summary

In this chapter, the EGHLBX distribution was developed and its statistical properties
were derived. The method of maximum likelihood was employed to estimate the param-
eters of the model and simulation studies were performed to examine the behavior of
the estimators for the parameters. Application of the proposed distribution was demon-

strated to show its usefulness using real data set. The results revealed that the new model

provides a good fit to the data.
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CHAPTER 7

EXPONENTIATED GENERALIZED

POWER SERIES FAMILY OF

DISTRIBUTIONS

7.1 Introduction

This chapter presents a new class of distributions called the EG power series (PS) (EGPS)
family of distributions by compounding the EG class of distributions and the PS family

of distributions.

7.2 Generalized Power Series Family

Let N represent the number of independent subsystems of a system functioning at a given
time. Suppose that N has zero truncated power series distribution with probability mass

function given by

o n=1,2,..., (7.1)

where a, >0, C(A) = > a,A", and A € (0, ) (s can be 00) is chosen such that C'(\)
is finite and its first, second and third derivatives are defined and denoted by C'(-),C" (")
and C"'(-). The PS family includes: binomial, Poisson, geometric and logarithmic distri-
butions. Detailed information on the PS family can be found in Noack (1950). Suppose

the failure time of each subsystem follows the EG class of distributions with CDF given
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Heglw) = (1= (1- G(;9))") z € R, (7.2)

where ¢, d > 0 are extra shape parameters, G(x;)) is the baseline CDF depending on
parameter 1 and g(z; ) is its corresponding density function. For simplicity, G(z; ) is
written as G(z). If T} is the failure time of the j* subsystem and X represents the time to
failure of the first out of the NV operating subsystems such that X = min(73, Ts, ..., Ty).

Then the conditional CDF of X given N is

F(z|N=n)=1-P(X > z|N)
:1—]ID(T1>{E,T2>$,...,TN>$)
=1-(1-PT <x)"

—1- [1 - (1 (- G(x))d>cr. (7.3)

Hence, the marginal CDF of X is given by

0= 5 (1= [i- (-u-c@)])
RdC [1- <1_(1_G(I))d)c]),xeR. -

The PDF is given by

£(2) = Aed(z)(1 - G@) (1 — (1 Gla)) 1= (l-(-u-a@r)]) . (75)
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Table 7.1 summarizes some particular cases of zero truncated PS distributions.

Table 7.1: Useful quantities for some power series distributions

Distribution | a, C(N) C'(\) C"(N) c"(\) s
Geometric 1 A1 =Nt 1-=XN% | 20=XN)3 | 6(1—N)"1 1
Poisson = et —1 e e e 00
Logarithmic | n™' | —log(1—X) | (1—=X\)"! (1—X)2 2(1—\)3 1
Binomial (M) | A+ =1 | g | gk | mEim | oo

The survival function and the hazard rate function of the EGPS class of distributions are

respectively given by

. c(r[i-(1-0-c@)))) -

and

Remark 1. If X = max(Ty, Ty, ..., Ty), then the CDF of the EGPS class is given by

F(z) = . (7.8)

Remark 2. If C'(\) = A, then the EG class is a special case of the EGPS class.

Proposition 7.1. The EG class is a limiting case of the EGPS class when A\ — 0.
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Proof.

lim F(z)=1- lim ‘ <)\ [1 _ <1 —a- G@))d)c})

A0 A0 C(N)
S a1 - (1- (1 -Gy ]
=1- AILH}(J : [ Z;'g_l Ap A" ) ] '

Applying L’Hopital’s rule,

n

lim F(z)=1— lim D [1 - (1 - (1= G(:c))d)c}

A—0 A—0 Zzozl na, A"t
Caf(i-a-c@)) ]+ e i- (1-0-c@)) ]
=1- Allno ar+ > o, na A\

Proposition 7.2. The exponentiated PS class is a limiting special case of the EGPS

class when d — 1.

Proof.

Lemma 7.1. The EGPS class density has a linear representation of the form

oo n—1

f(z) =cd Z ZwijkEN [g(x)G(x)k} , (7.9)

j, k=0 i=0

where En(-) is the expectation with respect to the random variable N and
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(=)™ (n + DI (c(i + 1)T(d(j +1))
AT (n — O)D(c(i + 1) — DA + 1) — k)’

Wijk =

Proof. The EGPS PDF can be written as

n—1

f(z) = ed Y B(N = n)ng()(1 = G(x)"" (1= (1= G)!) " 1= (1= (1= G(2))")]
For a real non-integer n > 0, a series representation for (1 — 2)7"!, for |2| < 1 is
(1—2)11 = f: E_l)—r(”)z (7.10)

Using the series expansion in equation (7.10) thrice and the fact that 0 <1 — G(z) <1,

yields

co n—1

flz)=cd Z ZwijkEN [2(2)G(2)"] .

4, k=0 i=0

The linear representation of the density function makes it easy to study the statistical
properties of the EGPS class. Alternatively, it can be written in terms of the exp-G

density function as

co n—1

flz)=cd Z Zw;“jkEN [Vk+1], (7.11)

4, k=0 i=0

w.

where wj; = ﬁ and o1 = (k+1)g(z)G(x)k is the exp-G density with power param-

eter k + 1.
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7.3 Sub-Families

In this section, a number of sub-families of the EGPS family were discussed. These
include: EG Poisson (EGP), EG binomial (EGB), EG geometric (EGG) and EG loga-

rithmic (EGL) classes of distributions.

7.3.1 Exponentiated Generalized Poisson Class

The zero truncated Poisson distribution is a special case of PS distributions with a,, = 5

and C(\) = e* — 1, (A > 0). Using the CDF in equation (7.4), the CDF and PDF of the

EGP class of distributions are respectively given by

o — eA[l—(l—(l—G(m))d)c]
F(z) = 12
() S 7 (7.12)

and

c

Al-(1-0-6@)7)]
fl) = Aedg(x)(1 = G@))* (1 = (1 = Gla)") T ———

,zeR. (7.13)

7.3.2 Exponentiated Generalized Binomial Class

The zero truncated binomial distribution is a special case of PS distributions with a,, =
(™) and C(A) = (1 +X)™ — 1,(A > 0), where m (n < m) is the number of replicas and is
a positive integer. The CDF and PDF of the EGB class of distributions are respectively
given by

[1+A[1-(1-(1-G@))]]" -1

Fl)=1- (1+Am—1 ’

(7.14)
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and

-1

o [LFA[L= (1= (1= G)H)T]]"

f(z) = mAedg(x)(1 = G(2) (1 = (1 - G(x))") T+ N7 —1)

(7.15)

The EGP class is a limiting case of the EGB class if mA — 6 > 0, when m — oo.

7.3.3 Exponentiated Generalized Geometric Class

The zero truncated geometric distribution is a special case of PS distributions with a,, = 1

and C(\) = 25, (0 < A < 1). The CDF and PDF of the EGG class of distributions are

respectively given by
(1-N[1-(1-(1-G())]

S Y (e (e el D b 710

and

(1 — X)edg(x)(1 — G(x))d—l(l —(1— G(m))d)c—l
=ML = (1= (=G

flx) = , z€R. (7.17)

7.3.4 Exponentiated Generalized Logarithmic Class

The zero truncated logarithmic distribution is another special case of the PS distributions
with a, = 2 and C(\) = —log(1 — ), (0 < A < 1). The CDF and PDF of the EGL class
are respectively given by

_ log [1=A[1—(1—(1-G(x)Y)]]

Fle)=1 log(1 —\) ’

(7.18)
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and

o) = Acdelr)( — G (1= (1= Gy
log(1— N VL — (1 - (1 - G(2))%)] - 1]

, z€R. (7.19)

7.4 Statistical Properties

In this section, the statistical properties of the EGPS class of distributions were discussed.
These include: the quantile function, moments, MGF, incomplete moment, mean residual

life, stochastic ordering property, reliability, Shannon entropy and order statistics.

7.4.1 Quantile function

The quantile function is another way of describing the distribution of a random variable.
It plays a key role when simulating random samples from a distribution and it provides

an alternative means for describing the shapes of a distribution.

Proposition 7.3. The quantile function of the EGPS class is given by

C1((1 - u>c<A>>)c] NS (7.20)

where u € [0, 1] and C~!(-) is the inverse of C(-).

Proof. By definition, the quantile function is given by F(z,) = P(X < x,) = u. Thus,
setting Qp(u) = x, in equation (7.4) and solving for Qr(u) yields the quantile function

of the EGPS class.

The median of the EGPS class is obtained by substituting u = 0.5 into equation (7.20).
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7.4.2 Moments

The moments of a random variable plays an important role in statistical analysis. For
instance, it is used in the computation of the variance, skewness and kurtosis of the
distribution of the random variable. This subsection, presents the moments of the EGPS

family.

Proposition 7.4. The 7" non-central moment of the EGPS class is given by

u}:ME:E:Mm&{[Zﬂg@G@fmyr:L2w“. (7.21)

Proof. By definition, the r** non-central moment is given by

MZ/mﬂﬂﬂm-

—00

Substituting the linear representation of the density function into the definition and

simplifying yields

00 oo n—1

[, = / x"cd Z sz'jkEN [g(2)G(2)"] dx
- 4, k=0 i=0
oo n—1 00
=cd Z Zwijk/ " Eyn [g(:v)G(a:)k} dx
J, k=0 i=0 o
oo n—1 00
=cd Z Zw’jk En {/ 2"g(2)G(z) dx | .
j, k=0 =0 —o0

Alternatively, the moments can be expressed in terms of the quantile function of the

baseline. Let G(x) = u, then
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= cd i Z%k Ex { / Qalu) kdu] . (7.22)

7, k=0 i=0

7.4.3 Moment Generating Function

The MGF are special functions that can be used to compute the moments of a random

variable. In this subsection, the MGF of the EGPS class was derived.

Proposition 7.5. The MGF of EGPS class of distribution is given by

i ni wijk By { /_ " etg(a)Gla) | (7.23)

7, k=0 1=0 o0

Proof. By definition

Mxt) = [ e fa)da
=cd i niwijk Ex { / Z emg(x)G(x)kdx] :

4, k=0 i=0

In terms of the quantile function of the baseline, the MGF is given by

oo n—1 1
Mx(t) = cd Z wijk BN [/ etQG(“)ukdu} . (7.24)
: , 0

7.4.4 Incomplete Moment

The incomplete moment plays a useful role in estimating the mean deviation, median
deviation, inequality measures and mean residual life of the distribution of a random

variable.
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Proposition 7.6. The r*" incomplete moment of the EGPS class of distributions is given

M, (t) =cd Z Zwijk En {/_t 2"g(2)G () rdr |, r=1,2,.... (7.25)

oo n—1 t
=cd Z Zwijk En {/ z"g(2)G () dr| .
j, k=0 i=0 —©

Letting u = G(x), the incomplete moment can be expressed in terms of the baseline

quantile function as

o n

1
= Z szjk EN
0

a(t)
/0 Qg(u)Tukdu] : (7.26)

Using the power series expansion of the quantile function of the baseline as Qg(u) =
S oo enu”, where e, (h =0, 1, ...) are suitably chosen real numbers that depend on the

parameters of the G(z) distribution,

0o r 00
r__ h _ " h
u)) = E epu | = E e pt’s
h=0 h=0

I

where e;’h = (heo) ' 20 [2(r 4+ 1) — h]eze;,h_z, €. = (eo)" and r(r > 1) is a positive

integer. The incomplete moment can now be expressed as
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oo n—l1 [ G(t)
Mr(t) = cd Z Zwijk EN Z e,,,,h Uk+hdU]
§, k=0 i=0 | h=0 0
oo n—1 oo 7 k+h+1
€ hG<t)
«d D 2wk By k+h+1
j, k=0 i=0 | h=0

7.4.5 Residual and Mean Residual Life

A system’s residual lifetime when it is still operating at time ¢, is X; = X —¢|X > ¢
which has the PDF
()
1—F(t)
PV O el Gl )
= Acdg(z)(1 = G(2))" (1 = (1 = G(x)))°

c(Afi-(1-a-cwen)])

Proposition 7.7. The mean residual life of X, is given by

flx;t) =

co n—1 0o
1 €hG(t>k+h+1
t)=———|p—cd > Y wpkE UASASVRRSSSE | QS 7.27
m(t) 1—F@) " thmﬂw” Y& kbt (7.27)

where p = u’l is the mean and e, (h = 0, 1, ...) are suitably chosen real numbers that

depend on the parameters of the G(z) distribution.

Proof. The mean residual life is defined as

Xz — x)dx |- j xf(x)dx
m(t):E[X—t|X>t]:ft (1—2{t() )d -t 1f_°OF(J;)() —t. (7.28)

The integral ffoo xf(x)dzr is the first incomplete moment. Thus, substituting the first

incomplete moment into equation (7.28) yields the mean residual life.
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7.4.6 Stochastic Ordering Property

Stochastic ordering is the common way of showing ordering mechanism in lifetime dis-

tribution. A random variable X; is said to be greater than a random variable X5 in

likelihood ratio order if ;ﬁl Eg is an increasing function of x.
2

Proposition 7.8. Let X; ~ EGPS(z;¢,d, \,¢) and Xy ~ EG(z;¢,d,v), then X; is

greater than X in likelihood ratio order (X <;. Xs3) provided A > 0.

Proof.

o) AC ()\ [1 _ (1 (- G(a:))d>c])
fxz(x) B OO\) '

Thus,

ile_(x) — —)\QCdg(a:)(l _ G(az))d_l(l _ (1 _ G(x))d)c—lcu <)\ [1 B (1 B (1 B G(x))d) }) _

dx fx,(z) C(N)

fX1 (z)
fX2 (Jl)

d fx, (@)

a5 s (@) < 0 for all z > 0,

Since is a decreasing function provided A > 0.

From proposition 7.8, it is considered that the hazard rate order, the usual stochastic

order and the mean residual life order between X; and X5 hold.

7.4.7 Stress-Strength Reliability

Reliability plays a useful role in the analysis of stress-strength of models. If X; is the
strength of a component and X5 is the stress, then the component fails when X; < Xo.

The estimate of the stress-strength reliability of the component R is P(Xs < Xj).
Proposition 7.9. If X; ~ EGPS(z;¢,d, \,¢) and Xy ~ EGPS(z;¢,d, A\, ), then the

144



stress-strength reliability is given by

R=1- i ng‘jkEN /Oluk0<)\ [1— <1—(1_U)d> Ddu . (7.29)

3, k=0 i=0

Proof. The stress-strength reliability is defined as

R = flz)F(x)dx

- /_Z F(@)S(x)da

=1- > ) wyby { / Z g(x)G(x)’“S(x)dx} :

§,k=0 i=0

Letting G(x) = u yields

— i nz_lwijkEN /1ukC<>\ [1 — (1 —(1 —U)d> Ddu
j, k=0 i=0 0
7.4.8 Shannon Entropy

The entropy of a random variable is a measure of variation or uncertainty of the random
variable. The Shannon entropy of a random variable X with PDF f(x) is given by

nx = E{—log f(x)} (Shannon, 1948).

Proposition 7.10. The Shannon entropy of the EGPS class random variable is given by

nx = —log (CC’?;)) —Eflogg(X)|+(1—=d)oy +(1—¢c)de — E [logCl (A1 — Hea(X)])|,

(7.30)
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where H. 4(x) is the CDF of the EG class,

oo n—l1 00 1
= 2w | 2
and
5 ; oo n-—1 - 0o 0 (_l)s(dSQ)
2= el D D |20 i gt

Proof. By definition

o = = log (i ) = Elloge(X)] + (1~ )F [log(1 - GLY))

+ (1= c)E [log(l — (1 - G(X))] - E [log O (A1 — qu(X)])} . (7.31)

Let 6, = Elog(1 —G(X))] and 6 = E [log(1 — (1 —G(X))?)]. Using the identity

log(l1—2)=—3"2, %, 2| < 1, yields

log(1 — G(z)) = = Y G(;’)"’
10g(1 _ (1 _ G($))d) _ ZZ (_1)5(;)G(1‘)s'

Putting G(z) = u and taking the expectation with respect to the random variable X

give the values of §; and d, after some algebraic manipulation.

146



7.4.9 Order Statistics

Let X1, Xo, ..., X,, be a random sample of size n from EGPS, then the PDF of the p

order statistic, say X,.,, is given by

1

By F@I T L= F@I"™" f(z),

fon(2) =

where F'(z) and f(x) are the CDF and PDF of the EGPS class of distributions respec-

tively, and B(,-) is the beta function. Thus,

O (-0-eor) )]
fon(2) = = 1)!(n—p)!f<x) 1 - C\) X
c(Ai-(1-a-an)N] "
p-Gnan )T,

The largest and smallest order statistics play an important role in statistical analysis. For
instance, the difference between the largest order statistic and the smallest order statistic

is the range. Hence, the PDF of the largest order statistic, fx,,, (x) is given by
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7.5 Parameter Estimation

Different methods for parameter estimation exist in literature but the maximum likelihood
approach is the most commonly used. The maximum likelihood estimators have several
desirable properties and can be used for constructing confidence intervals. Thus, the
maximum likelihood method was employed for the estimation of the parameters of the
EGPS distribution. Let X, X5, ..., X,, be a random sample of size n from the EGPS

distribution. Let z; = 1 — G(z;; 1), then the log-likelihood is given by

¢ =nlog(Aed) + Zlog glxs ¥) +(d—1) Zlog(zi) + Zlog c Aa-0=-2)7)+

=1

(c—1)) log(l - 2) — nlog C(\). (7.33)

=1

Taking the partial derivative of the log-likelihood function with respect to the parameters

yields the following score functions:

o n nC'(N) <
Ao T

A1 = 29 log(l — 2HC” ()\ [1— (1_zd)0])

—:E—FZlog 1—2 Z C(/\[l—(l—zfl)c}) - , (7.35)

n " n dO dcldo 2 " . _ch
%ZEﬂLZlog(%)—(c—l)Z lg Z )" o) (AL — (1 - =) ])

i=1 i=1 C<)‘[1_(1_Zid>c]>

(7.36)
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g(z; ) —1 “i —1 1—2f

" Aedzd (1 — 20) G (2 )" (A [L— (1 - 20)T)

%:Zg(m Y) —(d—l)ZG@; Y) +(C_1)Zd2f G (zi; ¥)

3 (2

2 COn- -7 ’

i=1

(7.37)

/

where g'(z;; ) = % g’ig Y and G (z;; ¥) = %ﬂ. The score functions do not have

closed form, thus it is more convenient to solve them using numerical techniques. For the
purpose of interval estimation of the parameters, a p X p observed information matrix
can be obtained as J(9¥) = — {8—26} (for ¢, r = A, ¢, d, 1), whose elements can be com-

dqor

puted numerically. Under the usual regularity conditions as n — oo, the distribution
of 9 = (\, &, d, ¥T)T approximately converges to a multivariate normal N,(0, J(9)™)
distribution. J ({9) is the observed information matrix evaluated at 9. The asymptotic

normal distribution is useful for constructing approximate 100(1 — 1)% confidence inter-

vals.

7.6 Extensions via Copula

In this section, bivariate and multivariate extensions of the EGPS class of distributions
were proposed using Clayton copula. Consider a random pair (X7, X5), a copula C* asso-
ciated with the pair is simply a joint distribution of the random vector (Fix, (z1), Fx,(x2)).
Suppose that F, (z1) and Fy,(xs) are marginal CDFs of the random variables X; and
X, respectively and C* is the copula associated to (X, Xs). Sklar (1959) established

that the joint CDF Fly, x,(z1, x2) of the pair (X3, X5) is given by

FXlXQ(:C:l? 56'2) = C*(FX1 ($1>7 FXQ(xQ))'
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Suppose (X7, Xz) follows bivariate EGPS random variables with marginal distributions
Fx,(z1) and Fy,(x2). Let the copula associated with (X7, X3) belong to Clayton copula

family given by

C*(z1, 20) = [57 7+ 2,7 —=1] 7 , 6> 0.

The joint CDF, Fx, x,(x1, xa), for the bivariate EGPS class is given by

o(n = (1= =G i)™
SR £ R (Y B SIS0 5 i

=1

(7.38)

where \;, ¢;, d; and ; describe the marginal parameters while 6 is the Clayton copula

parameter. A p-dimensional multivariate extension from the above is given by

—0

o [o(ni- (- a6 w)") )

=1

(7.39)

7.7 Special Distributions

In this section, four special distributions were presented. These include: EGP inverse
exponential (EGPIE) distribution, EGB inverse exponential (EGBIE) distribution, EGG
inverse exponential (EGGIE) distribution and EGL inverse exponential (EGLIE) distri-

bution. Suppose the baseline distribution follows an inverse exponential distribution with
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CDF G(x) = e~ >0, x> 0. The densities, hazard rate functions and quantiles of

the EGPIE, EGBIE, EGGIE and EGLIE distributions are defined as follows.

7.7.1 EGPIE Distribution

The density function of the EGPIE distribution is obtained by substituting the base-
line CDF and its corresponding PDF into equation (7.13). Thus, the PDF of EGPIE

distribution is given by

Flz) = Myedz =277 (1 — 777 )1 <1 - (1 - e—vx—l)d>

Ay, e,d>0,2>0. (7.40)

The corresponding hazard rate function is given by

1 eA{lf(l,(low)dﬂ
A=)

_ _ _\d
7(z) = Myedz™2e™7® 1(1 —e* 1)d_1 <1 - (1 —e 1) >
Ay, e, d >0, 2> 0. (7.41)
Figure 7.1 displays the plots of the density and hazard rate function of the EGPIE
distribution. From the figure, the density exhibit right skewed shape with varied degrees

of kurtosis and an approximately symmetric shape. The hazard rate function shows an

upside down bathtub shapes.
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Figure 7.1: Plots of EGPIE (a) PDF and (b) hazard rate function for some

parameter values

The quantile function of the EGPIE distribution is given by

Q(u)

-1
—log |[1—[1—(1—
Y

7.7.2 EGBIE Distribution

log (e* — u(e* — 1))

A

).

1
c

1
d

Using equation (7.15), the PDF of EGBIE distribution is given by

f(x)

_ _ N
m\yedz e * l(1 —e* 1)d_l <1 - (1 e >

Ay, e, d >0,z >0.

-1

(7.42)

1 {1 +A [1 - (1 _ (1 ~ e,yx_l)d)ch_l

The corresponding hazard rate function is given by

152

(1+A)m—1

(7.43)

I



(w) =
Y cpym—1
ey

(7.44)

Ay, e, d >0, 2> 0.

The plots of the density and hazard rate function of the EGBIE distribution for m =5
are shown in Figure 7.2. The density function exhibit right skewed and approximately
symmetric shapes. The hazard rate function exhibit an upside down bathtub shapes and

an upside down bathtub shape followed by a bathtub and then upside down bathtub

shape.
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Figure 7.2: Plots of EGBIE (a) PDF and (b) hazard rate function for some

parameter values
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The quantile function of the EGBIE distribution is given by

1 —1

__110g 1— 1<1<((1+>‘)m1)(1u)+1)i1>i a
! A

Q(u) =

(7.45)

7.7.3 EGGIE Distribution

From equation (7.17), the PDF of EGGIE distribution is given by

d c—1
(1= Nyedz2e 77 (1 — e )1 <1 - (1 — e*“/z_1> >
flz)= ,0< A<, y,¢,d >0,z >0.

-afi-(1-(- e*vx‘l)d)cﬂz

(7.46)

The associated hazard rate function is given by

c—1

—_ _ —\d
vedr=2e™1% (1 — e )d-l (1 - (1 e 1) )

[1 - (1 —(1- e—w”)d)c} [1 Y [1 . (1 —(1- e—vw”)dﬂ}

T(z) = ,0< A<, v, ¢,d>0,2>0.

(7.47)

The density and hazard rate function plots of the EGGIE distribution for some parameter
values are displayed in Figure 7.3. The density and the hazard rate function exhibits

similar shapes like that of the EGBIE distribution.
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Figure 7.3: Plots of EGGIE (a) PDF and (b) hazard rate function for some

parameter values

The quantile function of the EGGIE distribution is given by

7.7.4 EGLIE Distribution

ul=

(7.48)

N———
[

From equation (7.19), the PDF of EGLIE distribution is given by

B B B d c—1
Ayedz2e 7% (1 — eme 1)d-1 (1 — (1 —e " 1) )

,0< A<, yv,e,d >0, 2>0.

fz) =

log(1 — \) [/\ [1 - (1 —(1- e—vx‘l)dﬂ - 1}

The corresponding hazard rate function is given by
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Myedz2e 77 (1 — eme ' )d-1 (1 - (1 - e*'Y’”_l> >

c—1

" e (e )Y P (- (e )] ]

O< A<, vc¢,d>0z>0.

(7.50)

Figure 7.4 shows the density and hazard rate function of the EGLIE distribution for some

parameter values. The density exhibit approximately symmetric shapes with different

degrees of kurtosis. The hazard rate function shows upside down bathtub shapes.
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Figure 7.4: Plots of EGLIE (a) PDF and (b) hazard rate function for some

parameter values

The quantile function of the EGLIE distribution is given by

Qu) =

~1
—log [1— (1— (1
5

- (1)t

A
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7.8 Monte Carlo Simulation

In this section, Monte Carlo simulations were performed to examine the finite sample
properties of the maximum likelihood estimators for the parameters of the EGPIE, EG-
BIE, EGGIE and EGLIE distributions. For the case of the EGBIE distribution, m =5

was used during the simulation. The simulation steps are as follows:

1. Specify the values of the parameters A, ¢, d, v and the sample size n.

2. Generate random samples of size n = 25, 50, 75, 100 from EGPIE, EGBIE, EGGIE

and EGLIE distributions using their respective quantiles.

3. Find the maximum likelihood estimates for the parameters.

4. Repeat steps 2 — 3 for N = 1500 times.

5. Calculate the average estimate (AE) and RMSE for the parameters of the distribu-

tions.

Table 7.2 shows the simulation results for the EGPIE and EGBIE distributions whereas
Table 7.3 displays that of the EGGIE and EGLIE distributions. From both tables it can
be seen that the AE for the estimators were quite close to the actual values. The RMSE

for the estimators of the parameters decreases as the sample size increases.
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7.9 Application

The application of the EGPIE, EGBIE (withm = 5), EGGIE and EGLIE distributions

were demonstrated in this section using real data set. The performance of the distribu-

tions with regards to providing reasonable parametric fit to data set were compared using

the K-S statistic, W*, AIC, AICc, and BIC. The data set comprises 101 observations cor-

responding to the failure time in hours of Kevlar 49 /epoxy strands with pressure at 90%.

The data set displayed in Table 7.4 can be found in Barlow et al. (1984) and Andrews

and Herzberg (2012).

Table 7.4:

Failure times of Kevlar 49/epoxy strands with pressure at 90%

0.01
0.08
0.23
0.54
0.79
1.02
1.34
1.60
3.03

0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07
0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.18 0.19 0.20
024 024 029 034 035 036 038 040 042 043 0.52
0.56 0.60 0.60 0.63 0.65 0.67 0.68 0.72 0.72 0.72 0.73
0.79 0.80 0.80 0.83 0.85 090 092 095 099 1.00 1.01
1.03 1.05 1.10 1.10 1.11 1.15 1.18 1.20 1.29 1.31 1.33
1.40 143 145 150 151 152 1.53 1.54 1.54 1.55 1.58
1.63 1.64 180 180 1.81 202 205 214 217 233 3.03
3.34 420 4.69 7.89

An exploratory analysis of the failure rate function of the data set using the TTT trans-

form plot revealed that the data exhibit a modified bathtub shape. The TTT curve shows

a convex shape and then concave shape followed by a convex shape as shown in Figure

7.5.
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Figure 7.5: TTT-transform plot for Kevlar data set

Table 7.5 displays the maximum likelihood estimates for the parameters of the fitted
distributions with their corresponding standard errors in brackets. To test for the sig-
nificance of the parameters of the fitted models, the standard error test was employed.
The parameters of the EGPIE and EGGIE distributions were all significant at the 5%
level with the exception of the parameter v for the two distributions. The parameters
of the EGBIE distribution were all significant at the 5% level. The EGLIE distribution

parameters were all significant at the 5% level with the exception of the parameter .
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Table 7.5: Maximum likelihood estimates of parameters and standard errors
of Kevlar data

Model A ¢ d 4
EGPIE 26.062 7.320 0.175 0.002
(0.009) (1.770) (0.019) (0.002)
EGBIE 11.644 8.862 0.313 0.003
(1.925 x 107°) (1.136 x 107) (2.141 x 1072) (8.755 x 107°)
EGGIE 0.664 20.525 0.498 0.002
(2.412 x 1071) (4.798 x 1073) (1.360 x 1071) (9.954 x 107%)
EGLIE 0.018 19.277 0.616 0.002

(5.004 x 1071)  (3.845x 1073)  (6.431 x 1072)  (6.301 x 10~4)

The EGPIE distribution provides a better fit to the data set compared to the other
models. From Table 7.6, the EGPIE distribution has the highest log-likelihood and the

smallest K-S, W* AIC, AICc and BIC values compared to the other fitted models.

Table 7.6: Log-likelihood, goodness-of-fit statistics and information criteria of
Kevlar data

Model l AIC AICc BIC K-S W+

EGPIE -116.660 241.314 241.946 251.774 0.182 0.738
EGBIE -122.930 253.868 254.500 264.328 0.195 0.926
EGGIE -140.090 288.170  288.802 298.631 0.237 1.386

EGLIE  -134.010  276.025  276.657 286.486 0.203 1.211

The plots of the empirical density, the fitted densities, the empirical CDF and the CDF

of the fitted distributions are shown in Figure 7.6.
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Figure 7.6: Empirical and fitted density and CDF plots of Kevlar data

In addition, the P-P plots in Figure 7.7 shows that the EGPIE and EGBIE distributions
provide a more reasonable fit to the data compared to the EGGIE and EGLIE distribu-

tions.

EGPIE EGBIE
= £
= =
] ©
8 2
2 =
[ [
o o
3 @
o °
- @
o a
B =
1] i}
Observed Probability Observed Probability
EGGIE EGLIE
= £
= 3
] ©
o o
2 =
o [
o ©
@ @
ks G
b @
o o
= =
1] ]
Observed Probability Observed Probability

Figure 7.7: P-P plots of the fitted distributions
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7.10 Summary

In this chapter, the EGPS family of distributions was developed and studied. Various sta-
tistical properties such as the quantile function, moments, moment generating function,
incomplete moment, reliability, residual life, mean residual life, Shannon entropy and or-
der statistics were derived. The method of maximum likelihood estimation was proposed
for the estimation of the parameters of the family. Bivariate and multivariate exten-
sions of the family was proposed using the Clayton copula. Some special distributions
were defined and Monte Carlo simulations were performed to investigate the statistical
properties of the estimators for the parameters of the special distributions. Finally, an

application of the special distributions was illustrated using real data set.
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CHAPTER 8

CONCLUSIONS AND

RECOMMENDATIONS

8.1 Introduction

This chapter presents the conclusions and recommendations for future works.

8.2 Conclusions

The knowledge of an appropriate statistical distribution in modeling lifetime data is im-
perative in different fields of study. Most parametric inferences in these areas heavily
depend on some distributional assumptions. However, some of the data sets from these
fields may not be well described by the existing standard distributions. Hence, researchers
in the area of distribution theory are developing barrage of generators for modifying exist-
ing statistical distributions to make them more flexible in providing reasonable parametric

fit to data sets.

In this study, a new statistical distribution generator called EG T-X family was pro-
posed and studied. Some sub-families of the generator were developed. These include:
EGE-X, EG beta-exponential-X, EG exponentiated exponential-X, EG gamma-X, EG
Gompertz-X, EGHL-X, EG lomax-X, EG Burr XII-X and EG Weibull-X. The statistical
properties of the generator, such as the quantile function, moments, moment generating

function and Shannon entropy were derived.
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Further, the EGE-X family was used to modify the Dagum and modified inverse Rayleigh
distributions to obtain the EGED and NEGMIR distributions respectively. Sub-models
of these modified distributions were defined and their statistical properties derived. The
maximum likelihood estimation technique was employed to develop estimators for the
parameters of the distributions and simulation studies were performed to assess the
properties of the estimators. The applications of the EGED and NEGMIR distribu-
tions were demonstrated using real data sets and their performance compared to that
of their sub-models and other existing candidate models. The goodness-of-fit statistics
and the information criteria used all revealed that the new models were better than their
sub-models and the other competing models. Also, the EGHL-X generator was used
to modify the Burr X distribution to obtain the EGHLBX distribution. Sub-models of
the EGHLBX were defined and the statistical properties derived. The parameters of the
distribution were estimated using the maximum likelihood method and the properties of

the estimators for the parameters were investigated using simulation.

Finally, an extension of the EG class was proposed by compounding it with the PS
class to form a new family of distribution called the EGPS family. Sub-families of the
EGPS such as the EGP, EGB, EGG and EGL were defined. The statistical properties
were derived and the parameters of the family were estimated using the maximum like-
lihood technique. Bivariate and multivariate extensions of the family using the Clayton
copula were proposed. Some special distributions such as EGPIE, EGBIE, EGGIE and
EGLE were defined and simulation studies were conducted to examine the properties of

the estimators for the parameters of these distributions. The usefulness of the special
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distributions was demonstrated using real data set.

8.3 Recommendations

The data sets used in this study were complete samples. However, incomplete samples
may arise in different fields of studies. For instance, in a follow-up study in medical
research, cancer or tuberculosis patients may die before the study end or survive beyond
the duration of the study. Hence, further studies should consider the use of censored data

in demonstrating the applications of the developed models.

Several sub-family generators for modifying distributions were proposed in this study.
Therefore, subsequent further research should consider using these generators to modify
existing distributions and investigate their performance in terms of providing reasonable

parametric fit to both complete and incomplete data sets.

Again, a phenomenon may be influenced by a number of independent variables. For
example, the trap efficiency in a dam may be influenced by the age of the dam, annual
rainfall and inflow among others. It is important to investigate how each of the factors
affects the output variable. Thus, parametric regression models for studying the rela-
tionship between an output variable and input variables may be developed in subsequent

studies using the proposed distributions.
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APPENDICES

Appendix Al

Elements of the observed information matrix of the EGED distribution.
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Appendix A2

Elements of the observed information matrix for the NEGMIR distribution.
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Appendix A3

Elements of the observed information matrix for the EGHLBX distribution
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Appendix A4

R Codes

# # # EGED Distribution PDF # # # #

Dagum<—function (x,lambda,alpha ,beta, theta ,c,d){

A<—(1+alphax(x"(—theta)))” (—beta—1)

B<—1—(1+alpha*(x"(—theta)))” (—beta)

fxn<—lambdaxalphaxbetaxthetaxc*xdx*
(x"(—theta—1))*A%x(B"(d—1))*((1—=(B"d)) " (c—1))*((1—-(1—-(B"d)) "c) " (lambda—1))
return (fxn)

}

# # FGED Distribution Hazard function # # # # # #
Hazard<—function (x,lambda,alpha ,beta,theta,c,d){
A<—(1+alphax(x"(—theta)))” (—beta—1)
B<—1—(1+alphax(x"(—theta)))" (—beta)
fxn<—(lambdaxalphaxbetaxthetaxc*d*(x"(—theta —1))=*

Ax(B™ (d=1))%((1-(B"d))" (c—1)))/(1—-(1-(B"d))"c)

return (fxn)

}

# # # # EGED Distribution Quantile function # # # # # # #

quantile<—function (lambda, alpha ,beta, theta ,c,d,u){
A<—(1—u)" (1 /lambda)
B<—(1-A)"(1/c)

C<—(1-B)" (1/d)
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D<—(1-C)"(—1/beta)

result<—((1/alpha)x(D—1))"(—1/theta)

return(result )}

# # # # EGED Distribution Moment # # # # #

Moment<—function (alpha ,lambda ,beta, theta ,c,d,r){

f<—function (x, alpha ,lambda,beta, theta,c,d,r){ (x"1r)=*

(Dagum (x, alpha ,lambda ,beta,theta ,c,d))}

results<—integrate (f,lower=0,upper=Inf ,subdivisions = 10000,alpha=alpha ,
lambda=lambda , beta=beta , theta=theta ,c=c,d=d, r=r)$value

return(results)

}

# # # EGED Distribution Negative Log—likelihood for Optimization # # #
Dagum_LI<—function (lambda,alpha ,beta,theta ,c,d){
A<—(1+alphax*(x"(—theta)))" (—beta—1)
B<—1—(1+alphax(x"(—theta)))” (—beta)

fxn<— —sum(log (lambdaxalphaxbetaxthetaxckd*(x"(—theta —1))*

A« (B (d—1))*((1=(B"d)) " (c—1))*((1—=(1—(B"d)) "c) " (lambda—1))))

return (fxn)

}

# # # # EGED Distribution Optimization # # # # #

library (bbmle) # # # # Calling R package bbmle # # # # # #

fit<—mle2 (Dagum_LL, start=list (lambda=lambda ,

alpha=alpha ,beta=beta, theta=theta ,c=c,d=d),method="BFGS” ,data=list (x))

summary ( fit ) # # # # # # Summary of Results # # # #
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# # # # NEGMIR Distribution PDF # # # #
NEGMIR<—function (x,lambda,alpha ,theta ,c,d){
A<—((alpha/(x"2))+((2*theta)/(x"3)))
Al<—((alpha/(x))+(theta/(x"2)))

A2<—exp(—Al)

A3—(1-A2)" (d—-1)

A—(1—(1-A2)"d)" " (c—-1)
As<—(1-(1—(1—-A2)"d)"(c)) " (lambda—1)
fxn<—lambda*cxdxAxA2xA3xAdxA5

return (fxn)

}

# # # NEGMIR Distribution Hazard function # # # # #
Hazard<—function (x,lambda,alpha ,theta ,c,d){
A<—((alpha/(x"2))+((2*theta)/(x"3)))
Al<—((alpha/(x))+(theta/(x"2)))

A2<—exp(—Al)

A3—(1-A2)" (d-1)

A—(1—-(1-A2)"d)" " (c—1)
As<—(1—-(1=(1-A2)"d) " (e))" (~1)
fxn<—lambda*cxdxAxA2xA3xAdxA5

return (fxn)

}

# # # NEGMIR Distribution Quantile function # # #
quantile<—function (lambda,alpha ,theta ,c,d,u){

A<—(1—u) " (1/lambda)
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Al—(1-A)"(1/c)

A2<—(1-A1)"(1/d)

A3—log(1-A2)

Ad—4xthetaxA3

Ab<—(alpha”2)—A4

result<—(2xtheta)/(—alpha+sqrt (A5))

return(result)

}

# # # NEGMIR Distribution Moment # # # # # #

Moment<—function (lambda , alpha , theta ,c,d,r){

f<—function (x,lambda,alpha ,theta ,c,d,r){(x"r)x*

(NGMIR(x ,lambda , alpha , theta ,c,d))}

results<—integrate (f,lower=0,upper=Inf , subdivisions=10000,

lambda=lambda , alpha=alpha , theta=theta ,c=c,d=d,r=r)$value

return(results)

}

# # # # NEGMIR Distribution Negative log—Ilikelihood function for
Optimization # # # #

NEGMIR_LI<—function (lambda , alpha , theta ,c,d){

A<—lambdaxc*d= ((alpha/(x"2))+(2*theta)/(x"3))

Al<—exp(—((alpha/x)+(theta/x"2)))

A2<—(1—exp(—((alpha/x)+(theta/x"2)))) " (d—1)

A—(1—(1—exp(—((alpha/x)+(theta/x"2))))" (d)) (c—1)

Ad—(1-(1—(1—exp(—((alpha/x)+(theta/x"2))))"(d)) " (c)) " (lambda—1)

fxn<— —sum(log (AxAlxA2xA3xA4))
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return (fxn)

h

# # # # NEGMIR Distribution Optimization # # #

library (bbmle) # # # Calling R package bbmle # # #

fit<—mle2 (NEGMIR_LL, start=list (lambda=lambda , alpha=alpha , theta=theta ,
c=c,d=d) ,method="BFGS” ,data=list (x))

summary ( fit ) # # # # Summary of Results # # # # # #

# # # # EGHLBX Distribution PDF # # # #

EGHLBX<—function (x,lambda , alpha , beta ,c,d){

A<—4xlambdax ((alpha)”2)*xbetakcsd*x
Al<—exp(—((alpha*x)~(2)))

A%—(1-Al)" (beta—1)

A3<—(1—((1—Al1)"beta))" (d—1)
Ad—(1—((1-((1-Al)"beta)) " (d))) " (e—1)
As<—(1—((1—((1—((1-A1)"beta))" (d))) " (¢))) " (lambda—1)
A6<—(1+(1=((1—=((1—((1-Al)"beta))"(d))) (c))) " (lambda))"(—2)
Fxn<—AxAlxA2xA3%AdxA5#AG

return (fxn)

}

# # # # EGHLBX Hazard function # # #
Hazard<—function (x,lambda,alpha ,beta,c,d){
A<—2xlambdax ((alpha)”2)xbetaxcxdxx

Al<—exp(—((alpha*x)”(2)))
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A2<—(1—A1)" (beta—1)

A3—(1—((1—Al) " beta)) " (d-1)
Ad—(1—-((1—((1-A1) " beta)) " (d))) " (c—1)
AS-(1=((1=((1=((1-Al)"beta))"(d))) " (c))) " (-1)
A6—(1+(1-((1=((1=((1—-A1)"beta))"(d))) " (c))) " (lambda))" (1)
fxn<—AxAlxA2xA3xAdxAb+x A6

return (fxn)

}

# # # # EGHLBX Distribution Quantile function # # # # #
quantile<—function (lambda, alpha ,beta,c,d,u){
A<—((1—u)/(1+u))" (1 /lambda)

B<—(1-A)"(1/c)

G—(1-B)"(1/d)

D<—(1-C) " (1 /beta)

E<—Ilog(1-D)

result<—sqrt (E)/alpha

return(result)

}

# # # # EGHLBX Distribution Moment # # # #
Moment<—function (lambda , alpha ,beta,c,d,r){
f<—function(x,lambda,alpha ,beta,c,d,r){(x"r)=x*

(EGHLBX(x , lambda , alpha , beta,c,d))}

results<—integrate (f,lower=0,upper=Inf , subdivisions =10000,
lambda=lambda , alpha=alpha ,beta=beta,c=c,d=d,r=r)$value

return(results)
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}

# # # EGHLBX Distribution Negative log—likelihood function for
Optimization # # # #

EGHLBX_LI<—function (lambda,alpha ,beta,c,d){

A<—4xlambdax ((alpha)”2)xbetaxcxdxx

Al<—exp(—((alpha*xx)"(2)))

A2<—(1—A1)" (beta—1)

A3—(1—((1—-Al) " beta)) " (d-1)

Ad—(1—-((1—((1—=Al)"beta))"(d))) " (c—1)

A<—(1—-((1—=((1—((1—Al)"beta))"(d))) " (c))) " (lambda—1)

A6<—(1+ (1= ((1=((1=((1-AL)"beta))"(d))) " (c))) " (lambda))"(-2)

fxn<— —sum(log (AxAlxA2xA3xAdxA5xA6))

return (fxn)

}

# # # EGHLBX Distribution Optimization # # # # #

library (bbmle) # # # Calling R package bbmle # # #
fit<—mle2 (EGHLBX_LL, start=list (lambda=lambda, alpha=alpha ,

beta=beta,c=c,d=d) ,method="BFGS” ,data=list (x))

summary (fit) # # # # Summary of Results # # # #

# # # R Codes for EGPS Special Distributions # # #

# # # # # FEGPIE Distribution PDF # # # #

EGPIE<—function (x,lambda, c,d,gamma){

A<—1—exp(~gamma (x° (1))

Be—exp(—gamman (x " (1))

fxn<—(lambda*c*dsgammasx (x " (—2))*B* (A" (d—1))*((1-A"d) " (c—1))=*
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exp (lambdax(1—((1—A"d)"(c))))) /(exp(lambda)—1)

return (fxn)

¥

# # # EGPIE Distribution Hazard fumction # # # #
Hazard<—function (x,lambda , ¢ ,d ,gamma) {

A<-1—exp(—gammax (x"(—1)))

B<—exp(—gammax (x " (—1)))
fxn<—(lambdasc#dgammax (x " (—2))#Bx (A" (d—1))*((1-A"d) " (c—1))*
exp (lambdax(1—((1-A"d) " (c))))) /(exp (lambdax(1—((1-A"d) " (¢)))) ~1)
return (fxn)

}

# # # # EGPIE Distribution Quantile function # # #
quantile<—function (lambda , c,d ,gamma, u){

7Z<—log (exp (lambda)—ux (exp (lambda) —1))

fxn<—((~ 1 /gamma) xlog (1— (1—(1—(Z/lambda)) " (1/¢)) " (1/d)))" (~1)
return (fxn)

}

# # # # EGBIE Distribution PDF # # # # #

EGBIE<—function (x,lambda , ¢ ,d ,gamma) {
A<—1—exp(—gammax (x" (—1)))

B<—exp(—gammas (x"(—1)))
fxn<—(5*lambdackdrgammax (x " (—2))*Bx (A" (d—1))*((1-A"d) " (c—1))=
(1+lambdax(1—((1-A"d) " (¢)))) (5 —-1)) /(((1+lambda)"5) —1)
return (fxn)

}
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# # # EGBIE Distribution Hazard function # # # #
Hazard<—function (x,lambda ,c,d ,gamma) {

A<—1—exp(—gammas (x (—1)))

B<—exp(—gamma (x " (—1)))
fxn<—(5*lambdascsdsgammas (x (—2))*Bx (A" (d—1))*((1-A"d) " (c—1))*
(1+lambda*(1—-((1-A"d)"(c)))) " (5 —-1))/(((1+lambdax(1-((1-A"d)"(c)))) (5)) —1)
return (fxn)

}

# # # EGBIE Distribution Quantile Function # # # #
quantile<—function (lambda ,c,d ,gamma, 1) {

Z<—(((((1+lambda)"(5)) —1)*(1—u)+1)"(1/5))—1

fxn<—((—1 /gamma) xlog (1~ (1—(1—(Z/lambda)) " (1/¢)) " (1/d)))" (~1)
return (fxn)

¥

# # # EGGIE Distribution PDF # # #

EGGIE<—function (x,lambda , ¢ ,d ,gamma){

A<—1—exp(—gammas (x " (—1)))

B<—exp(—gammax (x " (—1)))

fxn<—((1—lambda ) *c*d+gammas (x " (—2))*Bx (A" (d—1))*((1-A"d) " (c—1)))/
((1—lambda*(1—((1—A"d) " (c))))"2)

return (fxn)

}

# # # EGGIE Distribution Hazard function # # #

Hazard<—function (x,lambda,c,d,gamma){

A<—1—exp(—gammak (x " (—1)))
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B<—exp( —gamma (x " (1))

fxn<—(cxdxgammax (x " (—2))*Bx (A" (d—1))*((1-A"d) " (c—1)))/((1—=((1-A"d) " (c

(1—lambdax(1—((1-A"d)"(c)))))

return (fxn)

}

# # # # EGGIE Distribution Quantile Function # # # # #
quantile<—function (lambda , ¢, d ,gamma, 1) {
7Z<—(ux(1—lambda) /(1—uxlambda)) " (1 /c)

fxn<—((—1/gamma) xlog(1—(1-Z)" (1/d))) " (-1)

return ( fxn)

b

# # # # EGLIE Distribution PDF # # # # #
EGLIE<—function (x,lambda , ¢ ,d ,gamma) {
A<-1—exp(—gammax (x " (—1)))

B<—exp(—gammax (x " (—1)))
fxn<—(lambdasxcs*d+gammax (x " (—2))*B* (A" (d—1))x((1-A"d) " (c—1)))/
((log(1—lambda)) x(lambdax(1—((1—A"d)"(c))) —1))

return (fxn)

h

# # # # EGLIE Distribution Hazard function # # # #
EGLIEH<—function (x,lambda , c ,d ,gamma) {
A<-1—exp(—gammax (x " (~1)))

B<—exp(—gammax (x " (—1)))
fxn<—(lambdaxcsdsgammax (x " (—2))*B* (A" (d—1))x((1-A"d) " (c—1)))/

((log(l—lambdax(1—((1—A"d)"(c)))))*(lambdax(1—((1—-A"d)"(c)))—1))
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return (fxn )

¥

# # # EGLIE Distribution Quantile Function # # # #
quantile (lambda , c,d ,gamma, u) {
7<—(1—(((1—lambda)"(1—u)))) /lambda

fxn<—((-1/gamma) xlog(1—(1-(1-2)"(1/c))"(1/d)))"(—1)

return (fxn )

}

4 # # # EGPS Special Distributions Negative Log—likelihoods # # # #
4 # # # EGPIE Negative Log—likelihood # # # #
EGPIE_LI<—function (lambda , ¢ ,d ,gamma) {

A<—1—exp (—gammask (x” (—1)))

B<—exp(—gammas (x " (—1)))
fx<—(lambda*cxd+gammas (x* (—2))*Bx (A" (d—1))*((1-A"d) " (c—1))*
exp (lambdax(1—((1—A"d)"(¢))))) /(exp(lambda)—1)

fxn<— —sum(log (fx))

return (fxn)

}

4 ## # # EGBIE Negative Log—likelihood # # # #
EGBIE_LI<—function (lambda , ¢ ,d ,gamma) {

A<—1—exp (—gammas (x (~1)))

B<—exp/(—gammas (x " (~1)))
fx<—(5*lambda*cdsgammax (x " (—2))#B% (A" (d—1))*((1-A"d) " (c—1))*
(1+lambda*(1—((1-A"d)"(¢)))) " (5—1))/(((1+lambda)"5) —1)

fxn<— —sum(log (fx))
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return (fxn)

}

# # # # EGGIE Negative Log—likelihood # # # #
EGGIE_LI<—function (lambda , c ,d ,gamma) {
A<—1—exp(—gammas (x " (—1)))

B<—exp(—gammax (x " (—1)))

fx<—((1—lambda ) xcxdsgammas (x " (—2))*Bx (A" (d—1))*((1—A"d) " (c—1)))/
((1—lambda*(1—((1=A"d)"(¢)))) " 2)

fxn<— —sum(log (fx))

return ( fxn)

b

# # # # EGLIE Negative Log—likelihood # # # # #
EGLIE_LI<—function (lambda , c ,d ,gamma) {
A<-1—exp(—gammax (x " (—1)))

B<—exp(—gammax (x " (—1)))
fx<—(lambdac#d+gammasx (x  (—2))*B* (A" (d—1))x((1-A"d) " (c—1)))/
((log(1—lambda)) x(lambdax(1—((1—A"d)"(c))) —1))

fxn<— —sum(log (fx))

return ( fxn)

h

# # # # EGPS Special Distributions Optimization # # #
library (bbmle) # # # Calling R package bbmle # # # #
fit1<—mle2 (EGPIE_LL, start=list (lambda=lambda , c=c , d=d ,gamma-gamma) ,

method="BFGS” ,data=list (x))

summary (fit1) # # # # Summary of Results # # #
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fit2<—mle2 (EGBIE_LL, start=1ist (lambda=lambda , c=c , d=d ,gamma=gamma) ,
method="BFGS” ,data=list (x))

summary ( fit2 )

fit3<—mle2 (EGGIE_LL, start=1ist (lambda=lambda , c=c,d=d ,gamma=gamma) ,
method="BFGS” ,data=list (x))

summary ( fit3)

fit4<—mle2 (EGPIE_LL, start=list (lambda=lambda , c=c , d=d ,gamma—gamma) ,

method="BFGS” ,data=1list (x))

summary ( fit4 )

# # # # Simulation Code for BGED Distribution # # #
# # # Specifying EGED Qunatile function # # # #

quantile<—function (lambda , alpha ,beta , theta ,c,d,u){
result<—((1/alpha)x((1—(1—(1—(1—u)"(1/lambda))"(1/c))"(1/d))"
(—1/beta)—1))"(—1/theta)

return (result )

}

#### Negative Log—likelihood function of EGED Dsitribution # # # #
EGED_LI<—function (par){—sum(log (par [1]*par [2] xpar [3] xpar [4] xpar [5] *

par [6]*(x"(—par[4] —1))*((1+par[2]*x"(—par[4]))" (—par[3] —1))=*
((1—(1+par[2]#x"(—par[4]))" (—par[3]))" (par[6] —1))=
(((1=(1+par[2]*x"(—par[4]))" (—par[3])) (par[6]))  (par[5]—1))=
(((1=(1+par[2]*x"(—par[4]))"(—par[3])) " (par[6]))  (par[5])) (par[l]—1))))
¥

# # # Algorithm for Monte Carlo Simulation Study for FGED Distribution # # #
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library (numDeriv)
library (Matrix)
lambda=lambda
alpha=alpha
beta=beta

theta=theta

d=d
nl=c(25,50,75,100,200,300,600)
for(j in 1l:length(nl)){
—

N=1000

mle _lambda<—c (rep (0,N))
mle _alpha<—c(rep (0,N))
mle_beta<—c(rep(0,N))
mle_theta<—c(rep(0,N))
mle_c<—c(rep(0,N))
mle_d<—c(rep(0,N))
LC_lambda<—c (rep (0,N))
UC_lambda<—c (rep (0,N))
LC_alpha<—c(rep(0,N))
UC_alpha<—c(rep (0 ,N))
LC_beta<—c(rep (0,N))
UC_beta<—c(rep(0,N))

LC_theta<—c(rep(0,N))
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UC_theta<—c(rep(0,N))

LC_c<—c(rep(0,N))

UC_c<—c(rep(0,N))

LC_d<—c(rep(0,N))

UC_d<—c(rep(0,N))

count _lambda=0

count_alpha=0

count _beta=0

count _theta=0

count _c=0

count _d=0

temp=1

HHI<-matrix(c(rep(2,36)) ,nrow=6,ncol=6)
HH2<-matrix (c(rep(2,36)) ,nrow=6,ncol=6)
for (i in 1:N)

{

print (i)

flush . console ()

repeat{

x<—c(rep(0,n))

# Generate a random variable from wuniform distribution
u<—0

u<—runif(n, min=0,max=1)

for(k in 1:n){

x[k]|<—quantile (lambda,alpha ,beta, theta ,c,d,u[k])
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}

#Mazimum likelihood estimation

mle. result<—nlminb (c(lambda , alpha ,beta, theta ,c,d) ,EGED_LL,lower=0,
upper=Inf)

temp=mle. result$convergence

if (temp==0){

temp _lambda<—mle. result $par [1]

temp _alpha<—mle. result $par[2]

temp _beta<—mle. result $par [3]

temp _theta<—mle. result $par [4]

temp _c<—mle. result $par [5]

temp _d<-mle. result$par[6]

HHI<—hessian (EGED_LL, c(temp_lambda,temp _alpha ,temp_beta, temp_theta
temp _c,temp _d))

if (sum(is.nan(HH1))==0&(diag (HH1)[1] >0)&(diag(HH1)[2] >0)&(diag (HH1)[3] >0)
&(diag (HH1)[4] >0)&(diag (HH1)[5] >0)&(diag (HH1)[6] >0)){

HH2<-solve (HH1)

#print (det (HH1))

}

else{

temp=1}

}

if ((temp==0)&(diag(HH2)[1] >0)&(diag (HH2)[2] >0)&(diag (HH2)[3] >0)&
(diag (HH2)[4] >0)&(diag (HH2)[5] >0)&(diag (HH2)[6] >0)&(sum(is .nan(HH2))==0)){

break
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else{

temp=1}

}

temp=1

mle_lambda[i]<-mle.result$par[1]
mle_alpha[i]<-mle.result$par[2]
mle_beta[i]<-mle.result$par|3]

mle_theta [i]<-mle.result$par[4]
mle_c[i]<—mle.result$par[5]

mle_d[i]<—mle.result$par[6]

HH<—hessian (EGED_LL, ¢ (mle_lambda[i],mle_alpha[i],mle_beta[i],mle_theta[i],
mle _c[i],mle_d[i]))

H<—solve (HH)
LC_lambda[i]<—mle_lambda|i]—qnorm(0.975)*sqrt (diag(H)[1])
UC_lambda[i|<—mle_lambda[i]|+qnorm(0.975)*sqrt (diag(H)[1])
if ((LC_lambda|i]<=lambda)&(lambda<=UC_lambda[i])){

count _lambda=count _lambda+1

}

LC_alpha[i]<—mle_alpha[i]—qgnorm(0.975)*sqrt (diag(H)[2])
UC_alpha[i]<—mle_alpha[i]4+gnorm(0.975)*sqrt (diag(H)[2])
if ((LC_alpha|i]<=alpha)&(alpha<=UC_alpha[i])){

count _alpha=count _alpha+1

}

LC_beta|i]<—mle_beta|i]—qnorm(0.975)*sqrt (diag(H)[3])
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UC_beta [ i |<—mle_beta [ i]+qnorm(0.975) *sqrt (diag (H) [3])
if ((LC_beta[i]<=beta)&(beta<=UC_beta[i])){
count_beta=count _beta+1

¥

LC_theta [i]<-mle_theta [i]—qnorm (0.975)xsqrt (diag (H)[4])
UC_theta [i]<-mle_theta [i]+qnorm(0.975)xsqrt (diag(H)[4])
if ((LC_theta[i]<=theta)&( theta<=UC_theta [i])){
count_theta=count_theta+1

}

LC_c[i]<-mle_c[i]—qnorm(0.975) xsqrt (diag (H)[5])
UC_c[i]<—mle_c|i]+qnorm(0.975)xsqrt (diag(H)[5])

if ((LC_c[i]<=c)&(s<=UC_c[i])){

count _c=count _c+1

¥

LC_d[i]<—mle_d[i]—qnorm (0.975)*sqrt (diag (H)[6])
UC_d|i]<-mle_d[i]+qnorm(0.975)xsqrt (diag(H)[6])

if (LC_d[i]<=d)&(d<=UC_d[i])){

count _d=count _d+1

}

}

# Calculate Average Bias

ABias _lambda<-sum(mle _lambda—lambda) /N
ABias_alpha<—sum(mle _alpha—alpha) /N
ABias_beta<—sum(mle_beta—beta) /N

ABias_theta<—sum(mle _theta—theta) /N
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ABias_c<—sum(mle_c—c) /N

ABias _d<-sum(mle_d—d) /N

print (cbind (ABias _lambda, ABias_alpha , ABias_beta, ABias_theta , ABias _c,
ABias_d))

# Calculate RMSE

RMSE_lambda<—sqrt (sum( (lambda—mle _lambda) "~ 2) /N)

RMSE_alpha<—sqrt (sum((alpha—mle_alpha)~2)/N)

RMSE_beta<—sqrt (sum(( beta—mle_beta)"2)/N)

RMSE_theta<—sqrt (sum((theta—mle_theta)"2)/N)

RMSE_c<—sqrt (sum((c—mle_c)"2)/N)

RMSE_d<-sqrt (sum((d—mle_d)"2)) /N

print (cbind (RMSE_lambda ,RMSE_alpha ,RMSE_beta ,RMSE_theta ,RMSE_c ,RMSE_d ))

}

# # # # Simulation Code for EGHLBX Distribution # # # # #
# A4 ## Specifying EGHLBX Qunatile function # # # #
quantile<—function (lambda , alpha ,beta,c,d,u){
A<—((1=u)/(14u)) " (1/lambda)

B<—(1-A)"(1/¢)

C<—(1-B) " (1/d)

D<—(1-C)"(1/beta)

E<—log(1-D)

result<—sqrt (E) /alpha

return(result)

}

# # # # Negative Log—likelihood function for EGHLBX Distribution # # # #
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EGHLBX_LI<—function (par){—sum(log( 4xpar[1]*((par[2])"2)x*par[3]«par [4]x
par [5] xxx* (exp(—((par[2]*x) " (2))))*((1—exp(—((par[2]*x)"(2)))) (par[3] —1))=*
(1=((1—exp(—((par[2]*x)"(2)))) par[3]))" (par[5] —1))=
(1=((1=((1—exp(—((par[2]*x)"(2)))) par[3]))  (par[5])))  (par[4] —1))=
(1=((1=((1=((1—exp(—((par[2]*x)"(2)))) par[3])) (par[5])))  (par[4])))"
(par[1] —1))*((1+(1—((1-((1-((1—exp(—((par[2]*x)"(2)))) "par[3]))  (par[5]))
)" (par[4]))) " (par[1]))"(-2))))

}

# # # Algorithm for Monte Carlo Simulation Study for EGHLBX Distribution # #
library (numDeriv)

library (Matrix)

lambda=lambda

alpha=alpha

beta=beta

d=d

nl=c(25,50,75,100,200,300,600)

for(j in 1:length(nl)){

n=nl[j]

N=1000

mle _lambda<—c (rep (0,N))

mle _alpha<—c (rep (0,N))

mle_beta<—c(rep (0,N))

mle_c<—c (rep (0,N))

mle _d<—c(rep(0,N))
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LC_lambda<—c(rep (0,N))
UC_lambda<—c (rep (0 ,N))
LC_alpha<—c(rep(0,N))
UC_alpha<—c(rep(0,N))
LC_beta<—c(rep (0,N))
UC_beta<—c(rep(0,N))
LC_c<—c(rep(0,N))
UC_c<—c(rep(0,N))
LC_d<—c(rep(0,N))
UC_d<—c(rep(0,N))
count _lambda=0

count _alpha=0

count _beta=0

count_c=0

count _d=0

temp=1
HHI<-matrix(c(rep(2,25)) ,nrow=>5,ncol=5)
HH2<-matrix(c(rep(2,25)) ,nrow=>5,ncol=5)
for (i in 1:N)

{

print (i)

flush . console ()
repeat {

x<—c(rep(0,n))

# Generate a random wvariable from uniform distribution
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u<—0

u<—runif(n,min=0,max=1)

for(k in 1:n){

x[k]|<—quantile (lambda,alpha ,beta,c,d,u[k])

}

#Maximum likelihood estimation

mle. result<—nlminb (c(lambda , alpha ,beta,c,d) ,EGHLBX_LL, lower=0,upper=Inf)
temp=mle. result$convergence

if (temp==0){

temp _lambda<—mle. result $par [1]

temp _alpha<—mle. result $par[2]

temp _beta<—mle. result $par [3]

temp _c<—mle. result$par [4]

temp _d<—mle. result$par[5]

HHI<—hessian (EGHLBX_LL, c(temp_lambda ,temp_alpha ,temp_beta,temp_c,temp_d))
if (sum(is.nan(HH1))==0&(diag(HH1)[1] >0)&(diag(HH1)[2] >0)&(diag(HH1)[3] >0)
&(diag (HH1)[4] >0)&(diag (HH1)[5] >0)){

HH2<-solve (HH1)

#print (det (HH1))

}

else{

temp=1}

¥

if ((temp==0)&(diag(HH2)[1] >0)&(diag(HH2)[2] >0)&(diag (HH2)[3] >0)&

(diag (HH2)[4] >0)&(diag (HH2)[5] >0)&(sum(is .nan(HH2))==0)){
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break

else{

temp=1}

}

temp=1

mle_lambda[i|<-mle.result$par[1]
mle_alpha[i]<-mle.result$par[2]
mle_beta[i]<—mle.result$par|3]
mle_c[i]<—mle.result$par[4]

mle_d[i]<—mle.result$par[5]

HH<—hessian (EGHLBX_LL, c(mle_lambda[i],mle_alpha[i],mle_beta[i],mle_c[i],
mle _d[i]))

H<—solve (HH)
LC_lambda[i]<—mle_lambda|i]—qnorm(0.975)*sqrt (diag(H)[1])
UC_lambda[i|<—mle_lambda[i]|+qnorm(0.975)*sqrt (diag(H)[1])
if ((LC_lambda|i]<=lambda)&(lambda<=UC_lambda[i])){

count _lambda=count _lambda-+1

}

LC_alpha[i]<—mle_alpha[i]—qgnorm(0.975)*sqrt (diag(H)[2])
UC_alpha[i]<—mle_alpha[i]4+gnorm(0.975)*sqrt (diag(H)[2])
if ((LC_alpha|i]<=alpha)&(alpha<=UC_alpha[i])){

count _alpha=count _alpha+1

}

LC_beta|i]<—mle_beta|i]—qnorm(0.975)*sqrt (diag(H)[3])
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UC_beta [ i]<-mle_beta[i]+qnorm (0.975)*sqrt (diag (H)[3])
if ((LC_beta|i]<=beta)&(beta<=UC_beta[i])){
count_beta=count _beta+1

¥

LC_c[i]<-mle_c[i]—qnorm(0.975) xsqrt (diag (H)[4])
UC_c|i]<-mle_c[i]+qnorm(0.975)*sqrt (diag (H)[4])
if ((LC_c[i]<=c)&(c<=UC_c[i])){

count _c=count _c+1

}

LC_d[i]<—mle_d[i]—qnorm(0.975)xsqrt (diag(H)[5])
UC_d[i]<-mle_d[i]+qnorm(0.975)xsqrt (diag (H)[5])
if ((LC_d[i]<=d)&(d<=UC_d[i])){

count _d=count _d+1

¥

¥

# Calculate Average Bias

ABias_lambda<—sum(mle _lambda—lambda) /N
ABias_alpha<-sum(mle_alpha—alpha) /N
ABias_beta<—sum(mle_beta—beta) /N

ABias_c<—sum(mle_c—c) /N

ABias _d<-sum(mle_d—d) /N

print (cbind ( ABias _lambda , ABias_alpha , ABias_beta, ABias_c, ABias_d))
# Calculate RMSE

RMSE_lambda<—sqrt (sum( (lambda—mle _lambda )"~ 2) /N)

RMSE_alpha<—sqrt (sum((alpha—mle_alpha)”2)/N)
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RMSE_beta<—sqrt (sum ( ( beta—mle _beta)"2) /N)

RMSE_c<—sqrt (sum ((c—mle_c)"2) /N)

RMSE_d<-sqrt (sum ( (d—mle_d)"2)) /N

print (cbind (RMSE_lambda ,RMSE_alpha ,RMSE_beta ,RMSE_c ,RMSE_d ))

}

# # # Simulation Code for EGLIE Distribution # # # #

##H## Specifying EGLIE Qunatile function # # # # #
quantile (lambda , ¢, d ,gamma, u){

7<—(1—(((1—lambda)"(1—u)))) /lambda

fxn<—((—1/gamma) xlog(1—(1-(1-2)"(1/c))"(1/d))) " (-1)

return ( fxn)

}

# # # # Negative Log—Likelihood function for EGLIE Distribution # # # #
EGLIE_LI<—function (par){

A<-1—exp(—par [4]*(x"(-1)))

B<—exp(—par [4]*(x"(—1)))

fx<—(par [1]*par [2] xpar [3] xpar [4] % (x " (—2))*Bx (A" (par[3] —1))x((1—A"par [3])
“(par[2] —1)))/((log(l—par[1]))*(par[1]*(1—((1-A"par[3])" (par[2]))) —1))
fxn<— —sum(log (fx))

return(fxn)

}

# # # Algorithm for Monte Carlo Simulation for EGLIE Distribution # # #
library (numDeriv)

library (Matrix)
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lambda=lambda

nl=c(25,50,75,100)
for(j in 1:length(nl)){
n=nl[]]

N=1500

mle _lambda<—c (rep (0,N))
mle_c<—c(rep(0,N))

mle _d<—c(rep(0,N))

mle _gamma<—c (rep (0,N))
LC_lambda<—c(rep (0,N))
UC_lambda<—c (rep (0 ,N))
LC_c<—c(rep(0,N))
UC_c<—c(rep(0,N))
LC_d<—c(rep(0,N))
UC_d<—c(rep(0,N))
LC_gamma<—c (rep (0 ,N))
UC_gamma<—c (rep (0,N))
count _lambda=0

count _c=0

count _d=0

count _gamma=0

temp=1
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HHI<-matrix(c(rep(2,16)) ,ntrow=4,ncol=4)
HH2<-matrix(c(rep(2,16)) ,ntrow=4,ncol=4)

for (i in 1:N)

{

print (i)

flush . console ()

repeat{

x<—c(rep(0,n))

# Generate a random variable from wuniform distribution
u<—0

u<—runif(n, min=0max=1)

for(k in 1:n){

x [k]<—quantile (lambda,c,d,gamma,u[k])

¥

# Maximum likelihood estimation

mle. result<—nlminb (c(lambda ,c,d,gamma) ,EGGIE_LL, lower=c (0,0,0,0),
upper=c (1 ,Inf  Inf K Inf))

temp=mle. result$convergence

if (temp==0){

temp _lambda<—mle. result $par [1]

temp _c<—mle. result$par [2]

temp _d<-mle. result $par [3]

temp _gamma<—mle . result $par [4]

HHI<—hessian (EGGIE_LL, c(temp_lambda ,temp _c,temp_d,temp _gamma))

if (sum(is.nan(HH1))==0&(diag (HH1)[1] >0)&(diag(HH1)[2] >0)&(diag (HH1)[3] >0)
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&(diag (HH1)[4] >0)){

HHX—solve (HHI)

Aprint (det (HH1))

}

else

temp=1}

}

if ((temp==0)&(diag (HH2)[1] >0)&(diag (HH2)[2] >0)&(diag (HH2)[3] >0)
&(diag (HH2)[4] >0)&(sum( is .nan (HH2))==0)){

break

}

else]

temp=1}

}

temp=1

mle_lambda[i]<—mle . result$par[1]

mle_c[i]<—mle.result$par 2]

mle_d[i]<—mle.result$par 3]

mle_gamma| i ]<-mle. result$par [4]

Hik—hessian (EGGIE_LL, ¢ (mle_lambda[i],mle_c[i] ,mle_d[i],mle_gammali]))
Ik—solve (HH)

LC_lambda [ i ]<—mle_lambda [ i]—qnorm (0.975)*sqrt (diag (H)[1])
UC_lambda [ i ]<-mle _lambda [ i]+qnorm (0.975) *sqrt (diag (H) [1])
if ((LC_lambda [ i]<=lambda )&(lambda<=UC_lambda[i])){

count _lambda=count _lambda-+1

222



¥

LC_c[i]<-mle_c[i]—qnorm(0.975) xsqrt (diag (H)[2])
UC_c[i]<—mle_c|i]+qnorm(0.975)xsqrt (diag (H)[2])

if ((LC_c[i]<=c)&(c<=UC_c[i])){

count _c=count _c+1

}

LC_d[i]<-mle_d[i]—qnorm(0.975)sqrt (diag (H)[3])
UC_d[i]<—mle_d[i]+qnorm(0.975)xsqrt (diag (H)[3])

if ((LC_d[i]<=d)&(d<=UC_d[i])){

count _d=count _d-+1

}

LC_gamma i |<—mle_gamma| i]—qnorm (0.975) xsqrt (diag (H) [4])
UC_gamma| i | <—mle_gammal i]+qnorm (0.975) xsqrt (diag (H) [4])
i £ ((LC_gammal i]<—gamma)&(gamma<—UC_gammali])) {

count _gamma=count _gamma-1

}

}

# Average FEstimate

AV_lambda<—sum(mle _lambda) /N
AV_c<—sum(mle_c) /N

AV_d<-sum(mle_d) /N

AV _gamma<—sum ( mle _gamma) /N

print (cbind (AV_lambda ,AV_c ,AV_d ,AV_gamma) )

# Calculate RMSE
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RMSE_lambda<—sqrt (sum( (lambda—mle _lambda) "~ 2) /N)
RMSE_c<—sqrt (sum((c—mle_c)"2)/N)

RMSE_d<-sqrt (sum((d—mle_d)"2)/N)

RMSE _gamma<—sqrt (sum ( (gamma-mle gamma) " 2) /N)

print (cbind (RMSE_lambda ,RMSE_c ,RMSE_d ,RMSE_gamma ) )

}
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