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Abstract

Malaria is a major cause of morbidity and mortality in Apac District, Northern Uganda.

Hence, the study aimed to model malaria incidences with respect to climate variables

for the period 2007 to 2016 in Apac District. Data on monthly Malaria incidence in

Apac District for the period January 2007 to December 2016 was obtained from the

Ministry of Health, Uganda whereas climate data was obtained from Uganda National

Meteorological Authority. Generalized linear models, Poisson and negative binomial

regression models were employed to analyze the data. These models were used to

fit monthly malaria incidences as a function of monthly rainfall and average temper-

ature. Negative binomial model provided a better fit as compared to the Poisson re-

gression model as indicated by the residual plots and residual deviances. The Pearson

correlation test indicated a strong positive association between rainfall and Malaria in-

cidences. The Autoregressive integrated moving average, ARIMA (1, 0, 0)(1, 1, 0)12

was found to be the best fit model for the malaria time series data. ARIMA models

for time series analysis was found to be a simple and reliable tool for producing re-

laible forecasts for malaria incidences in Apac District, Uganda. This study showed a

significant association between monthly malaria incidence and climate variables that is

rainfall and temperature. This study provided useful information for predicting malaria

incidence and developing the future warning system. This is an important tool for pol-

icy makers to put in place effective control measures for malaria early enough. Malaria

still remains a public health concern in Uganda, in particular Apac District.
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1. Introduction

1.1. Background of Study

Uganda is one of the Sub-Saharan African countries where malaria is still endemic

in over 90% of the country’s regions (Health, 2014; Talisuna et al., 2007; Yeka et

al., 2012). According to the National Malaria Control Programme, malaria alone has

shown to contribute to between 30 and 50% of outpatient visits, 15 − 20% of hospi-

tal admissions and 20% of hospital deaths with most of this burden found in children

under 5 years and pregnant women (Health, 2014). Transmission of malaria is very

complicated. The impact of climatic variables on malaria patterns still remains contro-

versial. The aim of this study is to model malaria incidences in Apac District, Northern

Uganda with respect to climate variables specifically rainfall and temperature.

The greatest burden of malaria, remains in the heart land of Africa, characterized by

limited infrastructure to monitor disease trends, large contiguous areas of high trans-

mission and low coverage of control interventions. The epidemiology of malaria varies

widely in Uganda, from highland regions with low prevalence and unstable disease

to large regions with dense agricultural settlement and some of the highest recorded

malaria intensities in the world (Okello et al., 2006).

The climate in Uganda allows stable, year round malaria transmission with rela-

tively little seasonal variability in most areas. Malaria is highly endemic in Uganda

with some of the highest recorded Entomological Innoculation Rates (EIR, infective

mosquito bites per person per year) in the world, including rates of 1586 in Apac dis-

trict and 562 in Tororo District measured in 2001 to 2002 (Okello et al., 2006).

Malaria remains one of the leading health problems of the developing world, and
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Uganda bears a particularly large burden from the disease. Our understanding is lim-

ited by a lack of reliable data, but it is clear that the prevalence of malaria infection,

incidence of disease, and mortality from severe malaria all remain very high. Uganda

has made progress in implementing key malaria control measures, in particular dis-

tribution of insecticide impregnated bednets, indoor residual spraying of insecticides,

utilization of artemisinin-based combination therapy to treat uncomplicated malaria,

and provision of intermittent preventive therapy for pregnant women. However, de-

spite enthusiasm regarding the potential for the elimination of malaria in other areas,

there is no convincing evidence that the burden of malaria has decreased in Uganda in

recent years. Major challenges to malaria control in Uganda include very high malaria

transmission intensity, inadequate health care resources, a weak health system, inade-

quate understanding of malaria epidemiology and the impact of control interventions,

increasing resistance of parasites to drugs and of mosquitoes to insecticides, inap-

propriate case management, inadequate utilization of drugs to prevent malaria, and

inadequate epidemic preparedness and response. Despite these challenges, prospects

for the control of malaria have improved, and with attention to underlying challenges,

progress toward the control of malaria in Uganda can be expected (Krefis et al., 2011).

The relationship between climatic variables and malaria transmission has been re-

ported in many countries (Aribodor et al., 2016). A recent resurgence of malaria in the

East African highlands involves multiple factors; climate and land use change, drug re-

sistance, variable disease control efforts, and other socio-demographic factors (Pascual

et al., 2006). Malaria is an extremely climate-sensitive disease (Rogers & Randolph,

2000) common in the tropics ,but also reported in mild-to-cold climates (Hulden &

Hulden, 2009).

Rainfall and temperature anomalies are widely considered to be a major driver of

inter-annual variability of malaria incidence in the semi-arid areas of Africa (Connor

et al., 1999), and recently recorded a warming trend in the East African Highlands that

corresponded with concomitant increases in malaria incidences (Pascual et al., 2006).

Based on the background study of malaria above, the impact of weather and envi-

ronmental factors on dynamics of malaria has attracted considerable attention in recent

2



years, yet uncertainties around future disease trends under environment change remain.

The role of climate as a driving force for malaria incidences is still a subject of con-

siderable attention (Shanks et al., 2002). Assessing the impact of climate variables

on malaria incidences is challenging because of a high spatial climate variability and

lack of a long term data series on malaria cases from different hospitals. Temperature

affects the development rates and survival of malaria parasites and mosquito vectors.

Rainfall influences the availability of the mosquito larvae habitats and hence a breeding

ground for mosquitoes. Temperature and rainfall may have synergistic effects on the

transmission of malaria. Therefore, there is need to analyze the simultaneous effects

of rainfall and temperature on malaria incidences. However, the association between

climate variables and malaria incidences in Apac District has not been studied.

Malaria has historically been a very serious health problem and currently poses the

most significant threat to the health of the people in malaria prone areas. Uganda show

that more than 55 percent of pediatric cases are due to malaria (Martens & Hall, 2000).

Malaria currently accounts for: 25% of all out patients visits at health facilities,20%

of hospital admissions, 9.14% of in patient deaths,a case fatality rate of 35% (which is

an under estimate, since many malaria cases go unreported especially those in areas in

accessible to health facilities), 23% and 11% of deaths among the under fives in high

and medium malaria transmission areas respectively (estimates by Uganda Ministry of

Health), severe malarial anaemia is responsible for a case fatality rate of 8.25% among

pediatric admissions.

Annually, more than one billion people are infected and more than one million die

from vector borne diseases. World Health Organization (WHO) has highlighted the se-

rious and increasing threat of vector-borne diseases with the theme ’preventing vector-

borne diseases’ and also with the slogan ”small bite, big threat” for the year 2014.

Among vector-borne diseases, malaria poses the biggest threat with about 40% of the

world’s population at risk of infection. In 2013, 97 countries had ongoing transmission

of malaria (WHO, 2014).

Malaria decreases economic growth by more than one percentage point per year

in endemic countries. Malaria transmission usually coincides with the harvesting

3



season and brief periods of illness exact a high cost on the world’s poorest regions

(Millennium, 2005).

Malaria still remains a public health problem in developing countries and changing

environmental and climatic conditions are considered as the biggest challenge in fight-

ing against the scourge of malaria (McMichael et al., 2006). Malaria is an entirely pre-

ventable and treatable illness caused by parasites of plasmodium species and transmit-

ted by the bites of Anopheles mosquito. Although preventable and treatable, malaria

causes significant morbidity and mortality, particularly in poor regions. In 2015, 91

countries and areas had ongoing malaria transmission. Malaria is preventable and

curable, and increased efforts are dramatically reducing the malaria burden in many

places. Between 2010 and 2015, malaria incidence among populations at risk (the rate

of new cases) fell by 21% globally. In that same period, malaria mortality rates among

populations at risk fell by 29% globally among all age groups, and by 35% among

children under 5. The WHO African Region carries a disproportionately high share of

the global malaria burden. In 2015, the region was home to 90% of malaria cases and

92% of malaria deaths (WHO, 2017) .

Due to severe health impact of malaria, there is a growing need for methods that

will allow forecasting and early warning with timely detection in areas of unstable

transmission, so that more control measures can be implemented effectively (WHO,

2004). Studies of malaria epidemics have shown their association with excess rainfall,

temperature and vegetation density. This is observed in the direct correlation between

an abundance of Anopheles mosquitoes and rainfall, increased transmission and tem-

perature (Gomez-Elipe et al., 2007).

1.2. Statement of the problem

Transmission of malaria is very complicated.The impact of climatic variables on malaria

patterns still remains controversial. Therefore, there is need for a useful model that is

able to assess the impact of climatic variables on malaria incidences and also forecast

the malaria incidences. This is helpful in the development of reliable malaria warning
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systems.

The number of malaria cases in relation to meteorological factors that is rainfall and

temperature is still unknown. It is also probable that the efforts to reduce malaria do

not specifically take into account the meteorological factors likely to aggravate malaria

disease.

Applying linear regression to count data leads to inconsistent standard errors and

may produce negative predictions for the dependent variable. Even with a logged de-

pendent variable, the least squared estimates have these problems and are biased and

inconsistent. Therefore count dependent variables require different modeling. The

most common assumption of count data distribution is the Poisson distribution which

restricts the data distribution to be equal-dispersion (the conditional variance equals

the conditional mean). This stringent restriction cannot handle many empirical appli-

cations. Other modeling distributions have been developed. Negative binomial dis-

tributions have been widely used in situations where counts display over-dispersion

(conditional variance exceeds the conditional mean).

1.3. Research objectives

Based on the statement of the problem above, the objectives of the study are as follows:

General objective

The main purpose of the study is to model the impact of climate variables on malaria

incidences in Apac District, Northern Uganda.

Specific objectives

These are:

1. To analyze the effects of rainfall on expected malaria incidences.

2. To analyze the effects of average temperature and on expected malaria inci-

dences.
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3. To analyze the effects of rainfall and average temperature and on expected malaria

incidences.

4. To forecast malaria incidences using an appropriate statistical method.

6



1.4. Significance of the study

Malaria is a disease that is constantly changing. Malaria affects the health and wealth

of nations and individuals. In Africa today, malaria is understood to be both a disease

of poverty and a cause of poverty (Gomez-Elipe et al., 2007). Malaria has significant

measurable direct and indirect costs, and has been shown to be a major constraint to

economic development (Sachs & Malaney, 2002). This means the gap in prosperity

between countries with malaria and countries without malaria has become wider every

single year.

Forecasting future malaria incidences is important for policy makers in public health

planning in development and enhancement of early warning systems for malaria in the

different regions. Knowing the annual trend of malaria given the annual trend of rain-

fall is important to public health professionals to assist in health care assessments, ser-

vice planning and policy development in regards to malaria incidences in the different

regions.

(Sachs & Malaney, 2002) showed that where malaria has been eliminated, economic

growth has increased substantially. Hence the importance to develop a statistical model

that enables us assess the impact of climatic variables on malaria patterns which en-

ables policy makers to develop targeting, preventative and control strategies which is

cost effective. The Roll Back Malaria (RBM) Initiative was launched in 1998 with

the aim to markedly reduce malaria morbidity and mortality. In the year 2000, the

world launched Millennium Development Goals (MDGs) and Goal 6C was to halt and

reverse the incidence of malaria by 2015.

Some methods in literature reviewed give contradicting results on the malaria pat-

terns hence the need to develop better models that can give good inferences on the

malaria patterns. Following the end of MDG, the World Health Organization member

states, Uganda inclusive, on 20th May, 2015 agreed on a new global malaria strategy

for 2016 − 2030. The strategy aims to reduce the global disease burden by 40% by

2020, and by at least 90% by 2030. It also aims to eliminate malaria in at least 35 new

countries by 2030.
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2. Literature Review

2.1. Malaria models

Several studies have been carried out on malaria incidence. Nkurunziza et al. (2010),

investigated the effects of climate on malaria in Burundi using generalized linear mod-

els and generalized additive mixed models. The results suggest a strong positive asso-

ciation between malaria incidence in a given month and minimum temperature of the

previous month. In contrast, it was found that rainfall and maximum temperature in a

given month have possible negative effect on malaria incidence of the same month.

Lindsay et al. (2000), compared the level of malaria infection in children from 22

communities in an area of unstable transmission in the Usambara mountains, Tanzania,

immediately before and after one of the strongest recorded El Niño Southern Oscilla-

tion events. They found strikingly less malaria than in the preceding year despite 2.4

times more rainfall than normal resulted from the event.

Nkurunziza et al. (2011), used semi-parametric regression models to model the de-

pendence of malaria cases on spatial determinants and climatic covariates including

rainfall, temperature and humidity in Burundi. The results obtained suggested that

malaria incidence in a given month is strongly associated with minimum temperature

of the previous months.

Huang et al. (2011), modeled separate meteorological factors, the model with rain-

fall performed better than the models with other factors respectively. The results

showed that the way rainfall influenced malaria incidence was different from other

factors, which could be interpreted as rainfall having a greater influence than other

factors.
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Zhou et al. (2004), used non linear mixed-regression model to investigate the associ-

ation between auto regression (number of malaria inpatients during previous time pe-

riod), seasonality and climate variability, and the number of monthly malaria inpatients

of the past 10 to 20 years in seven highland sites in East Africa. The model did not

take into consideration other important factors that also impact on malaria incidences

for example; topography, human settlement pattern, land use, and drug resistance.

Patience and Osagie (2014), studied the trend of malaria prevalence in Minna, Nige-

ria, by employing Poisson and Negative binomial regression models. The results re-

vealed that the prevalence of malaria is still on increase by 6% on monthly basis. Musa

et al. (2012), examined the relationship between malaria and environmental and socio-

economic variables in the Sudan using health production modified model. The regres-

sion results showed significant relationships between malaria and rainfall and water

bodies. Other variables including Human Development Index, temperature, popula-

tion density and percent of cultivated areas were not significant.

Kakchapati and Ardkaew (2011), carried out a study to identify the spatial and trends

of malaria incidence in Nepal Poisson and negative binomial regression models were

used to fit malaria incidence rates as a function of year and location. The study showed

a steady decreasing trend in malaria incidence, but the numbers of cases are still very

high.

Wardrop et al. (2013), studied malaria incidence over time and its association with

temperature and rainfall in four counties of Yunnan province, China. Seasonal trend

decomposition was used to examine secular trends and seasonal patterns in malaria

incidence, a Poisson regression with Distributed lag non-linear models were used to

estimate the weather drivers of malaria seasonality. The study revealed that there was

a declining trend in malaria incidence in all four counties. Chanda et al. (2013), con-

ducted a study on malaria vector control in South Sudan. The study revealed that the

peak of malaria transmission season lasting 7 to 8 months of the year south of the

country and 5 to 6 months in the north.

Dræbel et al. (2013), carried out a study using logistic regression to estimate and

assess malaria prevalence and the use of malaria risk reduction measures and their as-
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sociation with selected background characteristics in South Sudan. The results suggest

that educational attainment need not be very advanced to affect practices of malaria

prevention and treatment. Primary school attendance was a stronger predictor for use

of malaria risk reduction measures than any other selected background characteristics.

Nath and Mwchahary (2013), analyzed the temporal correlation between malaria

incidence and climatic variables using malaria incidence rates in Kokrajhar district of

Assam over the period 2001 to 2010. Linear regressions were used to obtain linear

relationships between climatic factors and malaria incidence. Temperature was found

to be negatively correlated with non-forest malaria incidence while relative humidity

was positively correlated with forest malaria incidence.

Teklehaimanot et al. (2004), found that malaria was associated with rainfall and

minimum temperature in Ethiopia. Daily average number of cases was modeled using

a robust Poisson regression with rainfall, minimum temperature and maximum tem-

peratures as explanatory variables in a polynomial distributed lag model in 10 districts

of Ethiopia. To improve reliability and generalizability within similar climatic condi-

tions, the districts were grouped into two climatic zones, hot and cold. In cold districts,

rainfall was associated with a delayed increase in malaria cases, while the association

in the hot districts occurred at relatively shorter lags. In cold districts, minimum tem-

perature was associated with malaria cases with a delayed effect. In hot districts, the

effect of minimum temperature was non-significant at most lags, and much of its con-

tribution was relatively immediate.

Sriwattanapongse et al. (2011), used Spearman’s correlation between weekly cli-

matic variables (temperatures, relative humidity and rainfall) and malaria to analyze

the bi variate relationships between types of malaria parasites and potential climatic

factors. A discrete poisson model was used to identify purely spatial clusters of malaria

incidence in the high risk areas. A poisson regression model combined with distributed

lag non-linear model was used to examine the effects of temperature, relative humidity

and rainfall on the number of malaria cases. The residuals were checked to evaluate

the adequacy of the model. Sensitivity analysis was performed to ensure that the asso-

ciations between climate variables and malaria incidences did not change substantially
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when the degrees of freedom for climate variables were changed.

Kim et al. (2012), estimated the effects of climate factors on p.vivax malaria trans-

mission using Generalized linear Poisson models and distributed lag non linear mod-

els. Their findings suggested that malaria transmission in temperate areas was highly

dependent on climate factors.

Zhou et al. (2004), used negative binomial regression model to examine how spatial

distribution of the disease changes with inter annual variability of temperature. To

analyze the variation in incidence with temperature and altitude, a negative binomial

regression to the monthly cases was fitted. Covariates included season, altitude and

linearly de-trended temperature (lagged by 3 months).

Muggeo (2008), presented a model for estimation of temperature effects on mortality

that is able to capture jointly the typical features of every temperaturedeath relation-

ship, that is, nonlinearity and delayed effect of cold and heat over a few days. Using a

segmented approximation along with a doubly penalized spline-based distributed lag

parameterization, estimates and relevant standard errors of the cold- and heat-related

risks and the heat tolerance are provided. The model is applied to data from Milano,

Italy.

Krefis et al. (2011), investigated temporal associations between weekly malaria in-

cidence in 1,993 children <15 years of age and weekly rainfall. A time series analysis

was conducted by using cross-correlation function and autoregressive modeling. The

regression model showed that the level of rainfall predicted the malaria incidence after

a time lag of 9 weeks (mean = 60 days) and after a time lag between one and two

weeks. The analyses provide evidence that high-resolution precipitation data can di-

rectly predict malaria incidence in a highly endemic area. Such models might enable

the development of early warning systems and support intervention measures.

2.2. Forecasting Models

Paul et al. (2013), used ARIMA models to forecast average daily price indices of the

data series of square Pharmaceuticals Limited (SPL). They found ARIMA(2, 1, 2) as
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the best model for forecasting the SPL data series.

Gomez-Elipe et al. (2007), developed an ARIMA model to forecast malaria inci-

dence based on monthly case reports and environmental factors in Karuzi, Burundi.

V. Kumar et al. (2014), used ARIMA model to forecast malaria cases using climatic

factors as predictors in Delhi, India.

ARIMA(0, 1, 1)(0, 1, 0)12 was found to be the best fit model.

Wangdi et al. (2010), found ARIMA(2, 1, 1)(0, 1, 1)12 to be the best possible model

to predict malaria cases in Bhutan. The method of ARIMAX modelling was employed

to determine predictors of malaria of the subsequent month. ARIMA model was also

used for forecasting malaria cases in Sri Lanka (Briet et al., 2008) and Ethopia (Abeku

et al., 2002).

Tsitsika et al. (2007), used ARIMA model to forecast pelagic fish production.

They found ARIMA(1, 0, 1) and ARIMA(0, 1, 1) to be the best fit models to fore-

cast pelagic fish production. K. Kumar et al. (2004), used ARIMA model to fore-

cast daily maximum surface Ozone concentrations in Brunei Darussalam. They found

ARIMA(1, 0, 1) to be the most suitable model for the surface Ozone data collected at

the airport in Brunei Darussalam.

Contreras et al. (2003), used ARIMA models to predict next day electricity prices.

They found two ARIMA models to predict hourly prices in the electricity markets of

Spain and California. The Spanish model required five hours to predict future electric-

ity prices whereas the Californian model required only two hours for future prediction

of electricity prices. Al-Zeaud (2011), used ARIMA model in forecasting volatility.

He found ARIMA(2, 0, 2) to be the best fit model.

Uko and Nkoro (2012), examined the relative predictive power of ARIMA, ECM

and VAR models in forecasting inflation in Nigeria. The result showed ARIMA model

to be a good predictor of inflation in Nigeria and served as a benchmark model in infla-

tion modeling. Datta (2011), used ARIMA model in forecasting inflation in Bangladesh

Economy. He showed that ARIMA(1, 0, 1) model was the best fit for Bangladesh in-

flation data.

Liu et al. (2011), used ARIMA model in forecasting incidence of hemorrhagic fever
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with renal syndrome in China. ARIMA (0, 3, 1) was found to be the best fit model.

From the literature reviewed, in this study Negative binomial regression is considered

to analyze the significance of climate variables on malaria incidences. ARIMA models

have been used to forecast malaria incidences.
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3. Methodology

3.1. Background Statistical Methods

Count data regression models can be represented and understood using generalized

linear models (GLM) framework (McCullagh & Nelder, 1992). Poisson regression is

commonly used for modeling the number of cases of disease in a specific population

within a certain time interval. The Poisson regression is a member of a class of gen-

eralized linear models, which is an extension of traditional linear models that allows

the mean of a population to depend on a linear predictor through a non linear link

function and allows the response probability distribution to be any member of the ex-

ponential family distributions. Poisson regression is a special case of (GLM) where

the response variable follows Poisson distribution. Poisson models for disease counts

are often over-dispersed hence the need for a model which appropriately handles over

dispersion in which case negative binomial is considered (Venables & Ripley, 2002).

The Negative binomial model is an extension of Poisson model for incidence rates that

allows for the over dispersion that commonly occurs for disease count. The Poisson

probability distribution is specifically suited for count data, with density function;

f(Yi) =
λye−λ

y!
, y = 0, 1, 2, ..., λ > 0 (3.1)

f(Y ) is the probability that the discrete random variable Y takes non- negative inte-

ger values, λ is the parameter of the Poisson distribution. It can be proved that;

E(Y ) = V ar(Y ) = λ (3.2)
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as in the appendix. A unique feature of Poisson distribution is that the mean is equal to

the variance. This is called the equidispersion property of the Poisson distribution. In

the Poisson regression model, the number of events y has a Poisson distribution with

conditional mean that depends on an individual’s characteristics:

λi = E(yi/xi) = exp(xiβ) (3.3)

Log(λi) = xiβ (3.4)

This is the model for analyzing count data. Under this model as λi increases, the

conditional variance of y increases. The Poisson regression model can be thought of

as a non-linear model (Williams, 2016).

The Negative binomial regression model allows the conditional variance of y to

exceed the conditional mean. The mean λ is replaced with the random variable λ̃:

λ̃i = exp(xiβ + εi) (3.5)

where ε is a random error that is assumed to be uncorrelated with x.

λ̃i = exp(xiβ)exp(εi) = λiexp(εi) = λiδi (3.6)

The assumption is that δ has a gamma distribution with parameters: E(δ) = 1 and

V ar( 1
v
).

The expected value of y for the Negative binomial distribution is the same as for Pois-

son distribution but the conditional variance differs:

V ar(yi/xi) = λi(1 +
λi
vi

) = exp(xiβ)(1 +
exp(xiβ)

vi
) (3.7)

since λ and v are positive, the conditional variance of y must exceed the conditional

mean, v is the same for all individuals:

vi = α−1 (3.8)
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for α > 0, α is the dispersion parameter since increasing α increases the conditional

variance of y.

V ar(yi/xi) = λi(1 +
λi
α−1

) = exp(xiβ)(1 +
exp(xiβ)

α−1
) = λi(1 + αλi) = λi + αλ2i

(3.9)

If α = 0, the mean and variance are equal (Gujarati, 2009).

3.2. Generalized Linear Models (GLMs)

GLMs are a natural generalization of classical linear models that allow the mean of a

population to depend on a linear predictor through a (possibly nonlinear) link function.

This allows the response probability distribution to be any member of the exponential

family (EF) of distributions. A generalized linear model consists of three model com-

ponents, the random, systematic and link component (McCullagh & Nelder, 1992).

1. Random component. The response Y is independent and has a distribution in

the EF, with density or probability function taking the form;

f(y; θ, φ) = exp

∫
[y − µ(θ)]

φv(µ)
dµ(θ) + c(y, φ), (3.10)

where µ is called the natural parameter, φ > 0 is a dispersion parameter, the

unknown parameter θ is called the canonical parameter, µ = µ(θ) = E(Y ) and

V (Y ) = φV (µ), for a given variance function V and known bivariate function

c. The EF is very flexible and can model continuous, binary, or count data.

2. Systematic component. For a random sample Y1, ..., Yn, the linear component is

defined as;

ηi = X
′

iβ, i = 1, ..., n, (3.11)

for some vector of parameters β = (β1, ..., βp)
′ are p unknown regression pa-

rameters to be estimated and covariate Xi = (xi1, ..., xip)
′ associated with ob-

servation Yi.

16



3. Parametric Link component. A monotonic differentiable link function g de-

scribes how the expected response µi = E(Yi) is related to the linear predictor

ηi

g(µi) = ηi, i = 1, ..., n (3.12)

3.2.1. Parametric Link Functions

The parametric link function is the third component of a generalized linear model and

relates the linear predictor η = X
′
β to µ, the expected value of y. In linear models

the mean and the linear predictor are identical, so for normal distributed responses

mostly the identity function is chosen as a link, g(µi) = µi. In the Poisson case

however we are dealing with counts and must therefore have µ > 0, so we can’t take the

identity link. That’s why for Poisson distributed response often g(µi) = log(µi) and

G(ηi) = g−1(ηi) = exp(ηi) is taken as the link function, because η may be negative,

but µ must not be.

3.3. MLE of the Regression Parameters

For an observed independent random sample y1, ..., yn, consider the log likelihood of

β:

l(β) = logL(β) =
n∑
i=1

∫
[yi − µi(θ)]
φv(µi)

dµi(θ) + c(yi, φ) (3.13)

Maximizing the log likelihood function (3.13), we solve for the MLE of the regression

parameter as β̂. Take the derivative of (3.13):

dl(β)

dβ
=

n∑
i=1

dl(β)

dµi

dµi
dβ

=
n∑
i=1

(yi − µi)
φV (µi)

dµi
dX

′
iβ

dX
′
iβ

dβ
,

where

dµi
dX

′
iβ

=
dg−1(X

′
iβ)

dX
′
iβ

=
1

g′(µi)
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Hence

dl(β)

dβ
=

n∑
i=1

(yi − µi)
φV (µi)

1

g′(µi)
X

′

i (3.14)

Note that if Yi has a normal distribution, then g′
(µi) = 1, and V (µi) = 1 for all

i.Setting
dl(β)

dβ
= 0 yields

∑n
i=1Xi(yi−X

′
iβ) = 0. In other EF cases, no closed form

solution is available to this system of p equations. Instead, to obtain the maximum

likelihood estimator (MLE) numerically, we must resort to an iterative algorithm such

as Newton Raphson or Fisher scoring methods.

The Newton Raphson method provides successive approximations to the root β̂ of

(3.14). On the rth iteration, the algorithm updates the parameter estimate β̂r with;

β̂r+1 = β̂r −H−1s, r = 1, 2, ...,

where H is the Hessian (second derivative) matrix, and s is the gradient (first deriva-

tive) vector of the log-likelihood function. Both are evaluated at the current value of

the parameter estimate and are given by;

s =
∑
i

wi(yi − µi)xi
V (µi)g

′(µi)φ
,

H = −X ′
W0X,

where X is the design matrix, xi is the transpose of the ith row of X , and V is the

variance function. The matrix W0 is diagonal with its ith diagonal element equal to;

woi = wei + wi(yi − µi)
V (µi)g

′′
(µi) + V

′
(µi)g

′
(µi)

[V (µi)]2[g
′(µi)]3φ

where

wei =
wi

φV (µi)[g
′(µi)]2

and wi is a known weight for each observation. If the weight is not specified, then

simply put wi = 1 for each observation. The primes denote derivatives of g and V

with respect to µ. The negative of H is called the observed information matrix. The

expected value of W0 is a diagonal matrix We with diagonal values wei. If you replace

W0 with We, then the negative of H is called the expected information matrix. We is

the weight matrix for Fisher’s scoring method.
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3.3.1. Asymptotic properties of the regression MLE

The MLE β̂ for the GLM parameters has some nice asymptotic properties when n, the

number of observations, tends to infinity.

Lemma 1. 1. β̂ is an asymptotically unbiased and consitent estimator of β.

2. V (β̂) −→
∑

= −H−1, as n −→ ∞. H = −X ′
W0X is the Hessian matrix,

while W0 = diag(w01, ..., w0n) is a diagonal weight matrix with i− th element ;

woi =
wi

φV (µi)(g
′(µi))2

+ wi(yi − µi)
V (µi)g

′′
(µi) + V

′
(µi)g

′
(µi)

(V (µi))2(g
′(µi))3φ

for the known weights wi and covariate matrix X = (X1, ..., Xn)
′
.

3. β̂ d−→ N(β, (X
′
WX)−1φ), i.e. it converges in distribution.

For proof see (Fahrmeir & Kaufmann, 1985)

3.3.2. Estimation of parameters using the Maximum

Likelihood Estimation in Poisson regression

Estimation of parameters in Poisson regression relies on maximum likelihood estima-

tion (MLE) method. Maximum likelihood estimation gives an understanding of the

values of the regression coefficients that are more likely to have given rise to the data.

The maximum likelihood estimation for Poisson regression is discussed in detail be-

low; let Yi be the mean for the ith response, for i = 1, 2, ..., p. The mean response

is assumed to be a function of a set of explanatory variables, X1, X2, ..., Xp, the nota-

tion λ(Xi, β) is used to denote the function that relates the mean response λi and Xi

(the values of the explanatory variables for case i) and β (the values of the regression

coefficients). Let’s consider the Poisson regression model in the form below;

λi = λ(Xi, β) = eXi,β (3.15)

Then, from the Poisson distribution;

P (Y ; β) =
[λ(Xiβ)]Y e−λ(Xiβ)

Y !
(3.16)
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The likelihood function is given as,

L(Y ; β) =
N∏
i=1

P (Y ; β) (3.17)

=
N∏
i=1

[λ(Xiβ)]Y e−λ(Xiβ)

Y !
(3.18)

The next thing to do is taking natural log of the above likelihood function. Then,differentiate

the equation with respect to β and equate the equation to zero. The log likelihood func-

tion is given as,

LogL(Yi, β) =
N∑
i=1

[YiLogλ(Xi, β)]− λ(Xi, β)− Log(Yi!) (3.19)

∂

∂β
[LogL(Y ; β)] = 0 (3.20)

In this case, no closed form solution is available to this system of p equations. In-

stead, to obtain the maximum likelihood estimator (MLE) numerically, we must resort

to an iterative algorithm such as Newton Raphson or Fisher scoring methods.This pro-

cedure will estimate the values of β. Maximum likelihood estimation produces Pois-

son parameters that are consistent, asymptotically normal and asymptotically efficient

(Agresti, 2002).

3.4. Negative Binomial Regression Analysis

The negative binomial regression model is derived by re writing Poisson regression

model such that,

Logλ = β0 + βiXi + εi (3.21)

where eεi is a Gamma distributed error-term with mean 1 and variance α2. This addi-

tion allows the variance to differ from the mean as,

V ar(Y ) = λ(1 + αλ) = λ+ αλ2 (3.22)

α also acts as a dispersion parameter. Poisson regression model is regarded as a lim-

iting model of the negative binomial regression model as α approaches zero, which
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means that the selection between these two models is dependent upon the value of α.

The negative binomial distribution has the form,

P (Y = y) =
Γ( 1

α
+ y)

Γ( 1
α

)y!
[

1
α

( 1
α

) + λ
]
1
α [

λ

( 1
α

) + λ
]y (3.23)

where Γ(.) is a gamma function. This results in the likelihood function,

L(Yi) =
∏
i

Γ( 1
α

+ yi)

Γ( 1
α

)yi!
[

1
α

( 1
α

) + λi
]
1
α [

λi
( 1
α

) + λi
]yi (3.24)

Maximum likelihood estimation is used to estimate parameters in negative binomial. In

addition, the interpretation of regression coefficients for negative binomial regression

is the same as for Poisson regression.

3.4.1. Maximum Likelihood Estimation of Negative Binomial

Regression

The regression coefficients are estimated using the method of maximum likelihood.

Cameron and Trivedi (2013) gives the logarithm of the likelihood function as;

L =
n∑
i=1

{log[Γ(yi + α−1)]− log[Γ(α−1)]− log[Γ(yi + 1)]− α−1log(1 + αλi)− yilog(1 + αλi) + yilog(α) + yilog(λi)}

(3.25)

Rearranging gives;

L =
n∑
i=1

{(
yi−1∑
j=0

log(j + α−1))− log(Γ(yi + 1))− (yi + α−1)log(1 + αλi) + yilog(λi) + yilog(α)}

(3.26)

The first derivatives of L were given by Cameron and Trivedi (2013) and Lawless

(1987) as;

∂L

∂βj
=

n∑
i=1

xij(yi − λi)
1 + αλi

, j = 1, 2, ..., k

∂L

∂α
=

n∑
i=1

{α−2(log(1 + αλi)−
yi−1∑
j=0

1

j + α−1
) +

yi − λi
α(1 + αλi)

}
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− ∂2L

∂βr∂βs
=

n∑
i=1

λi(1 + αyi)xirxis
(1 + αλi)2

, r, s = 1, 2, ..., k

− ∂2L

∂βr∂α
=

n∑
i=1

λi(yi − λi)xir
(1 + αλi)2

, r,= 1, 2, ..., k

− ∂2

∂α2
=

n∑
i=1

{
yi−1∑
j=0

(
j

1 + αj
)2 + 2α−3log(1 + αλi)−

2α−2λi
1 + αλi

− (yi + α−1)λ2i
(1 + αλi)2

}

Equating the gradients to zero gives the following set of likelihood equations;

n∑
i=1

xij(yi − λi)
1 + αλi

= 0, j = 1, 2, ..., k

n∑
i=1

{α−2(log(1 + αλi)−
yi−1∑
j=0

1

j + α−1
) +

yi − λi
α(1 + αλi)

} = 0

In this case, no closed form solution is available to this system of equations. Instead,

to obtain the maximum likelihood estimator (MLE) numerically, we must resort to an

iterative algorithm such as Newton Raphson or Fisher scoring methods.This procedure

will estimate the values of β. Maximum likelihood estimation produces Negative Bino-

mial parameters that are consistent, asymptotically normal and asymptotically efficient

(Cameron & Trivedi, 2013).

3.4.2. Newton-Raphson Method

Under suitable regularity conditions,the maximum likelihood estimator is a solution to

the same equation,

S(θ) = S(X; θ) =
∂I(θ)

∂θ
=
∂LogL(θθ;X)

∂θ
= 0, (3.27)

where S(θ) = S(X; θ) is the score statistic. Generally the solution to this equation

must be calculated by iterative methods. One of the most common methods is the
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Newton-Raphson method and this is based on successive approximations to the so-

lution, using Taylor’s theorem to approximate the equation. Thus, we take an initial

value θ0 and write 0 = S(θ0)− J(θ0)(θ − θ0), ignoring the reminder term. Here

J(θ) = J(θ;X) = −∂S(θ)

∂θ
= −∂

2I(θ)

∂θ2
(3.28)

Solving this equation for θ then yields a new value θ1

θ1 = θ0 + J(θ0)
−1S(θ0)

and we keep repeating this procedure as long as |S(θj)| > ε, i.e.

θk+1 = θk + J(θk)
−1S(θ0)

Clearly, θ̂ is a fixed point of this iteration as S(θ̂) = 0 and, conversely,any fix point is a

solution to the likelihood equation. If θ̂ is a local maximum for the likelihood function,

we must have

J(θ̂) = −∂2I(θ)

∂θ̂2
> 0.

The quantity J(θ̂) determines the sharpness of the peak in the likelihood function

around its maximum. It is also known as the observed information. Occasionally we

also use this term for J(θ) where θ is arbitrary but strictly speaking this can be quite

inadequate as J(θ) may well be negative (although positive in expectation) (Akram &

Ann, 2015).

Recall that the (expected) Fisher information is I(θ) = E{J(θ)} and that for large

i.i.d samples it holds approximately that θ̂ ∼ N(θ, I(θ)−1). In contrast to the observed

information, I(θ) is non-negative everywhere, and in regular cases even strictly posi-

tive. But it is also approximately true, under the same assumptions that
√
J(θ̂)(θ̂) ∼

N(0, 1), we could write θ̂ ∼ N(θ, J(θ̂)−1).

The observed information is in many ways preferable to the expected information. In-

deed, θ̂ is approximately sufficient and J(θ̂) is approximately ancillary. The iteration

becomes; choose an initial value θ; calculate S(θ) and J(θ);

while |S(θ)| > ε repeat

1 θ ← θ + J(θ)−1S(θ)

2 calculateS(θ) and J(θ) go to 1
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Return θ;

Other criteria for terminating the iteration can be used. To get a criterion which is

insensitive to scaling of the variables, one can instead use the criterion J(θ)−1S(θ)2 >

ε. Note that, as a by-product of this algorithm, the final value of J(θ) is the observed

information which can be used to assess the uncertainty of θ̂. If θ0 is chosen sufficiently

near θ̂ convergence is very fast. It can be computationally expensive to evaluate J(θ)

a large number of times. This is sometimes remedied by only changing J every 10

iterations or similar.

Another problem with the Newton-Raphson method is its lack of stability. When

the initial value θ0 is far from θ it might wildly oscillate and not converge at all. This

is sometimes remedied by making smaller steps as θ ← θ + γ{J(θ) + S(θ)2}−1S(θ)

as this avoids taking large steps when S(θ) is large. The iteration has a tendency to

be unstable for many reasons, one of them being that J(θ) may be negative unless θ

already is very close to the MLE θ̂. In addition, J(θ) might sometimes be hard to

calculate.

3.4.3. Method of Scoring

Fisher (1922), introduced the method of scoring which simply replaces the observed

second derivative with its expectation to yield the iteration

θ ← θ + I(θ)−1S(θ).

I(θ) is easier to calculate and I(θ) is always positive. This generally stabilizes the

algorithm, but here it can also be necessary to iterate as;

θ ← θ + γ{I(θ) + S(θ)2}−1S(θ).

In the case of n independent and identically distributed observations we have I(θ) =

nI1(θ) so

θ ← θ + I1(θ)
−1S(θ)/n

where I1(θ) is the Fisher information in a single observation. In a linear canonical one-

parameter exponential family

f(X; θ) = b(X)eθt(X)−c(θ)

we get
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J(θ) = ∂2

∂θ2
{c(θ)− θt(X)} = c

′′
(θ) = I(θ).

For canonical exponential families the method of scoring and the method of New-

Raphson coincide. If we let V (θ) = c
′′
(θ) = I(θ) = V (t(X)) the iteration becomes

θ ← θ + v(θ)−1S(θ)/n.

The identity of Newton-Raphson and the method of scoring only holds for the canoni-

cal parameter.

If θ = g(µ)

J(µ) = ∂2

∂µ2
[c{g(µ)} − g(µ)t(X)]

= ∂
∂µ

[g
′
(µ)τ{g(µ)} − g′

(µ)t(X)]

=V {g(µ)}{g′
(µ)}2 + g

′′
(µ)[τ{g(µ)} − t(X)]

where we have let τ(θ) = c
′
(θ) = Eθt(X) and V (θ) = c

′′
(θ) = Vθt(X).

The method of scoring is simpler because the last term has the expectation equal to 0:

I(µ) = E{J(µ)} = V {g(µ)}{g′
(µ)}2.

3.4.4. The Multi-parameter case

The considerations on the previous over heads readily generalize to the multi-parameter

case. The approximation to the score equation becomes;

0 = S(θ0)− J(θ0)(θ − θ0)

where

S(θ)r = ∂I(θ)
∂θr

, J(θ)rs = − ∂2I(θ)
∂θr∂θs

,

i.e. S(θ) is the gradient and −J(θ) the Hessian of I(θ). The iterative step can still be

written as;

θ ← θ + J(θ)−1S(θ) where we have to remember that the score statistic S is a vector

and the Hessian −J a matrix. The lack of stability of the Newton-Raphson algorithm

is not any better in the multi parameter case.

On the contrary, there are not only problems with negativity, but the matrix can

be singular and not invertible or it can have both positive and negative eigen values.

Recall that a symmetric matrix A is positive definite if all its eigen values are positive

or, equivalently, if XTAX > 0 for all X 6= 0.
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Sylvester’s theorem says that:

Theorem 2. A is positive definite if and only if det(AR) > 0 for all sub matrices AR

of the form {ars}, r, s = 1, ..., R

.

It is therefore advisable to replace J(θ) with its expectation, the Fisher information

matrix,i.e. Iterate as;

θ ← θ + I(θ)−1S(θ)

where now I(θ) is the Fisher information matrix which is always positive definite if the

model is not over - parameterized. Also in the multi-parameter case it can be advisable

to stabilize additionally, i.e. by iterating as;

θ ← θ + γ{I(θ) + S(θ)S(θ)T}−1S(θ)

or

θ ← θ + γ{I(θ) + S(θ)TS(θ)E}−1S(θ)

where E is the identity matrix.

In a multi-parameter curved exponential family with densities ;

f(X; β) = b(X)eθ(β)
T t(X)−c{θ(β)}

where β is d- dimensional, we get;

J(β) = ∂2

∂β∂βT
[c{θ(β)} − θ(β)T t{X}]

= ∂
∂β

[( ∂θ
∂β

)T τ{θ(β)} − ( ∂θ
∂β

)T t(X)]

= ∂2θ
∂∂T

[τ{θ(β)} − t(X)] + ( ∂θ
∂β

)TV {θ(β)}( ∂θ
∂β

),

where the first term has expectation zero so,

I(β) = E{J(θ)} = ( ∂θ
∂β

)TV {θ(β)}( ∂θ
∂β

)

In the multi-parameter case it is in wide generality approximately true that;

θ̂ ∼ Nd(θ, I(θ)−1) or with a slight imprecision ;

θ̂ ∼ Nd(θ, J(θ̂)−1)

where Nd is the d-dimensional Gaussian distribution. In particular it holds approxi-

mately that; (θ̂ − θ)T I(θ)(θ̂ − θ) (θ̂ − θ)T I(θ̂)(θ̂ − θ) (θ̂ − θ)TJ(θ̂)(θ̂ − θ) χ2
(d).
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3.5. Establishing Appropriate Statistical Models

In this study, data on monthly Malaria incidence in Apac District for the period January

2007 to December 2016 were obtained from the Ministry of health, Uganda. Climate

data were obtained from Uganda National Meteorological Authority. The response

variable is the malaria incidence where as the climate variables are the explanatory

variables. In this study, the association between malaria incidences and climate vari-

ables was modeled using Poisson and Negative Binomial Regression models respec-

tively. We are particularly interested in the significance of rainfall and temperature

on the malaria incidences. This knowledge is important to the development of malaria

warning systems in Apac District, Northern Uganda and hence enable effective malaria

control measures to be put in place in a timely. The aim of this work was also to de-

velop a predictive model that can forecast the incidence of malaria incidences using

the reported cases, temperature and rainfall.

The generalized linear models were applied to fit the malaria incidence data as a

function of rainfall and average temperature.

3.6. Goodness of Fit

Deviance was used to test the goodness of fit of the model. Deviance is a measure of

discrepancy between observed and fitted values. According to likelihood ratio (LR)

theory, under regularity condition and asymptotically;

D(y; µ̂)

φ
= 2(log(θ)− log(θ̂) = −2log(λ(y)) ∼ χ2

n−p

if the model represented by θ̂ is an adequate model with p parameters, whereD(y; µ̂) is

termed the deviance of the fitted model that defines µ̂. φ is the dispersion parameter. In

expectation, if the fitted model is adequate,
D(y; µ̂)

φ
≈ n− p which defines a heuristic

model adequacy assessment (i.e if
D(y; µ̂)

φ
≈ n− p, then the model can be considered

adequate). The deviance for Poisson responses takes the form;

D = 2
n∑
i=1

{yilog(
yi
µ̂i

)− (yi − µ̂i)}
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The first term represents ’twice a sum of observed times log of observed over fitted’.

The second term, a sum of differences between observed and fitted values, is usually

zero, because maximum likelihood estimations in Poisson models have the property

of reproducing marginal totals. For large samples of the distribution, the deviance is

approximately a chi-square with n − p degrees of freedom, where n is the number of

observations and p the number of parameters. Therefore, the deviance can be used

directly to test the goodness of fit of the model.

In the case of negative binomial regression, the deviance is a generalization of the

sum of squares. The maximum possible log likelihood is computed by replacing µi

with yi in the likelihood formula. Thus, we have

D = 2[L(yi)− L(µi)] = 2
n∑
i=1

{yilog
yi
µi
− (yi + α−1)log

1 + αyi
1 + αµi

}

3.7. Residual analysis

Residual analysis was performed to determine the fit of the models developed. The

Poisson regression is a non-normal regression, that is residuals are far from being nor-

mally distributed and the variances are non constant. Therefore we assess the model

based on quantile residuals which removes the pattern in discrete data by adding the

smallest amount of randomization necessary on cumulative probability scale. The

quantile residuals are obtained by inverting the distribution function for each response.

Mathematically, let ai = limy↑yiF (y; µ̂, Θ̂) and bi = F (yi; µ̂, Θ̂) where F is the

cumulative function of the probability density function f(y;µ,Θ) then the randomized

quantile residuals for yi is rq,r = Φ−1(ui) with ui the uniform random variable on

(ai, bi]. The randomized quantile residuals are distributed normally barring the vari-

ability in µ̂ and Θ̂ (Dunn & Smyth, 1996).

3.8. Pearson correlation

Pearson correlation was used to measure the relationship between expected malaria

incidences and rainfall as well as average temperature. Correlation between sets of data
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is a measure of how well they are related. The most common measure of correlation

in statistics is the Pearson Correlation. The pearson correlation coefficient formula is

given below;

r =
n(
∑
xy)− (

∑
x)(

∑
y)√

[n
∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

It’s value is between −1and 1. It is very rarely see 0, −1 or 1. The values are usually

somewhere in between those values. The closer the value of r gets to zero, the greater

the variation the data points are around the line of best fit. High correlation is from 0.5

to 1.0 or −0.5 to −1.0, medium correlation is from 0.3 to 0.5 or −0.3 to −0.5 and low

correlation is from 0.1 to 0.3 or −0.1 to −0.3 (Mukaka, 2012).

3.9. Multicollinearity Test

A variance inflation factor(VIF) was used to detect multicollinearity in regression anal-

ysis. Multicollinearity is when theres correlation between predictors (i.e. independent

variables) in a model; its presence can adversely affect your regression results. The

VIF estimates how much the variance of a regression coefficient is inflated due to mul-

ticollinearity in the model.

V IF =
1

1−R2
i

(3.29)

where R2
i is the coefficient of determination. Variance inflation factors range from 1

upwards. The numerical value for VIF tells you (in decimal form) what percentage the

variance (i.e. the standard error squared) is inflated for each coefficient. For example,

a VIF of 1.9 tells you that the variance of a particular coefficient is 90% bigger than

what you would expect if there was no multicollinearity if there was no correlation

with other predictors. A rule of thumb for interpreting the variance inflation factor:

1 = not correlated, between 1 and 5 = moderately correlated, greater than 5 = highly

correlated. Exactly how large a VIF has to be before it causes issues is a subject of

debate. In general, a VIF above 10 indicates high correlation and is cause for concern

(Vatcheva et al., 2016).
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3.10. Methods used in Forecasting

3.10.1. ARIMA Models

In this study R statistical software was used to develop ARIMA (Autoregressive in-

tegrated moving average) models for forecasting. ARIMA model was analyzed with

the application of Box-Jenkins approach in which the data was analyzed and used to

identify, estimate and select the best model. First and foremost we checked the data for

stationarity before using it to develop ARIMA models. Augmented Dickey-Fuller test

was used to test the null hypothesis that the data is non-stationary versus the alternative

hypothesis that the data is stationary. When the data is found to be non stationary, it is

differenced to make it stationary (McLeod & Li, 1983). When stationarity is obtained

with a differenced ARIMA parameter d (the number of times the series is differenced

to achieve stationarity), we then identified the order of the two processes that construct

the ARIMA model that is the AR and MA. After which we estimated the parameters

of the models.

In order to select an appropriate subclass of models from the general ARIMA(p,d,q),

the following approaches of the ARIMA model were used to develop a model to fore-

cast malaria incidences from historical malaria incidence data in Apac District. The

Autoregressive integrated moving average (ARIMA) models or Box-Jenkins method-

ology, are a class of linear models that use historical values of a single variable to

forecast it’s future values; hence they are classified as univariate methods. The model

can represent both stationary and non stationary time series. However, for adequate

ARIMA modeling, a time series should be stationary with respect to mean and vari-

ance (Makridakis et al., 2008). To obtain stationary time series, the original time series

should be transformed, such as a log transformation, time series differencing or vari-

ance stabilization. Once a stationary series has been obtained, then a satisfactory model

has been obtained and can be used to forecast expected number of cases for a given

number of future time intervals.

Consider a discrete time series of equally spaced n observations in time:

Yt = Y1, Y2, ..., Yn−1, Yn (3.30)
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An equation of ARIMA model is combining two processes; the autoregressive pro-

cess (AR) which expresses Yt as a function of it’s past values and the moving average

process (MA) as a function of past values of the error term. There we represent the

ARIMA process as;

Yt = φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p − et − θ1et−1 − θ2et−2 − ...− θqet−q (3.31)

where φ′s and θ′s are the coefficients of the AR and MA processes respectively, and p

and q are the number of past values of Yt and the error terms respectively.

The general notation of the ARIMA models is ARIMA (p, d, q) where p is the

order of the autoregressive component, d is the order of differencing used and q is the

order of the moving average component in the model. Differencing a series involves

subtracting it’s current and previous values d times. Often differencing is used to

stabilize the series when the stationarity assumption is not met. ARIMA models can

also be specified through a seasonal structure. In this case, the model is specified by

two sets of order parameters: (p, d, q)(P,D,Q)s where p and P- are the autoregressive

and seasonal autoregressive respectively, d and D- are the non-seasonal differences

and seasonal differencing respectively, q and Q- are the moving average parameters

and seasonal moving average parameters respectively, and s represents the length of

the seasonal period.

An autoregressive component, AR(p) refers to the use of past values in the regression

equation for the series Y . The autoregressive parameter p specifies the number of lags

used in the model. AR(p) is represented as;

Yt = φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + et (3.32)

where φ′
is, i = 1, 2, ..., p are the model parameters. Usually ARMA models are ma-

nipulated using the lag operator notation. The lag or backshift operator is defined as

Lyt = yt1 . Polynomials of lag operator or lag polynomials are used to represent

ARMA models as follows ; AR(p) model t = φ(L)yt . It is shown that an important

property of AR(p) process is invertibility, i.e. an AR(p) process can always be written

in terms of an MA(∞) process. Whereas for an MA(q) process to be invertible, all the
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roots of the equation θ(L) = 0 must lie outside the unit circle. This condition is known

as the Invertibility Condition for an MA process.

A moving average component MA(q) represents the error of the model as a combi-

nation of previous error terms et. The order q determines the number of terms to be

included in the model. MA(q) is represented as;

Yt = et − θ1et−1 − θ2et−2 − ...− θqet−q (3.33)

where θ′
is, i = 1, 2, ..., q are the model parameters. The random shocks are assumed to

be a white noise process, that is a sequence of independent and identically distributed

(i.i.d) random variables with zero mean and a constant variance σ2 . Generally, the ran-

dom shocks are assumed to follow the typical normal distribution. Thus conceptually

a moving average model is a linear regression of the current observation of the time

series against the random shocks of one or more prior observations.

After the ARIMA models for malaria incidences data and log transformed malaria

data were developed, the accuracy of these models were tested and compared in or-

der to choose the best predictive models. To select the best model we used Akaike

information criterion (AIC), Bayesian information criterion to estimate the quality of

each model relative to each other and the Mean Absolute Error (MAE) to measure the

average magnitude of errors in the models. Taking all these measures into account, the

best model chosen was one with lower AIC, BIC and MAE values.

3.11. Accuracy Tests

3.11.1. Akaike Information Criterion

The Akaike information criterion (AIC) is a measure of the relative quality of statistical

models for a given set of data. Given a collection of models for the data, AIC estimates

the quality of each model, relative to each of the other models. Hence, AIC provides a

means for model selection (Kihoro et al., 2004). Let L be the maximized value of the

likelihood function for the model; let k be the number of estimated parameters in the

model. Then the AIC value of the model is given by:
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AIC = 2k − 2 lnL (3.34)

Given a set of candidate models for the data, the preferred model is the one with the

minimum AIC value. Hence AIC rewards goodness of fit (as assessed by the likelihood

function), but it also includes a penalty that is an increasing function of the number of

estimated parameters. The penalty discourages over fitting (increasing the number of

parameters in the model almost always improves the goodness of the fit).

3.11.2. Bayesian Information Criterion (BIC)

The Bayesian information criterion (BIC) is a criterion for model selection among a

finite set of models (Kihoro et al., 2004). The model with the lowest BIC is preferred.

It is based on the likelihood function and it is closely related to the Akaike information

criterion (AIC). AIC and BIC feature the same goodness-of-fit. When fitting models,

it is possible to increase the likelihood by adding parameters, but doing so may result

in over fitting. Both BIC and AIC resolve this problem by introducing a penalty term

for the number of parameters in the model. The penalty term is larger in BIC than in

AIC. The BIC value of the model is given by:

BIC = k lnn− 2 lnL (3.35)

where n is the number of observations or the sample size.

3.11.3. Mean Absolute Error (MAE)

The simplest measure of forecast accuracy is called Mean Absolute Error (MAE).

MAE is simply, as the name suggests, the mean of the absolute errors. The abso-

lute error is the absolute value of the difference between the forecasted value and the

actual value. MAE tells us how big of an error we can expect from the forecast on
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average. The mean absolute error is defined as (Park, 1999);

MAE =
1

n

n∑
t=1

|et|

Its properties are; It measures the average absolute deviation of forecasted values from

original ones, it is also termed as the Mean Absolute Deviation (MAD), it shows the

magnitude of overall error, occurred due to forecasting, the effects of positive and

negative errors do not cancel out, MAE does not provide any idea about the direction

of errors, for a good forecast, the obtained MAE should be as small as possible, MAE

depends on the scale of measurement and data transformations, extreme forecast errors

are not panelized by MAE.

3.12. Unit roots

In empirical analysis using time series data, it is essential to establish the presence

or absence of unit root in the series being studied. The presence or absence of unit

roots helps to identify the nature of the processes that generates the time series data

and to investigate the order of integration of a series. This is because, contemporary

econometrics has indicated that, regression analysis using non-stationary time series

variables produce spurious regression since standard results of OLS do not hold. A

variable is said to be stationary if the mean, the variance and the covariance of the

series are finite and are time invariant. Where,

E(Yt) = E(Yt−1) = µ

which is a constant and

cov(Yt, Yt−l) = γl

which depends only on the lag l and not on time t. If there exist no unit root, the time

series fluctuates around a constant long-run mean with finite variance which does not

depend on time. There are several proposed quantitative methods of testing for station-

arity of a time series variable. This study however employed graphical approaches of
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the time series plots i.e., Autocorrelation functions (ACF) and Partial Autocorrelation

functions (PACF). In graphical form, a time series plot which do not show mean re-

version gives an indication that the levels of the series are non-stationary. Also a slow

decaying ACF plot also gives an indication of non-stationarity of a time series. The

qualitative method used in this research is the Augmented Dickey-Fuller (ADF) test.

3.12.1. Augmented Dickey Fuller (ADF) Unit Root Test

This study employed the Augmented Dickey-Fuller (ADF) test to determine the sta-

tionarity of the malaria time series data. The ADF test proposed by Dickey and Fuller

(1979) is an upgraded form of the Dickey-Fuller (DF) test. This test is based on the

assumption that the series follow a random walk with model;

Rt = ΦYt−1 + ut (3.36)

and tests the hypothesis: H0 : Φ = 1 (Non-stationary) against H1 : Φ < 1 (Station-

ary) where φ is the characteristic root of an AR polynomial and ut is an uncorrelated

white noise series with zero mean and constant variance σ2. When Φ = 1, equation

(3.36) does not satisfy the weakly stationary condition of an AR (1) model hence the

series becomes a random walk model known as a unit root non-stationary time series.

Subtracting Yt−1 from both sides of equation (3.36) we get;

∆Rt = ϕYt−1 + ut , t = (1, ..., T ) (3.37)

where ϕ = Φ − 1 and ∆Rt = Yt − Yt−1. For estimating the existence of unit roots

using equation (3.37), we test hypothesisH0 : ϕ = 0 againstH1 : ϕ 6= 0. UnderH0 , if

ϕ = 0, then Φ = 1, thus the series has a unit root hence is non-stationary. The rejection

or otherwise of the null hypothesis, H0 is based on the t-statistic critical values of the

Dickey Fuller statistic. The Dickey Fuller test assumes that the error terms are serially

uncorrelated, however, the errors terms of the Dickey Fuller test do show evidence

of serial correlation. Therefore, the proposed ADF test includes the lags of the first

difference series in the regression equation to make ut a white noise. The Dickey and
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Fuller (1979) new regression equation is given by;

∆Rt = ϕYt−1 +

p∑
j=1

γj∆rt−j + ut , t = (1, ..., T ) (3.38)

If the intercept and time trend β + αt are included, then equation (3.38) is written as;

∆Rt = β + αt+ ϕYt−1 +

p∑
j=1

γj∆rt−j + ut , t = (1, ..., T ) (3.39)

where β is an intercept, α defines the coefficient of the time trend factor,
∑p

j=1 γj∆rt−j

defines the sum of the lagged values of the response variable ∆Rt and p is the order

of the autoregressive process. If ϕ of the Augmented Dickey Fuller model is zero ,

then there exist a unit root in the time series variable considered, hence the series is not

covariance stationary. The choice of the starting augmentation order depends on the

periodicity of the data, the significance of γi estimates and the white noise residuals

series ut. The ADF test statistic is given by;

Fτ =
ϕ̂

SE(ϕ̂)
(3.40)

where ϕ̂ is the estimate ofϕ and SE(ϕ̂) is the standard error of the least square estimate

of ϕ̂ . The null hypothesis H0 is rejected if, the p − value < α(significance level). If

the series is not stationary, it is transformed by differencing to make it stationary and

stationarity tested again. If the time series is not stationary but its first difference is

stationary, then the series is said to be an integrated process of order one (1) or simply

an I(1) process.

3.12.2. Univariate Ljung-Box Test

The study employed the univariate Ljung and Box (1978) test to test jointly whether or

not several autocorrelations rl of the residuals of the individual ARIMA models fitted

were zero. It is based on the assumption that the residuals contain no serial correlation

(no autocorrelation) up to a given lag m. The univariate Ljung-Box statistic is given

by:

Q(m) = T (T + 2)
m∑
l=1

r2l
T − l

(3.41)
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where rl represents the residual sample autocorrelation at lag l, T is the size of the

series, m is the number of time lags included in the test. Q(m) has an approximately

chi-square distribution with m degrees of freedom. We fail to reject H0 and conclude

at α-level of significance that, the residuals are free from serial correlation when the

pvalue is greater than the significance level.

3.12.3. Univariate ARCH-LM Test

For a fitted model to adequately fit a series, the variance of the models’ residuals must

be constant over time. The univariate ARCH-LM test proposed by Engle (1982) was

used in this research to check for the presence or absence of conditional heteroscedas-

ticity in the residuals of the individual equations of the model fitted. If there exist no

ARCH-effect, it implies that the residuals of the model are homoscedastic and have

constant variance. This statistic uses the linear regression model;

u2t = a0 + a1u
2
t−1 + ...+ amu

2
t−m + et, t = m+ 1, ..., T (3.42)

where et is the error term, T is the sample size and m is a positive integer. The ARCH-

LM statistic tests the hypothesis that; H0 = a1 = ... = am = 0 no ARCH effect

against

H1 = a1 6= ... 6= am 6= 0 ARCH effect exist

The ARCH-LM test statistic is calculated as;

LM = TR2 (3.43)

where R2 is the coefficient of determination for the auxiliary regression. The decision

rule is to reject H0 and conclude that there is conditional heteroscedasticity (ARCH-

effect) in the residuals of the model if LM > χ2
m, or if the P − value < α, where m

is the lag order of ARCH-effect and α is the significance level chosen.

3.12.4. Jarque Bera test

A Jarque-Bera test was performed to test for normality. Description:

The Jarque-Bera test (Jarque & Bera, 1987) is based on the sample skewness and
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sample kurtosis. The Jarque-Bera test statistic is defined as:

N

6
(S2 +

(K − 3)2

4
) (3.44)

with S, K, and N denoting the sample skewness, the sample kurtosis, and the sample

size, respectively. Skewness is a measure of symmetry, or more precisely, the lack of

symmetry. A distribution, or data set, is symmetric if it looks the same to the left and

right of the center point. Kurtosis is a measure of whether the data are heavy-tailed or

light-tailed relative to a normal distribution.

S =
E(X − µ)3

σ3
(3.45)

K =
E(X − µ)4

σ4
(3.46)

38



4. Results And Discussions

4.1. Data Exploration

Monthly malaria incidences for the period 2007 − 2016 was used. The data was ob-

tained from the Ministry of Health, Uganda. Table 4.1 shows results for exploratory

analysis for Malaria incidences for the period 2007− 2016.

Table 4.1.: Summary of Malaria Incidences

Malaria incidences Mean Standard deviation Range

9746 3017.864 5034− 19289

From Table 4.1, the minimum value for malaria incidences is 5034, the maximum

value is 19289 cases, the mean value for the whole period is 9746 and the standard

deviation is 3017.864.

From Figure 4.1, it is observed that the histogram is skewed to the right which is

representation of count data. We conclude that malaria incidences is count data and we

can model it using a distribution suited for count data which is the Poisson distribution.

4.2. Significance of Rainfall and Temperature on

Malaria incidences

The expected malaria incidences was modeled using Poisson regression and the re-

sults are presented in Table 4.2. The model examines the association between monthly

39



Figure 4.1.: Monthly Malaria incidences over the period 2007-2016

expected malaria incidences with monthly rainfall and monthly average temperature.

From the Table 4.2 , it was observed that for every unit increase in rainfall, the expected

malaria incidences increases by e0.0007877 = 1.0007880 and for a unit increase in aver-

age temperature, the expected malaria incidences decrease by e−0.03265 = 0.9678773

obtained from Equation (4.1). Based on the P- values, the average temperature and

rainfall significantly affect the expected malaria incidences.

Table 4.2.: Parameter Estimates of Poisson Regression

Estimate Standard Errors P-value

Intercept 9.888 0.03087 0.000000

Rainfall 0.0007877 0.00001493 0.000000

Average Temperature −0.03265 0.001187 0.000000

The residual deviance for the fitted Poisson regression was given as 89489 on 117

degrees of freedom.

The fitted Poisson model is given as from Table 4.2

LogA = 9.8881 + (7.877e−04)R− (3.265e−02)T = 9.888 + 0.0007877R− 0.03265T

(4.1)
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where A is the expected malaria incidences, R stands for rainfall and T stands for

average temperature.

To check the fit of the fitted Poisson model, the value of the residual deviance 89489

on 117 degrees of freedom was considered as observed in Table 4.2, it was observed

to be far greater than the number of degrees of freedom. This implies that the ratio
89489
117

= 764.863 which is the dispersion parameter. This value 764.863 is far greater

than one. Therefore it can be concluded that the model has lack of fit. If the mean

and variance were equal, the residual deviance should be approximately equal to the

df for error. The assumption of mean equal to variance of the Poisson random variable

hence was violated since the dispersion parameter was not approximately equal to 1, an

indication of over dispersion in the data. This meant that the parameters of the model

had been over estimated and the standard errors had been under estimated which did

not give a true reflection of the model that could provide appropriate expected malaria

incidences from 2007 to 2016. The fitted Poisson model had an AIC value of 90813

and a null deviance of 100505 on 119 degrees of freedom.

Table 4.3.: Parameter Estimates for Negative Binomial Regression Model for Rainfall

and Average Temperature

Estimate Standard Errors P-value

Intercept 10.1940861 0.7788004 0.000000

Rainfall 0.0008147 0.0003849 0.0343

Average Temperature −0.0451456 0.0298939 0.1310

The Negative Binomial regression model whose results were presented in Table 4.3,

showed null deviance to be 140.31 on 119 degrees of freedom, residual deviance to be

121.36 on 117 degrees of freedom and AIC to be 2225.3.

To address this error, Negative Binomial Regression was used to modify the model

so that the case of over dispersion in the data was taken care of and the results were

presented in Table 4.3 . It was observed that the Negative Binomial was actually the

best model which fit the expected malaria incidences because the dispersion parameter
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given by Poisson Regression Model had been reduced from 770 to 1.03. Tests for

multicollinearity indicated that a slightly high level of multicollinearity was present

(VIF = 11.46 for average temperature and 10.22 for rainfall)

Figures, 4.2, 4.3, 4.4 and 4.5, show plots of the deviance residuals against the normal

quantiles based on Poisson model and Negative binomial models respectively. Figure

4.2 for Poisson regression, the plot was not approximately linear just as for Figure 4.4

and Figure 4.5. This indicated poor fit of the models. Figure 4.3, for the Negative

Binomial model relating Malaria incidences and rainfall, the plot was approximately

linear. This gave the best fit compared to the rest of the plots.

Figure 4.2.: Normal Q-Q plot for Poisson Regression

From the Figure 4.2, the points form a curve instead of a straight line. Normal Q-Q

plots that look like this usually imply the model has a lack of fit.

Three models for Negative Binomial regression were considered and compared us-

ing the Akaike information criterion (AIC) . The results for the two Negative Binomial

Regression models without collinearity respectively are given in Table 4.4 and Ta-

ble 4.5, respectively. The model from Table 4.5 gave the lowest AIC value that is

2225.4 compared to the other model from Table 4.4 which gave higher AIC value that

is 2227.7. Hence Negative Binomial model for the relationship between rainfall and

expected malaria incidences whose results were presented in Table 4.5 was considered

the model with better fit since it had lower AIC value. The lower the AIC value, the
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Figure 4.3.: Normal Q-Q plot for Negative Binomial Regression Model between Rain-

fall and Expected malaria incidences

Figure 4.4.: Normal Q-Q plot for Negative Binomial Regression Model between Aver-

age Temperature and Expected malaria incidences

better the model.

The Negative Binomial regression model whose results were presented in Table 4.4,

showed null deviance to be 135.34 on 119 degrees of freedom, residual deviance to be

121.41 on 118 degrees of freedom and AIC to be 2227.7

The Negative Binomial regression model whose results were presented in Table 4.5
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Figure 4.5.: Normal Q-Q plot for Negative Binomial Regression Model between Aver-

age Temperature, Rainfall and Expected malaria incidences

Table 4.4.: Parameter Estimates for Negative Binomial Regression Model for Average

Temperature

Estimate Standard Errors P-value

Intercept 11.37160 0.54154 0.000000

Average Temperature −0.08822 0.02178 0.0000512

Table 4.5.: Parameter Estimates for Negative Binomial Regression Model for Rainfall

Estimate Standard Errors P-value

Intercept 9.0252866 0.0436207 0.000000

Rainfall 0.0011832 0.0002779 0.0000206

showed null deviance to be 137.88 on 119 degrees of freedom, residual deviance to be

121.38 on 118 degrees of freedom and AIC to be 2225.4.

The Model whose results were presented in Table 4.3 was not considered because

of a negatively strong correlation between the explanatory variables that is rainfall and
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average temperature which was reported in Table 4.6 as −0.6985212. Therefore one

of the independent variables was removed from the model and two Negative Binomial

regression models were developed and results for the parameter estimates presented in

Table 4.4 and Table 4.5 respectively. Based on P-value, the results in Table 4.4 and

4.5 showed that average temperature and rainfall significantly affected the expected

malaria incidences respectively.

Table 4.6.: Correlation between rainfall and average temperature

Climate Variables Correlation value

Rainfall and Average Temperature −0.6985212

Table 4.7.: Pearson correlation test results

Malaria and Average temperature Malaria and rainfall

t-value −3.0311 3.4594

P-value 0.9985 0.0003771

confidence interval [−0.4033168, 1.0000000] [0.1598574, 1.0000000]

degrees of freedom 118 118

Pearson correlation test was performed and the results was presented in Table 4.7.

The results show that malaria and rainfall were strongly positively associated based

on the P-value which is significant since it was found to be less than 5% significance

level and a positive confidence interval. Malaria and Average temperature were found

to be negatively associated and not significant given the P-value was greater than 5%

significance level.

4.2.1. Interpretation of coefficients

From Table 4.5, we observe that rainfall is very significant at 5% significance level

with their significance value equal to 0.01388. For every one unit increase in amount
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of rainfall, the expected malaria incidences increases by e0.0011832 = 1.0011839003

times. From Table 4.3, we observe that rainfall is slightly significant with signifi-

cance value 0.0343 at 5% significance level while temperature is not significant at 5%

significance level with P-value of 0.1310. This indicated the presence of collinearity

between rainfall and average temperature. The positive coefficient of rainfall implies

that as rainfall increases, the expected malaria incidences also increase.

4.2.2. Discussion on significance of Rainfall and

Temperature on Malaria incidences

Malaria is transmitted by the female Anopheles mosquito. The female Anopheles

mosquito go through four stages in their life cycle that is egg, larva pupa and adult

(Wardrop et al., 2013). The first three stages are aquatic and also depend on the tem-

perature. The adult stage is when the female Anopheles mosquito acts as malaria

vector(Wardrop et al., 2013). Once adult mosquitoes have emerged, the temperature,

humidity and rainfall determine their chances of survival. To transmit malaria success-

fully, female Anopheles must survive long enough after they have become infected to

allow the parasites they harbour to complete their growth cycle (Kakchapati & Ard-

kaew, 2011). A conducive climatic environment will also shorten the time required for

the parasite development in the mosquito (Agusto et al., 2012). The climate variables

can affect the malaria incidences by affecting the life cycle of the mosquito develop-

ment and the parasite in the mosquitoes.

Pearson correlation between rainfall and average temperature showed a strong neg-

ative correlation. This highlights the importance of removing one of the climate vari-

ables from the model to avoid invalid association due to collinearity. In this study,

rainfall was the only climate variable considered in the Negative Binomial Regres-

sion model since it presented the best fit. Negative Binomial regression model re-

lating expected malaria incidences, rainfall and temperature was not selected as the

final model due to high correlation between rainfall and average temperature which af-

fected the significance of individual climate variables to expected malaria incidences.

The model results showed that average temperature was not significant in the model
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while rainfall was weakly significant. This result was seen to contradict the biology

of mosquito development.The model relating malaria incidences and average temper-

ature showed a significant positive relationship though it was not the model selected

since it had a higher AIC value. Modeling has shown that optimal malaria transmis-

sion occurs at 25◦C and malaria transmission decreases at temperature above 28◦C

(Musa et al., 2012). Temperatures below 16◦C are also detrimental for survival of

mosquitoes (WHO, 2013). Results from previous study (Gomez-Elipe et al., 2007),

showed a strong positive association between malaria incidence in a given month and

the minimum temperature of the previous month.

In previous studies of climatic effects on malaria incidence, different results on the

effect of rainfall on malaria incidence were found. Hove-Musekwa et al. (2008), found

rainfall to be significant when precipitation was 2.4 times higher than the normal level.

Rainfall plays an important role in the survival of mosquitoes, since water pools from

the rain provide a habitat for mosquito larvae to develop. Bloland et al. (1999), found

there was no significant effect when rainfall was less than 100mm per month in Yun-

nan, China. A study in Ethiopia found that rainfall had a significant effect on malaria

incidence in hot districts with an altitude lower than 1, 650mm, but not in cold districts

with an altitude higher than 1, 650mm (WHO, 2015).

In the present study, there was a positive significant effect between rainfall and

malaria incidences, similar to previous findings (WHO, 2015; Yang & Ferreira, 2000).

The positive effects were reasonable because rain water forms water pools which pro-

vide a breeding ground for mosquitoes, hence increasing the mosquito density which

in turn leads to increase in malaria incidences. To our knowledge, no study has in-

vestigated the association between climate variables and malaria incidences in Apac

District, Uganda.

The study had it’s own limitations such as short data length and not being able

to include non-climatic variables such as differences between human hosts, human

migration and development projects which affect malaria transmission in the models.

The relationship between malaria incidences and climate variables a period of 10 years

was not found to be sufficient enough to predict future occurrences. Malaria incidence
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is associated with socio-economic conditions of the people as well as malaria control

measures. These factors were not incorporated in the models.

4.3. Results and Discussion on Forecasting of

Malaria Incidences

4.3.1. Data Analysis

Monthly malaria incidences for the period 2007 − 2016 was used. The data was ob-

tained from the Ministry of Health, Uganda.

From Figures 4.6, 4.7 and 4.8, monthly malaria incidences, monthly rainfall and

monthly average temperature from 2007 to 2016 were explored, which showed no clear

trend and suggested a seasonal dependency in the series. All series exhibited number

of peaks a part from small scale fluctuations. From Figure 4.6, the significant peaks

in the monthly malaria incidences series seem to be separated by months showing a

cyclical seasonal pattern as the peak of malaria incidences follow a similar pattern

with an interval of few months between the peaks.

Figure 4.6.: Monthly Malaria incidences
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Figure 4.7.: Monthly Rainfall

Figure 4.8.: Monthly Average Temperature

4.3.2. Results on Forecasting

The autocorrelation function(ACF) for the monthly malaria incidences series, Figure

4.9 showed significant peaks at different lags (autocorrelation=0.05918), Box-Ljung

statistics (p-value=0.0000555695) as seen in Table 4.9, showed existence of serial cor-

relation in the residuals of the model since the p-value is less than the 5% signifi-

cance level. This indicates the mean of the residuals of the model were not finite

and ARCH- LM test showed presence of arch effects(conditional Heteroscedasticity)
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(p-value=0.0000413936) since the ARCH-LM test rejects the null hypothesis of no

ARCH effect in the residuals of the model as the p-value of the Chi-square statistic

is less than the 5% significance level as shown in Table 4.9. This indicates that the

residuals are correlated thus do not follow white noise series. The series exhibited

stationary (p-value=0.01) from the ADF test as observed in Table 4.9. The partial au-

tocorrelation function (PACF), Figure 4.10 also showed significant peaks at different

lags which confirmed presence of seasonal component in the time series data. From

results in Table 4.9, it was noted that the actual data for malaria incidences exhibited

presence of autocorrelation and arch effects in the residuals as well as lack of normal-

ity. This implied that the actual data malaria incidences series did not exhibit good

behavior for forecasting purposes.

The data was transformed by performing a log transformation on the actual malaria

incidences series. It was observed that the transformed data exhibited good behavior

for forecasting purposes. The Ljung-Box test as seen in Table 4.10 showed that the

residuals of the model were free from serial correlation since the p-values exceeds the

5% significance level. This indicates the mean of the residuals of the model were finite.

Further ARCH-LM test shown in Table 4.10 showed that, the residuals of the model

were free from conditional Heteroscedasticity, since the ARCH-LM test fails to reject

the null hypothesis of no ARCH effect in the residuals of the model as the p-values

of the Chi-square statistic is greater than the 5% significance level. This shows that

the residuals are uncorrelated , thus have zero mean and have constant variance over

time hence are white noise series.The residuals still showed lack of normality based on

the p-values in Table 4.10. The transformed time series data showed was found to be

stationary based on the results of the ADF test (p-value=0.01) in Table 4.10.

The R statistical software was used to find the best fit model for forecasting malaria

incidences using monthly rainfall and monthly average temperature. It suggested the

autoregressive integrated moving average model, ARIMA (1, 0, 0)(1, 1, 0)12 as the best

fit statistical model for this time series data. This is confirmed from results in Table

4.8. The observed values and the predicted values matched reasonably well as seen in

Figure 4.12. The Ljung-Box statistics indicated that the model was specified correctly
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as observed in Table 4.10.

The forecasting model proposed, ARIMA, provides a comprehensive set of tools

for univariate time series model identification, parameter estimation and forecasting.

It also offers great flexibility in analysis, which has contributed to it’s popularity in

several areas of research and practice. A seasonal ARIMA model is represented by

ARIMA (p, d, q)(P,D,Q)s where p and P- are the autoregressive and seasonal autore-

gressive respectively, d and D- are the non-seasonal differences and seasonal differ-

encing respectively, q and Q- are the moving average parameters and seasonal moving

average parameters respectively, and s represents the length of the seasonal period.

ARIMA (1, 0, 0)(1, 1, 0)12 model was used to forecast the malaria incidences for the

future from January 2017 to December 2020. The fore casted malaria incidences also

showed a seasonal pattern with significant peaks during the rainy season as observed

in Figure 4.11.

Figure 4.9.: ACF plot for Malaria incidences
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Figure 4.10.: PACF plot for Malaria incidences

Figure 4.11.: Observed and Forecasted values for malaria incidences

Table 4.8.: Model statistics for malaria incidences

Model parameter model type AIC BIC MAE ACF

Actual data ARIMA(0, 0, 3) 1765.41 1778.23 1681.25 0.0591

Transformed data ARIMA(1, 0, 0)(1, 1, 0)[12] −268.85 −259.13 0.0307 −0.0301
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Figure 4.12.: Observed and fitted values for malaria incidences

Table 4.9.: Residual Analysis results for malaria incidences

Tests Statistics df P-value

ARCH-LM test 95.913 20 6.737e−12

Ljung-Box statistic 88.712 20 1.244e−10

Jarque Bera Test 15.433 2 0.0004454

Augmented Dicker Fuller Test −6.5335 lag= 4 0.01

Table 4.10.: Residual Analysis results for transformed malaria incidences

Tests Statistics df P-value

Arch effects 17.54 20 0.6177

Ljung-Box statistic 29.18 20 0.08428

Jarque Bera Test 22.679 2 1.189e−05

Augmented Dicker Fuller Test −6.5352 lag= 4 0.01

4.3.3. Discussion on Forecasting Malaria incidences using

ARIMA models

ARIMA models are useful tools in forecasting epidemiological data. They are partic-

ularly useful for diseases which show a seasonal pattern (Helfenstein, 1991), just like
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in this study malaria incidences showed a seasonal pattern. ARIMA(1, 0, 0)(1, 1, 0)12

model developed in this study is to provide a simple tool to predict the expected num-

ber of malaria incidences per month in the future based on observed malaria incidences

over the years.

Wangdi et al. (2010), found ARIMA(2, 1, 1)(0, 1, 1)12 to be the best possible model

to predict malaria cases in Bhutan. The method of ARIMAX modelling was employed

to determine predictors of malaria of the subsequent month. ARIMA model was also

used for forecasting malaria cases in Sri Lanka (Briet et al., 2008) and Ethopia (Abeku

et al., 2002).

High malaria incidences was found to occur between months of August, September

and November. Rainy season in Apac District is usually from June, July and August.

This shows that there is a strong correlation with rainfall in the preceding month. Rain-

fall increases the number of vector breeding grounds which is conducive to malaria

transmission. Temperature also plays a significant role in malaria transmission. Tem-

perature rise is expected to increase transmission and prevalence of malaria by shorten-

ing the incubation period of the parasite in the female Anopheles mosquitoes. Sporo-

gonic cycles take about 9 to 10 days at temperatures of 28◦ but higher than 30◦ and

below 16◦ have negative impact on parasite development (Hunter, 2003).

Based on the results of present study, we observe that malaria incidences will con-

tinue to occur in the near future based on forecasts made if appropriate actions are not

initiated on time. The aim of this study was to develop a good forecasting model for

predicting expected malaria incidences so that timely and control measures are put in

place.

Apart from climatic factors, other factors like urbanization, population movement,

the level of immunity to malaria in human hosts, insecticide resistance in mosquitoes

and drug resistance in parasites play a significant role in affecting the malaria inci-

dences. The statistical model developed in this study assumes these factors remain

constant over a period of time taking into consideration only climatic factors to fore-

cast malaria incidences.

The study had some limitations, the data used for the study was obtained from only
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one health center. It makes it difficult to generalize results for the actual population

due to small sample size. Non-climatic factors affecting malaria incidences were not

included in the model. There was a challenge of obtaining weekly data; hence use of

monthly data which affects the accuracy of the results.
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5. Conclusions and

Recommendations

5.1. Significance of climate variables on malaria

incidences

Malaria remains an important public health problem in Apac District, Northern Uganda.

The objective of this study was to model the climate variables that is rainfall and tem-

perature associated with malaria incidences in Apac District. The study used monthly

data for the period January 2007 to December 2016 in Apac District. The Poisson

regression did not accurately fit the data on malaria incidences due to over dispersion

in the data. The Negative Binomial Model was a better fit. The result obtained sug-

gested that rainfall was positively significant on monthly malaria incidences whereas

average temperature was not a significant predictor for malaria incidences based on

results from Pearson correlation test in Apac District. A positive relationship between

rainfall and expected malaria incidences was observed based on the coefficient value of

parameter estimates in Table 4.5. The findings provide better insight of climate effects

on malaria and provide important information for malaria prediction. It is observed

that rainfall is a strong predictor of malaria incidences in Apac District. We recom-

mend that in future studies, relative humidity, drug resistance, insecticide resistance in

mosquitoes and control measures like use of treated insecticide mosquito nets should

be incorporated in the models and more lengthy data set should be used.
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5.2. Forecasting

A seasonal pattern was observed in the malaria incidences in Apac district. ARIMA

(1, 0, 0)(1, 1, 0)12 model was found to be the best fit statistical model to predict malaria

incidences in Apac District. Rainfall was found to be a strong predictor of malaria in-

cidences. The results found from this study offer useful information for policy makers

to be able to effectively implement timely and effective malaria preventive and control

measures.

We recommend that further research can be done by using data collected from more

health centers and also non-climatic factors such as human migration, malaria control

measures and land use be included in the model. We also recommend to evaluate the

effectiveness of integrating the forecasting model into existing malaria control pro-

gramme in terms of it’s impact in reducing the disease occurrence and also the cost of

control interventions.
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Appendices

Appendix

A. Properties of the Poisson random variable

Theorem A.1. The probability mass function; f(x) =
e−λλx

x!‘
for a Poisson random

variable X is a valid p.m.f.

Proof. f(x) =
e−λλx

x!‘
for x = 0, 1, 2, ...

1. f(x) > 0 because λx > 0, e−λ > 0, x!‘ > 0

2.
∑∞

x=0

e−λλx

x!‘
= e−λ

∑∞
x=0

λx

x!‘
= e−λ[1 + λ

1!‘
+ λ2

2!‘
+ ...] = e−λeλ = 1

Theorem A.2. The moment generating function of a Poisson random variable X is:

M(t) = eλ(e
t−1) for −∞ < t <∞.

Proof. M(t) = E(etX) by definition

=
∑∞

x=0 e
tx.
e−λλx

x!‘
= e−λ

∑∞
x=0

(λet)x

x!‘
= e−λ.eλe

t
= eλ(e

t−1)

Theorem A.3. The mean of a Poisson random variable X is λ.

Proof. M(t) = eλ(e
t−1) = M ′(t) = eλ(e

t−1).λet = M ′(0) = eλ(e
0−1).λe0 = eλ(1−1).λ(1) =

λ

Theorem A.4. The variance of a Poisson random variable X is λ.

Proof. M ′(t) = eλ(e
t−1).λet = M ′′(t) = eλ(e

t−1).λet + M ′(t) = λet.eλ(e
t−1).λet =

M ′′(0) = eλ(e
0−1).λe0 + λe0.eλ(e

0−1).λe0 = λ+ λ2

σ2 = M ′′(0)− (M ′(0))2 = λ+ λ2 − λ2 = λ
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B. R codes

> dat<-read.csv(file.choose(),header=TRUE)\\

> library(MASS)\\

> fit1<-glm.nb(dat$Mal˜dat$rain+AvgTemp , data=dat)\\

> summary(fit1)\\

> fit1<-glm.nb(dat$Mal˜AvgTemp , data=dat)\\

> summary(fit1) \\

> qqnorm(fit1$residuals)\\

$>$ qqline($fit1$residuals)\\

> fit1<-glm.nb(dat$Mal˜dat$rain , data=dat)

> summary(fit1)

> qqnorm(fit1$residuals)

> qqline(fit1$residuals)

> cor(dat$Mal,dat$rain)

> cor(dat$rain,dat$AvgTemp)

> hist(dat$Mal,main="Monthly Malaria incidences", xlab="", ylab="Malaria incidences")

> fit1<-glm(dat$Mal˜dat$rain+dat$AvgTemp, family=poisson(link="log"))

> summary(fit1)

> qqnorm(fit1$residuals)

> qqline(fit1$residuals)

> plot(dat$Mal,main="Monthly malaria incidences", xlab="",ylab="Number of malaria incidences")

> acf(dat$Mal,main="ACF plot Malaria Time series")

> pacf(dat$Mal,main="PACF plot Malaria Time series")

> auto.arima(dat$Mal)

> data.test=window(ts.data,start=c(2015,1))

> data.train=window(ts.data,start=c(2007,1),end=c(2014,12))

> ts.data=ts((dat$Mal),frequency=12,start=c(2007,1))

> plot(ts.data)

> library(TSPred)

> plot(arima.forecast,xlab="years",ylab="malaria incidences")
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> plotarimapred(data.test,arima1,xlim=c(2012,2018),range.percent=0.05)

> plotarimapred(data.test,fit,xlim=c(2012,2016),range.percent=0.05)

> lines(predfit$pred,col="blue")

> library(tseries)

> jarque.bera.test(arima2$residuals)

> adf.test(log(dat$Mal))

> fit=auto.arima(dat$Mal)

> arima2=auto.arima(data.train)

> summary(arima2)

> Box.test(arima2$residualsˆ2,lag=20,type="Ljung-Box")

> Box.test(arima2$residuals,lag=20,type="Ljung-Box")

> plot.ts(arima2$residuals)

> acf(arima2$residuals,lag.max=24,main="ACF")

> fit1=auto.arima(log(dat$Mal))

> plot.ts(fit$residuals)

> Box.test(fit$residualsˆ2,lag=20,type="Ljung-Box")

> acf(fit1$residuals,lag.max=24,main="ACF")

> Box.test(fit1$residuals,lag=20,type="Ljung-Box")

> plotarimapred(data.test,arima2,xlim=c(2012,2018),range.percent=0.05)

> ts.data=ts(log(dat$Mal),frequency=12,start=c(2007,1))

> plot(ts.data)

> data.train=window(ts.data,start=c(2007,1),end=c(2014,12))

> data.test=window(ts.data,start=c(2015,1))

> library(forecast)

> arima1=auto.arima(data.train)

> summary(arima1)

> plot.ts(arima1$residuals)

> arima.forecast=forecast(arima1,h=24)

> plot(arima.forecast,xlab="years",ylab="malaria incidences")

> library(TSPred)
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> plotarimapred(data.test,arima1,xlim=c(2012,2018),range.percent=0.05)$
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