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Abstract

In this thesis, we carried out the estimation smoothed Conditional Scale Function for an

Autoregressive process with conditional heteroscedastic innovations by using the kernel

smoothing approach. The estimations were based on the quantile Auregression method-

ology proposed by Koenker and Bassett. The proof of the asymptotic properties was

given. All our estimations were made through inverting conditional distribution func-

tions and we showed that they are weakly consistent under specific assumptions. We

performed Monte Carlo studies to show the accuracy of our estimators. This study can

use in area requiring conditional quantile estimations can be improve using local poly-

nomial estimation of degree two.
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Chapter 1

Introduction

1.1 Background of the study

In many regressionmethods, it’s usually about finding a linear or curvilinear relationship

based on the scatter plot. Most regression methods estimate the average (mean) value

of the response variable. Some z-x scatter plots do not obey this dictatorship due to in-

fluential points also known as outliers. Financial and insurance data among others have

significant variability and are in some cases known as heavy-tailed data (Markovich,

2008). Those data possess isolated points (from the cloud) that distort any attempt to

make a simple linear or other average-based regression. This is one of the reasons why

many robust methods are being developed in both parametric and non-parametric fash-

ion. Robust because they aim to get rid of being influenced by extreme values. This is

the case in methods as LAD (Least Absolute Deviations) which estimate the median or

1/2-quantile value of the response variable Portnoy and Koenker (1997). Conditional

quantile regression as developed in (Koenker and Zhao, 1996) is more general and gives

a more general description of the response variable at each level in (0, 1). The local

polynomial regression method, mostly used for non-parametric estimations, is robust

but is still influenced by abnormally far-off points at boundaries. Outliers pull the curve
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toward them in places where there are few number of points. (Cowling and Hall, 1996)

devised a method to perform the analysis without deleting them by filling the gap be-

tween the dense cloud and the very distant points by adding pseudo-points beforemaking

the non-parametric estimation of the probability density function. Our approach, in this

thesis, gives absolute robustness to these non-parametric methods estimates by solving

the problem of outliers, smoothing the estimators and giving the possibility in forecast-

ing. We base our estimations on the (Nadaraya, 1964) - (Watson, 1964) (NW) method

which is a particular case of local polynomial regression. The method consists of de-

tecting points likely to change the behavior of the curves towards the borders by using

the method of Tukey then making an estimation of the quantile as discussed in (Tukey,

1977) then reintegrating the ouliers by predicting their response variable by k-NN algo-

rithm. The latter is a data mining tool with predictive power from observations using

distance or similarity. We performed a two step-estimation which consist of estimating

the quantile location shift or the QAR (Quantile AutoRegressive). After smoothing it

and predicting the response for the ouliers (omitted in the first place), the CSF (Condi-

tional scale function) is estimated from the residuals. Specific assumptions, also found

in literature, are made to ascertain the consistency of ours estimations. The data gener-

ating process is discussed in Chapter 3. The combination of smoothing method and the

ouliers handling reduce the bias of the estimate compared to the results in (Mwita, 2003).

To illustrate that, we simulated identical processes in terms of parameter, then obtained

estimates from the processes and computed the quadratic errors. These errors are very

small and confirm that our estimates are accurate. An easy-to-program algorithm that

allows the empirical estimation of the conditional distribution function and its inverse

is discussed in the section 4. Our results can be used in finance in calculating CVaR

(Conditional Value-at-Risk), expected shortfall, etc.
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1.2 Problem statement

Consider a Quantile Autoregressive model,

Xt = ατ (Zt) + ut, t = 1, 2, . . . (1.2.1)

where ατ (Zt) is the τ th Conditional Quantile Function of Xt given Zt and the innova-

tion ut are assumed to be independent and identically distributed with zero τ th quantile

and constant scale function, (Mwita, 2003). A kernel estimator of ατ (Zt) has been de-

termined and its consistency shown, (Franke and Mwita, 2003). A bootstrap kernel

estimator of ατ (Zt) was determined and shown to be consistent, (Mwita and Franke,

2013). This research extends (Mwita and Franke, 2013) by assuming that the inno-

vations follow Quantile Autoregressive Conditional Heteroscedastic process similar to

Autoregressive-Quantile Autoregressive Conditional Heteroscedastic process proposed

in (Mwita, 2003):

Xt = ατ (Zt) +ϖτ (Zt)εt, t = 1, 2, . . . (1.2.2)

whereατ (Zt) is the same as in themodel (1.2.1),ϖτ (Zt) is a conditional scale function at

τ -level and εt is independent and identically distributed (i.i.d.) error with zero τ -quantile

and unit scale. The function ϖτ (Zt) can be expressed as

ϖτ (Zt) = λϖ(Zt) (1.2.3)

where ϖ(Zt) is the so called volatility found in (Bollerslev et al., 1994) and (Shephard,

1996) which are papers of reference on Engle’s ARCHmodels amongmany others and λ

is a positive constant depending on τ (Mwita and Otieno, 2005). An example of this kind

of function is Autoregressive - Generalized Autoregressive Conditional Heteroscedastic

AR(1)-GARCH(1,1)),

Xt = αt +ϖtet, t = 1, 2, . . . , (1.2.4)

3



where

αt = µ+ δXt−1

ϖt =
√

w + αX2
t−1 + βϖ2

t−1

et ∼ N (0, 1), independent of Xt−1

(1.2.5)

and µ ∈ (−∞,∞), |δ| < 1, β > 0, α > 0, w > 0, α + β < 1. Note that αt may

also be an ARMA citepweiss1984arma. The specifications for model (1.2.4) are given

in section 3.3.5.

Considering other financial time series models, the model (1.2.1) can be seen as a ro-

bust generalization of AR-ARCH- models, introduced in (Weiss, 1984), and their non-

parametric generalizations reviewed by (Härdle et al., 1997). For instance, consider a

financial time series model of AR(p)-ARCH(p)-type,

Xt = α(Zt) +ϖ(Zt)et, t = 1, 2, . . . (1.2.6)

Where Zt = (Xt−1, Xt−2, · · · , Xt−p), α(·) and ϖ(·) arbitrary functions representing,

respectively, the conditional mean and conditional variance of the process.

A partitioned stationary α-mixed time series (Xt, Zt), where theXt ∈ R and the variate

Zt ∈ Rd are respectively At-measurable and At−1-measurable is considered. For some

τ ∈ (0, 1), the conditional τ -quantile ofXt given the pastFt−1 assumed to be determined

by Zt is estimated. For simplicity, we assume that Zt = Xt−1 ∈ R throughout the rest

of the discussion.

1.3 Justification of the study

This study is essential since volatility is inherent in many areas, for example, Hydrol-

ogy, Finance, Weather, etc. The volatility needs to be estimated robustly even when the

moments of distribution do not exist. The asymptotic properties of the scale function

4



derived through model (1.2.2) have not been found yet. Non-parametric estimation is

motivated because of its flexibility to describe relationship between a dependent variable

and independent variables.

1.4 Scope and limitations

This study is an extension of (Mwita, 2003) in which an estimate of CSF was made

assuming that the QAR part is zero to allow a less complicated estimation. For the

case where the QAR is to be estimated non-parametrically, the estimate of the CSF de-

pends on the residuals Xt − ατ (z) which gives rise to a dimension problem. We will

investigate the methods that will solve this dimension problem. This last estimate must

also be smooth in order to reduce the bias. Since data from AR-ARCH processes are

very noisy, our estimates may be influenced by outliers that may also increase the bias.

Smoothing alone will not be very effective for robustness. We will look at the aspect

of the boundary correction of the curves by suitable methods. Smoothing parameters

for our estimates will be of great importance as it is a recurring topic in non-parametric

estimations. Parametric estimate of the CSF will be omitted in this study.

1.5 Objective of the study

The main objective in this thesis is to derive a smoothed estimator of the CSF from

Mwita and Franke (2013) and show its asymptotic properties. For this to be done, we

articulated our research on three (3) specific objectives:

1. Derive a smoothed estimator of the conditional scale function when the Quan-

tile Autoregressive part is known (equal to zero) and proof its consistency under

specific assumptions;
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2. Derive a smoothed estimator of the conditional scale function when the Quantile

Autoregressive part is unknown and proof its consistency under specific assump-

tions;

3. Perform Monte Carlo studies to ascertain the consistency of the estimators.
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Chapter 2

Literature review

2.1 Quantile Autoregression (QAR)

In recent years, quantile autoregression is recurrent in the literature when it comes to

do estimations on financial data that depend on previous value. (Koenker and Bassett,

1978) developed the quantile regression to give full description of the response variable

according to each level, say, τ ∈ (0, 1). Since the method was created by (Koenker and

Bassett, 1978), it is gaining ground and applications are numerous. (Koenker and Zhao,

1996) based their estimation on (Engle, 1982)’s ARCH models to estimate the condi-

tional functions in non-parametric way. An example of modeling today’s return on the

ones from yesterday are found in (Koenker, 2001). Another application is the calculation

of students’ scores using quantile regression, see (Koenker and Hallock, 2001). Mwita

(2003) proposed alternative non-paratmetric estimation of the conditional scale function

by minimizing a conditional expectation of loss function which lead to the estimation

of an estimation conditional cumulative distribution function which is influenced by the

outliers. Methods for correcting the boundary where proposed but did not help to ascer-

tain the accuracy of the estimations. The estimation of the CSF assuming the Quantile

Autoregression part to be zero was also investigated and the consistency proven under

7



specific assumptions. The case where the QAR is unknown was theoretically motivated

and left for further research. Mwita and Otieno (2005) extended research on the esti-

mation of CSF for unknown QAR which remained theoretical, i.e. without a simulation

study to show the accuracy of the estimator. (Franke and Mwita, 2003) discussed boot-

strap estimations of the QAR based on the method found in Mwita (2003). The asymp-

totic properties of the estimates were shown and the estimator was also shown to be

more accurate than the previous estimation. Franke et al. (2015) applied method based

on the QAR estimation in Mwita (2003) to estimate Value-At-Risk (VaR) for stocks in

DAX. Simulation studies were also performed in order to evaluate the performance of

the estimates.

2.2 Density and distribution functions estimation

A review on kernel density estimation is found in Zambom and Dias (2012). The most

used estimation of the probability density function (pdf) for a sequence of real valued

random variable is the kernel density function that require the choice of a kernel func-

tion (Min and Lee, 2005), (Baudat and Anouar, 2001) where b is the bandwidth and also

called the smoothing parameter. This method of estimation does depend on the smooth-

ing parameter because a very small bandwidth provides a noisy curve and a big one give

a flat curve. It’s required to use the existing method to get the estimation of b before

doing any estimation related to it. It’s still a challenge because the estimators for the

optimal bandwidth. This kind of estimations have the disadvantage of being influenced

by the outliers.

The kernel estimation of the condition distribution function (CDF) requires the proba-

bility density function. The CDF also depend on the inverse of the Conditionaribution

Function trough inversion. Method for estimating the CDF are numerous and we have

theWeighted Nadaraya-Watson (WNW) estimate of the CDF discussed in (Das and Poli-

8



tis, 2017), (Hall et al., 1999), (Steikert, 2014, p. 3–18) among others.

2.3 Bandwidth selection

Finding the optimal smoothing parameter is a major problem in non-parametric because

the shape of the estimated curve depends on. A very small bandwidth underestimate

the function of interest and a big bandwidth leads to overestimation (see Table 2.3.1).

The bandwidth estimation is not standard because there is no systematic way to do so.

The estimation varies from one problem to another. (Avramidis, 2016) proposed cross-

validation method to estimate optimal bandwidth for kernel based estimation given a

sequence of random variables Z1, Z2, . . . , Zn. A smoothing parameter selection proce-

dure is proposed (Abberger, 1997) for the same objective.
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Figure 2.3.1: Bandwidth influence on the resulting curve
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2.4 Boundary issue

To correct the boundary effects, we use the method of box-plot fences proposed by

(Tukey, 1977) to detect the extreme values that make the estimation too rough at the

extremities of the CCDF estimations’ curves. Our estimator, being the inverse of the

CCDF, is naturally rough at extremities. Among the Kernel functions, only the Gaus-

sian can handle the sparseness of points at boundaries because its domain is R. The

other kernel functions can bring zero at extremities and make the estimation of the

CCDF wrong. What we do is to omit the points that are extremely far from the oth-

ers by the box-plot fences method. The method consist of determining the first and the

third quantiles from the Zt’s. Outliers are the points that are located outside the interval

[Q1 − 3 × (Q3 − Q1), Q3 + 3 × (Q3 − Q1)] where Q1 and Q3 are the first and the

third quantiles.

2.5 Research Gap

All the estimations obtained through the inversion of the conditional cumulative distri-

bution function are not smoothed and are influenced by the boundary effects. Performing

a Monte Carlo study using those estimators will increase the mean square error between

two estimations.
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Chapter 3

Methodology

3.1 Empirical and inverse CCDF

The estimation of the conditional cumulative distribution function (CCDF) is highly

required because the estimation of the scale function (in chapter 5) is derived from its

inverse. In this chapter, the problem of estimating the ccdf is addressed for a couple

of independent and identically distributed (i.i.d) random variables (Z,X) where X is

the daily return and Z the lagged (or simply yesterday’s) value of X . Researches based

on this estimation are numerous mainly on the estimation of quantiles or conditional

quantiles. The estimator is weakly consistent and the approach discussed here is easy

to compute. In the following we present the estimation of empirical probability density

and conditional distribution functions and their convergences.

3.2 Unconditional Cumulative Distribution Function

LetX1, X2, . . . , Xn be a sequence of i.i.d. random variables from the σ-algebraA such

that X1 < X2 < · · · < Xn. Assuming that X ∼ A possesses a distribution function

FX(x) = P (X ≤ x). A good estimator for F is the empirical cumulative distribution

11



function Fn(x) given by

Fn(x) =
#{observations less than or equal to x}

n
(3.2.1)

=
1

n

n∑
t=1

I(Xt ≤ x) (3.2.2)

=


0 if x < X1

k
n

if Xk ≤ x < Xk+1, k = 1, . . . , n− 1

1 if x ≥ Xn

(3.2.3)

Example

For the following sequence of observations of an arbitrary distribution,

X = (−1.5,−0.6,−0.4,−0.3,−0.1, 0.3, 0.6, 0.9, 1.7, 2.1),

the number of observations less than or equal to −0.3 is 4. This means that F (−0.3) =

0.4. Obviously, −0.3 is the 40% quantile of the distribution, i.e.

inf
{
X : Fn(X) ≥ 0.4

}
= −0.3

After doing the same computation with all the observations, we obtain the Figure 3.2.1.

The calculation of the quantile using the ecdf its inverse such we have

F−1
(
F (x)

)
= x = F−1(τ) (3.2.4)

where τ ∈ (0, 1) is the accumulated proportion of all the observations that are less or

equal to a given observation x. The same idea is used in the following section which

consider weights in the calculation to include the influence of the explanatory variable.

3.2.1 Kernel matrix

The estimation of Fn conditionally to the explanatory variable Z will be a weighted

version of ECDF in previous section. In our approach, a kernel functionK : Rd −→ R

is required and should satisfy the following conditions over the kernel function.

12
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Figure 3.2.1: Empirical cumulative distribution function
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Assumption 1.

(i) Symmetrical: K(s) = K(−s) with s ∈ Rd,

(ii) Nonnegative and bounded: For Γ < ∞, 0 < K(s) ≤ Γ, s ∈ Rd.

(iii) Lipschitz: ∃λ > 0,mk < ∞ such that
∣∣K(s)−K(t)

∣∣ ≤ mk|s− t|λ for all s, t ∈

Rd.

(iv) a pdf:
∫

K(s)ds = 1 with
∫
Rd

sK(s) = 0.

We have the notations µ2(K) =

∫
s2K(s)ds andR(K) =

∫
K2(s)ds. Now, given the

kernel function, we can estimate the kernel matrix from the following steps:

1. Divide a span of our data intoN non-overlapping bins of the same size, z∗1 , . . . , z∗N ,

such that z∗1 = min(Z) < z∗2 < · · · < z∗N = max(Z).

2. Determine the matrix

K =


Kb(z

∗
1 − Z1) Kb(z

∗
1 − Z2) · · · Kb(z

∗
1 − Zn)

Kb(z
∗
2 − Z1) Kb(z

∗
2 − Z2) · · · Kb(z

∗
2 − Zn)

... ... ... ...

Kb(z
∗
N − Z1) Kb(z

∗
N − Z2) · · · Kb(z

∗
N − Zn)


whereKb(u) = b−1K

(
ub−1

)
, a 1-dimensional rescaled kernel and b > 0, the smoothing

parameter or bandwidth.

3.2.2 Indicator matrix

Each column of the indicator matrix is the calculation of I(Xt ≤ x) for fixed x and

t = 1, 2, . . . , n. The product of the kernel matrix K and the matrix M contains all the

summations (also seen as joint probability density function at Xt = x and Zt = z∗).

f̂(x, z∗) =
1

n

n∑
t=1

Kb(z
∗ − Zt)I(Xt ≤ x) (3.2.5)
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for all fixed couple (z∗, x) ∈ R2.

M =


I(x1 ≤ x1) I(x1 ≤ x2) . . . I(x1 ≤ xn)

I(x2 ≤ x1) I(x2 ≤ x2) . . . I(x2 ≤ xn)
...

I(xn ≤ x1) I(xn ≤ x2) . . . I(xn ≤ xn)


(3.2.6)

=


1 I(x1 ≤ x2) . . . I(x1 ≤ xn)

I(x2 ≤ x1) 1 . . . I(x2 ≤ xn)
...

I(xn ≤ x1) I(xn ≤ x2) . . . 1


(3.2.7)

The elements ofM are 1 where the inequalities are true and 0 otherwise. Note that the

unconditional empirical distribution function from the previous section is equal to

Fn(x) =
1

n
MT1n, 1n = (1, 1, . . . , 1)T ∈ Rn (3.2.8)

=
1

n


1 I(x1 ≤ x2) . . . I(x1 ≤ xn)

I(x2 ≤ x1) 1 . . . I(x2 ≤ xn)
...

I(xn ≤ x1) I(xn ≤ x2) . . . 1



T

×


1

1
...

1


(3.2.9)

=
1

n


1 + I(x2 ≤ x1) + · · ·+ I(xn ≤ x1)

I(x1 ≤ x2) + 1 + · · ·+ I(xn ≤ x2)
...

I(x1 ≤ xn) + I(x2 ≤ xn) + · · ·+ 1


(3.2.10)

The proceeding is the same for the CCDF by multiplying the kernel matrix K and the

indicator matrixM and diving the product by K1n (point-wise division). Note that the

empirical probability density function of Zt is given by
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f̂(z∗) =
1

n
K1n (3.2.11)

=
1

n


Kb(z

∗
1 − Z1) Kb(z

∗
1 − Z2) · · · Kb(z

∗
1 − Zn)

Kb(z
∗
2 − Z1) Kb(z

∗
2 − Z2) · · · Kb(z

∗
2 − Zn)

... ... ... ...

Kb(z
∗
N − Z1) Kb(z

∗
N − Z2) · · · Kb(z

∗
N − Zn)




1

1
...

1


(3.2.12)

=
1

n


Kb(z

∗
1 − Z1) +Kb(z

∗
1 − Z2) + · · ·+Kb(z

∗
1 − Zn)

Kb(z
∗
2 − Z1) +Kb(z

∗
2 − Z2) + · · ·+Kb(z

∗
2 − Zn)

...

Kb(z
∗
N − Z1) +Kb(z

∗
N − Z2) + · · ·+Kb(z

∗
N − Zn)


(3.2.13)

a vector of N elements.

The CCDF estimation is therefore given by

Fn(x | z∗) = KM/(K1n) (3.2.14)

=
[
nf̂(z∗)

]−1

KM (3.2.15)

is a matrix of order N × n

3.2.3 Empirical CCDF and consistency

In this section, we consider a pair of random variables (Zt, Xt) ∈ Rn×n, t = 1, . . . , n,

with Z andX the exogenous variable (the yesterday’s returns) and the endogenous vari-

able (today’s return) respectively. The CCDF of X conditionally1 to Z is given by

Fn(x | z∗) =
n∑

t=1

wtI(Xt ≤ x) (3.2.16)

1Weights from the exogenous variable Zt
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where wt = Kb(z
∗ − Zt)/

∑n
t=1Kb(z

∗ − Zt) are the weights that verify
∑n

t=1wt = 1.

The following theorem shows the weak asymptotic representation (Welsh, 1986) of the

estimation in 3.2.16 by use of the following assumptions that are also found in (Mwita

and Franke, 2013)

Assumption 2.

(i) f(x, z) and f(z) exist.

(ii) for fixed (x, z), 0 < F (x|z) < 1 and f(z) > 0 are continuous in the neighborhood

of z where the estimator is to be derived.

(iii) The derivatives F (j)(x) =
djF (x|z)

dzj
and f (j)(z) =

djf(z)

dzj
, for j = 1, 2, exist

(iv) The conditional density f(x|z) = dF (x|z)
dx

exists and is continuous in the neigh-

borhood of x

Theorem 3.2.1. Suppose that the assumptions 1, 2, 4, 5 hold. Then,

Fn(x | z∗)− F (x | z∗) D−→ 0, as n−→∞ (3.2.17)

Proof. The CCDF in (3.2.16) can be written in the form of an arithmetic mean of a

random variable L:

Fn(x|z∗) =
1

n

n∑
t=1

Lt with Lt =
Kbz(Zt − z∗)I{Xt≤x}
1
n

∑n
t=1 Kbz(Zt − z∗)

(3.2.18)

and the approximation of the expectation of L is

E [Lt] ≈
E
[
Kbz(Zt − z∗)I{Xt≤x}

]
E
[
1
n

∑n
t=1 Kbz(Zt − z∗)

] = E[N ]

E[D]
(3.2.19)

see Seltman (2012). Using the i.i.d assumption over the data, the numerator is

E[N ] =
1

bz
E

[
K

(
Zt − z∗

bz

)
I{Xt≤x}

]

=
1

bz

∫∫ x

−∞
K

(
u− z∗

bz

)
f(u, v)dudv

=

∫
F (x | z∗ + sh)K(s)f(z∗ + sh)ds

(3.2.20)
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We have used the change of variables s = (u− z∗)/bz, the definition of the conditional

density function turned into f(z∗ + sbz, v) = f(v | z + sh)f(z∗ + sbz) and Fubuni’s

theorem formultiple integrals. Taylor series expansions ofF (v | z∗+sh) and f(z∗+sh),

yield

E[N ] =f(z)F (x | z∗) + b2zµ2(K)

[
f (1)(z)F (1)(x | z∗) + 1

2
f (2)(z)F (x | z∗)+

1

2
f(z∗)F (2)(x | z∗) + o(b2z)

]
(3.2.21)

and for the denominator, we have

E [D] = f(z∗) +
1

2
b2zµ2(K)f (2)(z∗) + o(b2z) (3.2.22)

Thus,

E [Lt] ≈F (x | z∗) + 1

2
b2zµ2(K)

(
2
f (1)(z)

f(z∗)
F (1)(x | z∗) + f (2)(z)

f(z)
F (x | z∗) + F (2)(x | z∗)

)
(
1 + 1

2
b2zµ2(K)f

(2)(z∗)
f(z∗)

)
= F (x | z∗) + 1

2
b2zµ2(K)

(
2
f (1)(z∗)

f(z∗)
F (1)(x | z∗) + F (2)(x | z∗)

)
+ o(b4z)

(3.2.23)

From the assumption that bz −→ 0, the denominator is approximated to 1 − b2zµ2(K)

·f
(2)(z∗)
2f(z∗)

. Hence,

Bias
(
Fn(x|z∗)

)
≈ 1

2
b2zµ2(K)

(
2
f (1)(z∗)

f(z∗)
F (1)(x | z∗) + F (2)(x | z∗)

)
(3.2.24)

Some authors assumed that, in this case, the first derivative of the true pdf of Z at point

z can be zero (Hansen, 2004) as the one for the fixed design and therefore, the bias can

be given by

Bias
(
Fn(x|z∗)

)
≈ 1

2
b2zµ2(K)

(
F (2)(x | z∗)

)
= O(b2/2). (3.2.25)
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We have

V(N) = V

(
1

bz
K

(
Zt − z

bz

)
I{X∗

t ≤x∗}

)
=

1

b2z
V

(
K

(
Zt − z∗

bz

)
I{Xt≤x}

)

=
1

b2z

E[K2

(
Zt − z∗

bz

)
I{Xt≤x}

]
−

E[K (Zt − z∗

bz

)
I{Xt≤x}

]2


≈ F (x|z∗)f(z∗)R(K)

bz
− o(1),

(3.2.26)

V(D) = V

(
1

n

n∑
t=1

Kbz(Zt − z∗)

)
=

1

nb2z
V

(
K

(
Zt − z∗

bz

))

=
1

nb2z

E[K2

(
Zt − z∗

bz

)]
−

E[K (Zt − z∗

bz

)]2


≈ f(z)R(K)

nbz
− o

(
1

n

)
,

(3.2.27)

Cov(N,D) =
1

nb2z
Cov

(
K

(
Zt − z∗

bz

)
I{Xt≤x}, K

(
Zt − z∗

bz

))

≈ 1

nb2z
E

[
K2

(
Zt − z∗

bz

)
I{Xt≤x}

]
− o

(
1

n

)
≈ 1

nbz
F (x|z∗)f(z∗)R(K)

(3.2.28)

Using the same approximation in (4.1.45), the variance of Fn(x|z∗) is

V (Lt) ≈ F (x|z∗)

[
R(K)

(
1− F (x|z∗)

)
bzf(z∗)

]
(3.2.29)

and by the Central Limit Theorem, using assumption 4 for {(X∗
t , Zt), t = 1, 2, . . .}

√
n
(
Fn(x|z∗)− F (x|z∗)− Bias

(
F (x|z∗)

)) D−→N
(
0,V (Lt)

)
(3.2.30)

Notice that the expectation of Fn(x|z∗) is the same as the one of L and the variance is

V(Lt)/n.
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3.2.4 Inversion

There is no systematic expression of the inverse CCDF, F−1
n , unless we know the true

conditional distribution of Xt = x given Zt = z∗. Given the level τ , a technique

allowing the calculation of the τ th conditional quantile ofXt = x given Zt = z∗ follows

the following steps:

1. For each row of Fn(x | z∗), find the smallest x such that Fn(x | z∗) ≥ τ

2. The ICCDF or τ th conditional quantile is

Qτ (Xt | Zt) = inf
{
x ∈ R : Fn(x | z∗) ≥ τ

}
(3.2.31)

This gives a vector of N elements. The consistency of the ICCDF is proven in chapter

4. We have motivated the estimation of both the CDF unconditionally and condition-

ally using matrices. We also showed theoretically that the CCDF is consistent. These

estimations and their features will help on the estimation of the quantile autoregressive

function and conditional scale function.

3.3 Model specification and simulation

In this section, we introduce the process the estimations will be obtained from. Given

that the process AR(1)-ARCH(1) is a combination of two process, AR(1) and ARCH(1),

is stationary as summation of two stationary processes. Stationary processes verify the

conditions in the following definition.
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3.3.1 Definitions

Definition 3.3.1. A process is said to be weakly stationary, if its first and second mo-

ments exist and are time invariant. Meaning that

E[Xt] = E[Xt−1] = λ < ∞, ∀t (3.3.1)

V(Xt) = ρ0 < ∞, ∀t and (3.3.2)

Cov(Xt, Xt−k) = ρk, ∀t,∀k. (3.3.3)

The third property only depends on the difference t− (t− k).

In this chapter, we discuss the properties of the model AR(1)-ARCH(1) that will be

simulated for the application of our findings.

3.3.2 AR(1) process

Recall that the process of application or to be simulated is a combination of two pro-

cesses. The first is the AR(1) represented by

Xt = µ+ δXt−1 + et (3.3.4)

where µ ∈ R is a constant,|δ| < 1 is the parameter of themodel and et is white noise with

mean 0, constant variance σ2
e and is independent of the lagged value Xt−1. This model

represents some outputs, in financial time series for instance, that depend on their own

previous values and an innovation term (stochastic term). Using the definition 3.3.1, we

specify the parameter that yield the stationarity of the AR(1) process.

E[Xt] = µ+ δ E[Xt−1] + 0

λ = µ+ δλ

=
µ

1− δ

(3.3.5)

and
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V(Xt) = 0 + V(δXt−1 + et)

ρ0 = δ2V(Xt−1) + V(et) + 2Cov(Xt−1, et)︸ ︷︷ ︸
=0

ρ0 = δ2ρ0 + σ2
e

ρ0 =
σ2
e

1− δ2

(3.3.6)

We calculate the covariance, for k = 1, as

Cov(Xt, Xt−1) = E[XtXt−1]− E[Xt]E[Xt−1]

ρ1 = E[µXt−1 + δX2
t−1 + etXt−1]−

µ2

(1− δ)2

=
µ2

1− δ
+ δ E[X2

t ]−
µ2

(1− δ)2

=
−µ2δ

(1− δ)2
+ δ

(
V(Xt) +

(
E[Xt]

)2)
=

−µ2δ

(1− δ)2
+ δ

(
σ2
e

1− δ2
+

µ2

(1− δ)2

)

= δ
σ2
e

1− δ2

(3.3.7)

Now, for k = 2 and using the properties of the Covariance, we have

Cov(Xt, Xt−2) = Cov(µ+ δXt−1 + et, Xt−2)

ρ2 = Cov(µ,Xt−2) + δ Cov(Xt−1, Xt−2) + Cov(et, Xt−2)

= 0 + δρ1 + 0

= δ2
σ2
e

1− δ2

(3.3.8)

We conclude that

Cov(Xt, Xt−k) = ρk = δk
σ2
e

1− δ2
(3.3.9)
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3.3.3 ARCH(1) process

As the AR(1) models the outputs from the previous ones, the ARCH(1) is the modeliza-

tion of the actual innovation as function of the previous ones too. ARCH-based process

are being utilized in most of the current time series analysis in finance, economics, etc

because they model the volatility. An ARCH(1) is depicted by

εt = ϖet,

ϖ =
(
ω + αε2t−1

) 1
2 , t = 1, 2, . . .

(3.3.10)

with the conditions ω > 0, α < 1 and et i.i.d with zero mean and variance 1 and

independent to εt−1. These conditions allow the data generation process to be stationary.

To show it, we calculate the following statistics:

E[εt] = E
[(
ω + αε2t−1

) 1
2 et

]
= E

[(
ω + αε2t−1

) 1
2

]
× E [et]︸ ︷︷ ︸

=0

= 0.

(3.3.11)

Let’s also introduce the conditional statistics that will enable the calculation the variance

of the process.

Conditional expectation

The conditional expectation of the ARCH(1) process is

E
[
εt | εt−1

]
= E

[(
ω + αε2t−1

) 1
2 et | εt−1

]
=
(
ω + αε2t−1

) 1
2 E[et | εt−1]

=
(
ω + αε2t−1

) 1
2 E[et]

= 0.

(3.3.12)
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Conditional variance

V
[
εt | εt−1

]
= V

[(
ω + αε2t−1

) 1
2 et | εt−1

]
= E

[(
ω + αε2t−1

)
e2t | εt−1

]
=
(
ω + αε2t−1

)
E[e2t ]

= ω + αε2t−1.

(3.3.13)

The variance of the process is therefore given by the law of total variance

V(εt) = E
[
V(εt | εt−1)

]
+ V

(
E[εt | εt−1]

)
= E

[
ω + αε2t−1

]
= ω + αE[ε2t−1]

= ω + α
(
V(εt) +

(
E[εt]

)2)
= ω + αV(εt)

V(εt) =
ω

1− α
.

(3.3.14)

For this process, the covariance

Cov(εt, εt−k) = 0 ∀k > 0. (3.3.15)

3.3.4 GARCH(1,1) process

This process depends on both the previous innovation and the previous conditional vari-

ance. It’s defined as

εt = ϖet,

ϖ =
(
ω + αε2t−1 + βϖ2

t−1

) 1
2 ,

et ∼ N (0, 1), independent of εt−1 and ϖt−1, t = 1, 2, . . .

(3.3.16)
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Using the definition 3.3.1, we can show the specifications of the GARCH(1,1). We

calculate, as in the previous section, the statistics

E[εt] = E
[(
ω + αε2t−1 + βϖ2

t−1

) 1
2 et

]
= E

[(
ω + αε2t−1 + βϖ2

t−1

) 1
2

]
E [et]

= 0.

(3.3.17)

The conditional expectation of the GARCH(1,1) process is given by

E[εt | εt−1] = E
[(
ω + αε2t−1 + βϖ2

t−1

) 1
2 et | εt−1

]
= E

[(
ω + αε2t−1 + βϖ2

t−1

) 1
2

]
E
[
et | εt−1

]
= 0,

(3.3.18)

and the conditional variance

V(εt | εt−1) = E
[
ε2t | εt−1

]
= E

[(
ω + αε2t−1 + βϖ2

t−1

)
e2t | εt−1

]
= E

[(
ω + αε2t−1 + βϖ2

t−1

)
| εt−1

]
E
[
e2t | εt−1

]
= ω + αε2t−1 + βϖ2

t−1.

(3.3.19)

The law of total variance yields

V(εt) = E[ϖ2] + V(0)

= E
[
ω + αε2t−1 + βϖ2

t−1

]
= ω + αE

[
ε2t−1

]
+ β E

[
ϖ2

t−1

]
= ω + αV(εt) + β V(εt)

V(εt) =
ω

1− α− β
.

(3.3.20)

This variance is positive and finite for ω > 0 and α + β < 1.
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3.3.5 AR(1)-GARCH(1,1)

A financial time series can be of this form which is function of the previous return and

the previous volatility or innovation. It’s represented by

Xt = αt + ut

αt = µ+ δXt−1

ut = ϖet

ϖt =
(
ω + αu2

t−1 + βϖ2
t−1

) 1
2

et ∼ N (0, 1), independent of Xt−1.

(3.3.21)

Here, we also calculate the statistics using the definition 3.3.1 in order to show the condi-

tions over the coefficients that ascertain the stationarity of the process. The first moment

is given by

E[Xt] = E
[
µ+ δXt−1 +

(
ω + αu2

t−1 + βϖ2
t−1

) 1
2 et

]
= µ+ δ E[Xt−1] + E

[(
ω + αu2

t−1 + βϖ2
t−1

) 1
2

]
E[et]

= µ+ δ E[Xt]

E[Xt] =
µ

1− δ
.

(3.3.22)

Conditional expectation

E[Xt | Xt−1] = µ+ δXt−1 + E
[(
ω + αu2

t−1 + βϖ2
t−1

) 1
2 et | Xt−1

]
= µ+ δXt−1.

(3.3.23)

Conditional variance

V(Xt | Xt−1) = E[X2
t | Xt−1]− (µ+ δXt−1)

2

= E
[(
ω + (αe2t−1 + β)ϖ2

t−1

)
| Xt−1

]
× E[e2t | Xt−1]

= ω + (α + β)E
[
ϖ2

t−1 | Xt−1

] (3.3.24)
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Law of total variance

V(Xt) = E
[
V(Xt | Xt−1)

]
+ V

(
E[Xt | Xt−1]

)
= E

[
ω + (α + β)E

[
ϖ2

t−1 | Xt−1

]]
+ V (µ+ δXt−1)

= ω + (α + β)E
[
ϖ2

t−1

]
+ δ2V(Xt)(

1− δ2
)
V [Xt] = ω + (α + β)E

[
ϖ2

t−1

]
(3.3.25)

We have

E
[
ϖ2

t

]
= ω + (α + β)E

[
ϖ2

t−1

]
(3.3.26)

and for stationary, we’ll assume the moments to be time-independent. That is,

E
[
ϖ2

t

]
=

ω

1− α− β
(3.3.27)

Finally,

V[X] =
ω

(1− δ2) (1− α− β)
(3.3.28)

which is positive and finite for ω > 0,|δ| < 1 and α + β < 1.

3.3.6 Simulation of AR(1)-ARCH(1) processes

All our estimations will take into account a data generated from an AR(1)-ARCH(1), a

process as in the section 3.3.5 where the GARCH term β = 0. In order to graphically

show how the curves behave in view of the variation of the coefficients satisfying the

conditions and which do not (See Figure 3.3.1, 3.3.2, 3.3.3 and 3.3.4). The Figure 3.3.3

and Figure 3.3.4 show non-stationary process because the parameter do not satisfy the

conditions discussed in the previous section.
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Figure 3.3.1: AR(1)-ARCH(1) process for µ = 0.5, δ = 0.25, ω = 1, α = 0.35
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Figure 3.3.2: AR(1)-ARCH(1) process for µ = 0.5, δ = −0.75, ω = 1, α = 0.5
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Figure 3.3.3: AR(1)-ARCH(1) process for µ = 0.5, δ = 0.95, ω = 1, α = 1.2
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Figure 3.3.4: AR(1)-ARCH(1) process for µ = 0.5, δ = 1, ω = 1, α = 1

The calculation of Autocorrelation Function (ACF) and Partial Autocorrelation Function

(PACF) help to determine the order for AR and Moving Average (MA) processes that

are known to be stationary. For a non-stationary as shown by figure 3.3.3 and 3.3.4, it

is not possible to get the order of the AR and MA.

3.4 Conclusion

Having a clear information of the parameters that will come into play, we can simulate

a stationary (Figure 3.3.1) AR(1)-ARCH(1) process in order to apply our estimations.

In order to have accurate estimations, we’ll perform Monte Carlo studies bases on the

stationary processes. This means the data generation process should be from the choice

of adequate coefficients.
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Chapter 4

Estimation of the conditional scale

function

In this chapter, the estimation of the Smoothed Conditional Scale Function for time series

is carried out under the conditional heteroscedastic innovations by imitating the kernel

smoothing in nonparametric QAR-QARCH scheme. The estimation was carried out

based on the quantile regression methodology proposed by Koenker and Bassett. And

the proof of the asymptotic properties of the Conditional Scale Function estimator for

this type of process was given and its consistency was shown by Franke et al. (2015).

4.1 Definitions

Let fZt(z) and f(x, z), denote the probability density function (pdf) of Xt and the joint

pdf of (Xt, Zt). If fZt(z) > 0 (assumption 2.(i)), the dependence between the exogenous

Xt and the endogenous variables is described by the following conditional probability

density function (CPDF)

f(x|z) = f(x, z)

f(z)
(4.1.1)
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and the conditional cumulative distribution function (CCDF)

F (x|z) =
∫ x

−∞
f(s|z)ds = P (X ≤ x|Zt = z) (4.1.2)

= E
[
I{Xt≤x} | Zt = z

]
(4.1.3)

The estimation of the conditional scale function is derived through the CCDF. However,

the following assumptions and definitions (these assumptions are commonly used for

kernel density estimation (KDE), bias reduction (Mynbaev and Martins-Filho, 2010),

asymptotic properties, and normality proof) are necessary (see Table 4.3.1). Wee add

the following assumptions to Assumption 2 in Chapter 3.1.

Assumption 3.

(i) F (x|z) is a convex function in x for fixed z.

(ii) f
(
ϖτ (z) | z

)
> 0

Assumption 4. The process
{
(Xt, Zt), t = 1, 2, . . .

}
is strongmixingwithα(s) = o

(
s−2−δ

)
,

δ > 0, see (Bosq, 2012, Theorem 1.7).

Assumption 5. The smoothing parameter b > 0 of the smoothing parameters is such

that b−→ 0, nbp−→∞ as n → ∞.

Definition 4.1.1 (strong mixing). Let Xt = {. . . , Xt−1, Xt, Xt+1, . . .} be a stationary

time series endowed with σ-algebrasAt = {Xj,−∞ < j ≤ t} andAt = {Xj, t ≤ j <

∞}. Define α(s) as

α(s) = sup
A∈At, B∈At+s

{∣∣P(A ∩B)− P(A)P(B)
∣∣}

If α(s)−→ 0 as s−→∞, then the process is strong mixing.

Assuming that the Autoregressive part in the model (1.2.4) is equal to zero, i.e, αt,τ =

ατ (z) = 0 for any τ ∈ (0, 1), we consider the model

Xt = ϖτ (Zt)εt, t = 1, 2, . . . (4.1.4)
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Define the check-function as

γτ (X,µ) = γτ (X − µ) =
(
τ − I{X−µ≤0}

)
(X − µ) (4.1.5)

Here, I() is the indicator function. Therefore, γτ is a piece-wise monotone increasing

function. γτ (·, ·) is a function of any real random variable X with distribution function

FX(x) = P (X ≤ x) = E I{X≤x}, and a real value µ ∈ R , is the asymmetric absolute

value function whose amount of asymmetry depends on τ (Koenker and Bassett, 1978).

In case where Xt is symmetric and τ = 1/2, then we have 2γτ (Xt, µ) is an absolute

value function and ϖ0.5(Zt) is the conditional median absolute deviation (CMAD) of

Xt . When α is assumed to be 0 in model (1.2.6), we have a purely heteroscedastic

ARCH model introduced in (Engle, 1982) and ατ (Zt) for τ > 0.5, in this particular

case, can be seen as a conditional scale function at τ -level.

The check-function in (4.1.5) is Lipschitz continuous by the following theorem.

Theorem 4.1.1. Let γτ be defined as in (4.1.5) and (x, σ) ∈ R2. Then, γτ satisfies the

Lipschitz continuity condition:

∣∣γτ (x, σ)− γτ (x, σ
′)
∣∣ ≤ M

∣∣σ − σ′∣∣
with the Lipschitz constantM = 1 and for all σ, σ′.

Proof of Theorem 4.1.2. See the proof of Lemma 3.1 in (Mwita, 2003, p .74-75)

By the next theorem we show clearly why the errors {εt} in model (1.2.2) are assumed

to be zero τ -quantile and unit scale

Theorem 4.1.2. Consider the model (1.2.6) and the check function in (4.1.5), then for

ϖτ (Zt) ∈ R∗
+,

εt =
Xt − ατ (Zt)

ϖτ (Zt)
(4.1.6)
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is zero τ -quantile and unit scale. And the following equations are verifiable

P
(
Xt ≤ ατ (Zt)) | Zt

)
= τ and (4.1.7)

P
(
γτ
(
Xt, ατ (Zt)

)
≤ ϖτ (Zt) | Zt

)
= τ (4.1.8)

Proof of Theorem 4.1.2. The τ th-quantile operator is

Qτ (Yt) = inf
{
µ ∈ R : P(Yt ≤ µ | Zt) ≥ τ

}
(4.1.9)

with well-defined properties in (Mwita, 2003, p .9-10). From the model (1.2.6), the

conditional τ -quantile of Xt is

qτ (Zt) = Qτ (Xt) = α(Zt) +ϖ(Zt)q
e
τ (4.1.10)

Where qeτ is the τ -quantiles of et. Then, using model (1.2.6) and the equation (4.1.10),

we get

Xt − qτ (Zt) = ϖ(Zt) (et − qeτ ) (4.1.11)

and

γτ
(
Xt, qτ (Zt)

)
= ϖ(Zt)γτ (et, q

e
τ ) . (4.1.12)

and the τ th-quantile of (4.1.12) is

Qτ

(
γτ
(
Xt, qτ (Zt)

))
= ϖ(Zt)Qτ

(
γτ (et, q

e
τ )
)
= ϖ(Zt)Q

e
τ (4.1.13)

where Qe
τ is the τ -quantile of γτ (et, qeτ ). Note that from (4.1.11),

Qτ

(
Xt − qτ (Zt)

)
= 0. (4.1.14)

The quotient
Xt − ατ (Zt)

Qτ

(
γτ
(
Xt, ατ (Zt)

)) =
et − qeτ
Qe

τ

(4.1.15)

is zero τ -quantile and unit scale and can be seen as model (1.2.2) if εt = (et − qeτ )/Q
e
τ ,

ατ (Zt) = qτ (Zt) and ϖτ (Zt) = Qτ

(
γτ
(
Xt, ατ (Zt)

))
.
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Now, assuming that εt (independent of Zt) in model (1.2.2) is zero τ -quantile, this is

equivalent to write

Pr (εt ≤ 0) = Pr
(
εt ≤ 0|Zt

)
= τ

⇒ Pr
(
Xt − ατ (Zt)

ϖτ (Zt)
≤ 0 | Zt

)
= τ

This prove (4.1.7) for ϖτ (z) > 0. Also, εt is unit-scale, means

Pr
(
γτ (εt) ≤ 1

)
= τ ⇒ Pr

(
γτ

(
Xt − ατ (Zt)

ϖτ (Zt)

)
≤ 1 | Zt

)
= τ

⇒ Pr
(
γτ
(
Xt − ατ (Zt)

)
≤ ϖτ (Zt) | Zt

)
= τ

Assuming ατ (Zt) = 0, the estimator, ϖ̂τ (Zt) of the conditional scale function ϖτ (Zt),

is obtained through the minimization of the objective function

φ(z,ϖ) = E
[
γτ (γτ (Xt), ϖ) | Zt = z

]
(4.1.16)

Thus, the conditional scale functionmay be obtained byminimizingφ(z,ϖ)with respect

to ϖ, i.e,

ϖτ (z) = argmin
ϖ∈R+

φ(z,ϖ) (4.1.17)

and

ϖτ (z) = argmin
ϖ∈R+

φ(z,ϖ) (4.1.18)

and

ϖτ (z) = inf
{
µ ∈ R∗

+ : F (µ|z) ≥ τ
}
= F−1(τ | z) (4.1.19)

The kernel estimator of (4.1.18) at Zt = z is given by

ϖ̂τ (z) = argmin
ϖ∈R+

φ̂n(z,ϖ) (4.1.20)
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We can express the estimate of φ(z,ϖ) in the random design as it was developed in

(Härdle et al., 2004). Let Y ∗
t = γτ (γτ (Xt), ϖ) be a non-negative function of Xt and

Y ∗ = (Y ∗
1 , Y

∗
2 , . . . , Y

∗
n ) a random vector in R∗

+ = (0,∞), t = 1, 2, . . . , n. In the

random design, the conditional expectation (4.1.16) can be rewritten as follow

φ(z,ϖ) = E
[
Y ∗ | Zt = z

]
=

∫
y∗f(y∗ | z)dy∗ =

∫
y∗

f(y∗, z)

f(z)
dy∗ (4.1.21)

Where f(y∗ | z) represents for the conditional pdf of Y ∗
t = y∗ given Zt = z, f(y∗, z) is

the joint pdf of the two random variables Y ∗ and Z and f(z) the pdf of Zt = z. Using

the (Nadaraya, 1964) and (Watson, 1964) with Kb(u) = b−1K
(
ub−1

)
, a 1-dimensional

rescaled kernel with bandwidth b > 0, we have the following estimates of f(y∗, z) and

f(z) (Silverman, 1986).

f̂(y∗, z) =
1

n

n∑
t=1

Kbz(Zt − z)Kby∗ (y
∗ − Y ∗

t )

f̂(z) =
1

n

n∑
t=1

Kbz(Zt − z)

(4.1.22)

From the estimations above, φ̂(z,ϖ) the estimate of φ(z,ϖ), is

φ̂n(z,ϖ) =

∫
y∗
∑n

t=1Kbz(Zt − z)Kby∗ (y
∗ − Y ∗

t )∑n
t=1 Kbz(Zt − z)

dy∗

=

∑n
t=1 Kbz(Zt − z)

∫
y∗Kby∗ (y

∗ − Y ∗
t )dy

∗∑n
t=1Kbz(Zt − z)

=

∑n
t=1 Kbz(Zt − z)

∫ [
(y∗ − Y ∗

t ) + Y ∗
t

]
Kby∗ (y

∗ − Y ∗
t )dy

∗∑n
t=1Kbz(Zt − z)

(4.1.23)

and considering the regularity conditions of Kb in Assumption 1 and also the fact that

d(y∗ − Y ∗
t ) = dy∗, Y ∗

t ∈ R+, we have

φ̂n(z,ϖ) =

∑n
t=1Kbz(Zt − z)Y ∗

t∑n
t=1Kbz(Zt − z)

= n−1

n∑
t=1

Kbz(Zt − z)Y ∗
t /f̂(z) (4.1.24)

where ĝ(z) is the estimate of the marginal pdf of Zt at point z and Y ∗ can be rewritten

as

Y ∗
t =

[
Xt

(
τ − I{Xt≤0}

)
−ϖ

](
τ − I{Xt(τ−I{Xt≤0})≤ϖ}

)
(4.1.25)
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and the derivative of φ̂n(z,ϖ) with respect to (w.r.t.) ϖ is

dφ̂n(z,ϖ)

dϖ
=
(
nf̂(z)

)−1
n∑

t=1

Kbz(Zt − z)

(
I{Xt(τ−I{Xt≤0})≤ϖ} − τ

)
(4.1.26)

The minimizer of (4.1.24) is obtained from dφ̂n(z,ϖ)
dϖ

= 0. This leads to the following

equation (
nf̂(z)

)−1
n∑

t=1

Kbz(Zt − z)
(
I{X∗

t ≤ϖ}

)
= τ (4.1.27)

where

X∗
t = Xt(τ − I{Xt≤0}) ∈ R∗

+, (4.1.28)

for all Xt ∈ R, t = 1, 2, . . . Note that Y ∗
t = I{X∗

t ≤ϖ} in (4.1.21). The left part of

the equation (4.1.27) is a (unsmoothed) conditional cumulative distribution function

(CCDF),

F̂ (x∗ | z) =
(
nf̂(z)

)−1
n∑

t=1

Kbz(Zt − z)
(
I{X∗

t ≤x∗}

)
, (4.1.29)

that needs to be estimated and our estimator is therefore

ϖ̂τ (z) = inf
{
x∗ ∈ R+ : F̂ (x∗ | z) ≥ τ

}
≡ F̂−1(τ | z) (4.1.30)

which is equivalent to F̂
(
ϖ̂(z) | z

)
= τ .

An algorithm to estimating F̂ (x∗ | z) is proposed in the following section. This estimator

suffers from the problem of boundary effects as we can see it on figure 4.3.2 due to

outliers. We obtain unsmoothed curves of the CCDF because the smoothness is only in

the Z direction. A method is proposed by (Hansen, 2004) to smooth in the y. The form

of Smoothed Conditional Distribution Estimator is

F̃ (x∗ | z) =
(
nf̂(z)

)−1
n∑

t=1

Kh(z − Zt)G

(
x∗ −X∗

t

h0

)
(4.1.31)

whereG(·) is an integrated kernel with the smoothing parameter h0 in theX∗ direction.

This estimate is smooth rather than the NW which is a jump function in y. To deal with
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boundary effects, one may think of the Weighted Nadaraya-Watson (WNW) estimate of

the CDF discussed in (Das and Politis, 2017), (Hall et al., 1999), (Steikert, 2014, p. 3–18)

among others. The WNW estimator’s expression is

F̃WNW (x∗ | z) =
∑n

t=1 pt(z, λ)Kbz(Zt − z)I{X∗
t ≤x∗}∑n

t=1 pt(z, λ)Kbz(Zt − z)
(4.1.32)

with conditions
∑n

t=1 pt(z, λ) = 1 and . Lambda is determined using the Newton-

Raphson iteration. Smoothing the CDF does not smooth the estimator in (4.1.30).

4.1.1 Nadaraya-Watson smoothing method

We can make ϖ̂τ (z) smooth by using NW regression1. This will provide a smoothed

curve at each level τ ∈ (0, 1). We write the regression equation as

Yt = ϖτ,s(Zt) + ηt (4.1.33)

with Yt = ϖτ (Zt), ϖτ,s(x) = E[ϖτ (z)|Zt = z] and the errors {ηi} satisfy E[ηi] =

0, V(ηi) = σ2
η and Cov(ηi) = 0 for i ̸= j. Note that ϖτ,s(x) can be derived using joint

pdf f(y, z) as

ϖτ,s(z) = E[Y |Z = z] =

∫
y
f(y, z)

f(z)
dy (4.1.34)

where f(y, z) and f(z) are estimated as in (4.1.22).

We can perform some transformations on (4.1.34) in order to show that it’s actually better

that the unsmoothed one. By assumption 2 (i) and the fact that F
(
ϖτ (z) | z

)
= τ , we

have

F
(
ϖτ,s(Zt) | z

)
= F

(
E[ϖτ (z)|Zt = z] | z

)
≤ E

[
F
(
ϖτ (z) | z

)
|Zt = z

]
= F

(
ϖτ (Zt) | z

)
= τ

1One can also use LOWESS (LOcally WEighted Scatter-plot Smoother) regression introduced by

(Cleveland, 1981) to smooth the estimator in (4.1.30) and which solves the problem of boundary effects.
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We’ve have used the Jensen’s theorem for conditional expectation found in (Chen et al.,

2003) and stated as follows:

Theorem 4.1.3 (Jensen’s inequality). For any convex function l,

E
[
l(X)

]
≥ l
(
E[X]

)
(4.1.35)

Proof of Theorem 4.1.35. Suppose that l is differentiable. The function l is convex if

l(x) ≥ l(y) + (x− y)l′(x), for any x, y. (4.1.36)

Let x = X and y = E[X]. The inequality l(X) ≥ l(E[X]) + (X − E[X])l′(X) is true

for all X and taking its expectation on both sides prove the theorem.

This inequality is applicable when f is a conditional convex function and when E[·] is a

conditional expectation. The estimator ϖτ,s(Zt) is also element of the set in which the

unsmoothed estimator belongs. This means that F
(
ϖτ,s(Zt) | z

)
≥ τ . The estimator is

empirically given by

ϖ̂τ,s(z) =

∑n
t=1Kb(Zt − z)yt∑n
t=1Kb(Zt − z)

=

∑n
t=1Kb(Zt − z)ϖτ (Zt)∑n

t=1Kb(Zt − z)
(4.1.37)

Asymptotic properties

To show the asymptotic properties of our estimator, we compute its expectation and

variance. Assuming the data (Y, Z) is i.i.d, the expectation of the numerator is given by

E
[
Kb(Zt − z)Yt

]
=

∫∫
v

b
K

(
u− z

b

)
f(u, v)dudv

=

∫∫
vK(s)f(v|z + sb)f(z + sb)dsdv

=

∫
K(s)f(z + sb)

(∫
vf(v|z = sb)dv

)
ds

=

∫
K(s)f(z + sb)ϖτ,s(z + sh)ds
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We assume that the first and the second derivatives of ϖτ,s(z) at point Zt = z exist.

That is, by the Taylor’s expansion of f(z + sb) and ϖτ,s(z + sh) given by

f(z + sh) = f(z) +
f (1)(z)

1!
sbz +

f (2)(z)

2!
(sbz)

2 + o(b2z) (4.1.38)

ϖτ,s(z + sh) = ϖτ,s(z) +
ϖ

(1)
τ,s(z)

1!
sbz +

ϖ
(2)
τ,s(z)

2!
(sbz)

2 + o(b2z). (4.1.39)

We get

E
[
Kb(Zt − z)Yt

]
= ϖτ,s(z)f(z) +

1

2
b2µ2(K)

(
f(z)ϖ(2)

τ,s(z) + f (1)(z)ϖ(1)
τ,s(z) + f (2)(z)ϖτ,s(z)

)
+ o(h3)

(4.1.40)

Similarly, the expectation of the numerator is

E
[
Kb(Zt − z)

]
= f(z) +

1

2
b2µ2(K)f (2)(z) + o(h2). (4.1.41)

For b2 small enough,

(
1 +

1

2
b2µ2(K)

f (2)(z)

f(z)

)−1

≈ 1− 1

2
b2µ2(K)

f (2)(z)

f(z)
. Thus,

E
[
ϖ̂τ,s(z)

]
≈ ϖτ,s(z) +

1

2
b2µ2(K)

(
ϖ(2)

τ,s(z) + 2
f (1)(z)

f(z)
ϖ(1)

τ,s(z)

)
(4.1.42)

The variance of the numerator, say V (N), is

V

(
1

n

n∑
t=1

Kb(Zt − z)Yt

)
=

1

nb2
V

(
K

(
Zt − z

b

)
Yt

)

=
1

nb2

E[K2

(
Zt − z

b

)
y2t

]
−

E[K (Zt − z

b

)
Yt

]2


≈ 1

nb

∫∫
v2K2(s)f(v|z + sb)f(z + sb)dsdv − o

(
1

n

)
=

1

nb

∫
K2(s)f(z + sb)

(∫
v2f(v|z + sb)dv

)
ds− o

(
1

n

)
≈ 1

nb
R(K)f(z)

[
σ2
η +ϖ2

τ,s(z)
]

(4.1.43)
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Note that
∫

v2f(v|z + sb)ds ≈ E[Y 2
t |Zt = z]. Similarly, the variance of the denomi-

nator, V(D), is V

(
1

n

n∑
t=1

Kb(Zt − z)

)
≈ 1

nb
f(z)R(K).

The covariance of the numerator and the denominator of the estimator in (4.1.37) is given

by

Cov(N,D) = Cov

(
1

nb

n∑
t=1

K

(
Zt − z

b

)
Yt,

1

nb

n∑
t=1

K

(
Zt − z

b

))

=
1

nb2
Cov

(
K

(
Zt − z

b

)
Yt, K

(
Zt − z

b

))

=
1

nb2

E[K2

(
Zt − z

b

)
Yt

]
− E

[
K

(
Zt − z

b

)
Yt

]
E

[
K

(
Zt − z

b

)]
≈ 1

nb
R(K)f(z)ϖτ,s(z)− o

(
1

n

)
(4.1.44)

The variance of the estimator in (4.1.37) is the variance of a ratio of correlated variables

that can be calculated using the approximation found in (Seltman, 2012)

V
(
N

D

)
≈
(
E[N ]

E[D]

)2
 V(N)(

E[N ]
)2 +

V(D)(
E[D]

)2 − 2Cov(N,D)

E[N ]E[D]

 (4.1.45)

=
R(K)σ2

η

nbf(z)
(4.1.46)

If the assumption 4 for strong mixing processes holds, then from the Central Limit The-

orem (CLT) we have

√
nb
(
ϖ̂τ,s(z)−ϖτ,s(z)− Bias

(
ϖ̂τ,s(z)

)) D−→N

(
0,

R(K)σ2
η

f(z)

)
(4.1.47)
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4.1.2 Asymptotic normality of QARCH

The CCDF in (4.1.29) can be written in the form of an arithmetic mean of a random

variable L:

F̂ (x∗|z) = 1

n

n∑
t=1

Lt with Lt =
Kbz(Zt − z)I{X∗

t ≤x∗}
1
n

∑n
t=1 Kbz(Zt − z)

(4.1.48)

and the approximation of the expectation of L is

E [Lt] ≈
E
[
Kbz(Zt − z)I{X∗

t ≤x∗}

]
E
[
1
n

∑n
t=1 Kbz(Zt − z)

] =
E[N ]

E[D]
(4.1.49)

see (Seltman, 2012). Using the i.i.d assumption over the data, the numerator is

E[N ] =
1

bz
E

[
K

(
Zt − z

bz

)
I{X∗

t ≤x∗}

]

=
1

bz

∫∫ x∗

−∞
K

(
u− z

bz

)
f(u, v)dudv

=

∫
F (x∗ | z + sh)K(s)f(z + sh)ds

(4.1.50)

We have used the change of variables s = (u − z)/bz, the definition of the conditional

density function turned into f(z + sbz, v) = f(v | z + sh)f(z + sbz) and Fubuni’s

theorem for multiple integrals. Taylor series expansions of F (v | z+sh) and f(z+sh),

yield

E[N ] =f(z)F (x∗ | z) + b2zµ2(K)

[
f (1)(z)F (1)(x∗ | z) + 1

2
f (2)(z)F (x∗ | z)+

1

2
f(z)F (2)(x∗ | z) + o(b2z)

]
(4.1.51)

and for the denominator, we have

E [D] = f(z) +
1

2
b2zµ2(K)f (2)(z) + o(b2z) (4.1.52)
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Thus,

E [Lt]

≈

f(z)

F (x∗ | z) + b2zµ2(K)

(
f (1)(z)

f(z)
F (1)(x∗ | z) + 1

2

f (2)(z)

f(z)
F (x∗ | z) + 1

2
F (2)(x∗ | z)

)
f(z)

(
1 + 1

2
b2zµ2(K)f

(2)(z)
f(z)

)
= F (x∗ | z) + 1

2
b2zµ2(K)

(
2
f (1)(z)

f(z)
F (1)(x∗ | z) + F (2)(x∗ | z)

)
+ o(b4z)

(4.1.53)

From the assumption that bz −→ 0, the denominator is approximated to 1−b2zµ2(K)
f (2)(z)

2f(z)
.

Hence,

Bias
(
F̂ (x∗|z)

)
≈ 1

2
b2zµ2(K)

(
2
f (1)(z)

f(z)
F (1)(x∗ | z) + F (2)(x∗ | z)

)
(4.1.54)

Some authors assumed that, in this case, the first derivative of the true pdf of Z at point

z can be zero (Hansen, 2004) as the one for the fixed design and therefore, the bias can

be given by

Bias
(
F̂ (x∗|z)

)
≈ 1

2
b2zµ2(K)

(
F (2)(x∗ | z)

)
(4.1.55)

We have

V(N) = V

(
1

bz
K

(
Zt − z

bz

)
I{X∗

t ≤x∗}

)
=

1

b2z
V

(
K

(
Zt − z

bz

)
I{X∗

t ≤x∗}

)

=
1

b2z

E[K2

(
Zt − z

bz

)
I{X∗

t ≤x∗}

]
−

E[K (Zt − z

bz

)
I{X∗

t ≤x∗}

]2


≈ F (x∗|z)f(z)R(K)

bz
− o(1),

(4.1.56)
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V(D) = V

(
1

n

n∑
t=1

Kbz(Zt − z)

)
=

1

nb2z
V

(
K

(
Zt − z

bz

))

=
1

nb2z

E[K2

(
Zt − z

bz

)]
−

E[K (Zt − z

bz

)]2


≈ f(z)R(K)

nbz
− o

(
1

n

)
,

(4.1.57)

Cov(N,D) =
1

nb2z
Cov

(
K

(
Zt − z

bz

)
I{X∗

t ≤x∗}, K

(
Zt − z

bz

))

≈ 1

nb2z
E

[
K2

(
Zt − z

bz

)
I{X∗

t ≤x∗}

]
− o

(
1

n

)
≈ 1

nbz
F (x∗|z)f(z)R(K)

(4.1.58)

Using the same approximation in (4.1.45), the variance of F̂ (x∗|z) is

V (Lt) ≈ F (x∗|z)

[
R(K)

(
1− F (x∗|z)

)
bzf(z)

]
(4.1.59)

and by the Central Limit Theorem, using assumption 4 for {(X∗
t , Zt), t = 1, 2, . . .}

√
n
(
F̂ (x∗|z)− F (x∗|z)− Bias

(
F (x∗|z)

)) D−→N
(
0,V (Lt)

)
(4.1.60)

Notice that the expectation of F̂ (x∗|z) is the same as the one of L and the variance is

V(Lt)/n. To show the asymptotic normality of ϖ̂τ (z), we use the following theorem.

Theorem 4.1.4 (Delta Method). Suppose F̂ (x∗|z) has the asymptotic normal distribu-

tion as in (??). Suppose g(·) is a continuous function that has a derivative g(1)(·) at

µ = E
[
F̂ (x∗|z)

]
. Then

√
nbz

(
g
(
F̂ (x∗|z)

)
− g(µ)

)
D−→N

(
0,
[
g(1)(µ)

]2 R(K)
(
1− F (x∗|z)

)
f(z)

)
(4.1.61)
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Proof of Theorem 4.1.4. The first-order Taylor expansion of g(·) about the point µ, and

evaluated at the random variable F̂ (x∗|z) is

g
(
F̂ (x∗|z)

)
≈ g(µ) + g(1)(µ)

(
F̂ (x∗|z)− µ

)
and subtracting g(µ) from both sides and multiplying by

√
nb, we get

√
nb

(
g
(
F̂ (x∗|z)

)
− g(µ)

)
≈

√
nbg(1)(µ)

(
F̂ (x∗|z)− µ

)
which tends to N

(
0,
[
g(1)(µ)

]2 R(K)(1−F (x∗|z))
f(z)

)
in distribution.

For g(µ) = F−1(µ|z), thus, g(1)(µ) = 1

f(F−1(µ|z)|z)
. In the next section, it’s shown that

the AMSE (Asymptotic Mean Squared Error) of F̂ (x∗|z) is equal to o
(
b4
)
+ o
(
1/(nb)

)
which tends to 0 as n−→∞ and b−→ 0. This shows the consistency of the CCDF

estimate, i.e, F̂ (x∗|z)−→p F (x∗|z) and we have

1

f
(
F−1(µ|z) | z

) p−→ 1

f
(
F−1(τ | z) | z

) =
1

f
(
ϖτ (z) | z

) (4.1.62)

at points x∗’s that satisfy (4.1.30). Using again the first-order Taylor expansion, we also

have

g(µ) = g

(
F (x∗|z) + Bias

(
F̂ (x∗|z)

))
≈ g

(
F (x∗|z)

)
+ Bias

(
F̂ (x∗|z)

)
× g(1)

(
F (x∗|z)

)
= x∗ +

Bias
(
F̂ (x∗|z)

)
f(x∗|z)

(4.1.63)

for x∗’s satisfying (4.1.30) and replacing F̂ (ϖτ (z)|z) by F (ϖ̂τ (z)|z) using the unique-

ness assumption of ϖτ (z), (4.1.61) becomes

√
nb
(
ϖ̂τ (z)−ϖτ (z)− Bias

(
ϖ̂τ (z)

)) D−→N

0,
R(K)τ(1− τ)

f(z)
[
f
(
ϖτ (z) | z

)]2

(4.1.64)
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with Bias
(
ϖ̂τ (z)

)
=

Bias
(
F̂ (ϖτ (z)|z)

)
f(ϖτ (z)|z)

≈ 1

2f(ϖτ (z)|z)
b2zµ2(K)

(
F (2)(ϖτ (z) | z)

)
This result can be used to calculate the optimal bandwidth to compute the good estima-

tion of the CSF.

4.2 Bandwidth selections

4.2.1 Optimal bandwidth for density estimations

In non-parametric, specially in kernel density estimations, computing a curve of an arbi-

trary function from the data without guessing the shape in advance, requires an adequate

choice of the smoothing parameter. The most used method is the ”plug-in” method

which consist of assigning a pilot bandwidth in order to estimate the derivatives of

f̂(z). We choose the bandwidth that minimizes the AMISE (Asymptotic Mean Inte-

grated Squared Error) below.

AMISE
(
f̂(z)

)
=

∫
E
[(

f̂(z)− f(z)
)2]

dz

=

∫
E

[(
f̂(z)− E

[
f̂(z)

]
+ Bias

(
f̂(z)

))2
]
dz

=

∫ E
[(

f̂(z)− E
[
f̂(z)

])2
]
+ Bias2

(
f̂(z)

) dz

=

∫ {
V
(
f̂(z)

)
+ Bias2

(
f̂(z)

)}
dz

=

∫ {
R(K)f(z)

nb
+

1

4
b4µ2

2(K)
[
f (2)(z)

]2}
dz

=
R(K)

nb
+

1

4
b4µ2

2(K)R
(
f (2)(z)

)

(4.2.1)

The general form of the rth derivatives of the AMISE w.r.t b was studied in (Raykar and

Duraiswami, 2006), considering that the unknown functions in (4.2.1) are also functions
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of the smoothing parameter.

d

dzr
AMISE

(
f̂(z)

)
=

R(K(r))

nb2r+1
+

1

4
b4µ2

2(K)R
(
f (2+r)(z)

)
(4.2.2)

The optimal smoothing parameter minimizing (4.2.2) is

b∗ =

[
(2r + 1)R(K(r))

µ2
2(K)R

(
f (2+r)(z)

)]1/(2r+5)

× n−1/(2r+5) (4.2.3)

Using this result, we came up with the optimal version of optimal bandwidth for CCDF.

The aim of derivation the AMISE in (4.2.1) is to get the optimal bandwidth for each f (r)

directly. As an example, we consider the Epanechnikov Kernel function in order to com-

pute R(K), µ2(K) and the efficiency of the kernel function given by
√
µ2(K)R(K).

The Epanechnikov’s kernel function is

K(u) =
3

4
(1− u2)I{|u|≤1} ⇒ R(K) =

3

4

∫ 1

−1

(
1− 2u2 + u4

)
du =

3

5
,

µ2(K) =

∫ 1

−1

u2K(u)du =

∫ 1

−1

(
u2 − u4

)
du =

1

5

and its efficiency is measured by

Eff(K) = R(K)
√

µ2(K) =
3

4

√
1

5
= 0.268

which is the smallest of all the other kernel functions in terms of efficiency (see Table

4.2.1)
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Table 4.2.1: Description of the most used kernel functions
Kernel functions ExpressionsK(u) r R(K) µ2(K) Eff(K)

Gaussian 1√
2
exp

(
−u2

2

)
IR ∞ 1

2
√
2

1 0.2821

Epanechnikov 3
4
(1− u2)I(|u| ≤ 1) 2 3

5
1
5

0.2683

Uniform 1
2
I(|u| ≤ 1) 0 1

2
1
3

0.2887

Triangular (1−|u|)I(|u| ≤ 1) 1

Triweight 35
32
(1− u2)3I(|u| ≤ 1) 6 2

3
1
6

0.2722

Tricube 70
81
(1−|u|3)3I(|u| ≤ 1) 9 175

247
35
243

0.2689

Biweight 15
16
(1− u2)2I(|u| ≤ 1) 4 5

7
1
7

0.2700

Cosine π
4
cos
(
π
2
u
)

∞ π2

16
−8+π2

π2 0.2685

4.2.2 Optimal bandwidth for CCDF

The optimal bandwidth for the CCDF estimate is the one that minimizes the AMSE. It

is shown below that the AMSE is actually the summation of the variance and the bias

of the CCDF estimate. This is useful because the two are linked. When the variance is

big, the bias also is big and when the variance is small, the bias is small.

AMSE
(
F̂ (x∗|z)

)
= E

[(
F̂ (x∗|z)− F (x∗|z)

)2]
= E

[(
F̂ (x∗|z)− E

[
F̂ (x∗|z)

]
+ Bias

(
F̂ (x∗|z)

))2
]

= E

[(
F̂ (x∗|z)− E

[
F̂ (x∗|z)

])2
]
+ Bias

(
F̂ (x∗|z)

)
× E

[
F̂ (x∗|z)− E

[
F̂ (x∗|z)

]]
+ Bias2

(
F̂ (x∗|z)

)
= V

(
F̂ (x∗|z)

)
+ Bias2

(
F̂ (x∗|z)

)
=

R(K)

nbzf(z)
F (x∗|z)

(
1− F (x∗|z)

)
+

b4

4
µ2
2(K)

(
F (2)(x∗ | z)

)2
(4.2.4)
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which is given by (3.2.29) and (4.1.55). Therefore,

b∗ = argmin
b>0

AMSE
(
F̂ (x∗|z)

)
(4.2.5)

and
d

db
AMSE

(
F̂ (x∗|z)

)
= 0 leads to

b∗ =

R(K)F (x∗|z)
(
1− F (x∗|z)

)
µ2
2(K)f(z)

(
F (2)(x∗|z)

)2


1
5

× n− 1
5 (4.2.6)

This result is practically possible by estimating the unknown functions which are de-

pendent of the smoothing parameter. F̂ (2) is the second derivative of the CCDF from

(4.1.29) at point Zt = z. The estimator of the rth derivatives of (4.1.29) is:

F̂ (r)(x∗|z) = dr

dzr

n∑
t=1

Wt(z)X{X∗
t ≤x∗} =

n∑
t=1

W
(r)
t (z)X{X∗

t ≤x∗} (4.2.7)

with

Wt(z) =
K
(
Zt−z

b

)∑n
t=1K

(
Zt−z

b

) =
K
(
Zt−z

b

)
nbf̂(z)

(4.2.8)

the function of weights. Thus, the first derivative is given by

W
(1)
t (z) =

1

nb2
K(1)

(
Zt−z

b

)
f̂(z)− bK

(
Zt−z

b

)
f̂ (1)(z)[

f (1)(z)
]2 =

1

nb2
A

B
(4.2.9)

and the second derivative is also

W
(2)
t (z) =

1

nb2
A(1)B −B(1)A

B2
(4.2.10)

withA(1) = 1
b
K(2)

(
Zt−z

b

)
f̂(z)− bK

(
Zt−z

b

)
f̂ (2)(z) andB(1) = 2f̂ (1)(z)f̂(z).Note that

the estimation of the CCDF is function of the estimation of the empirical pdf of z. An

optimal bandwidth that minimizes the AMISE of f̂(z) can also be the one that is optimal

for the estimation of the CCDF.

Recent findings on the estimation of an optimal bandwidth for KDE (Kernel Density

Estimation) are numerous (Chen, 2015), (Guidoum, 2013), (Raykar and Duraiswami,

50



2006). But the estimation of an optimal smoothing parameter remains irksome due to

computation issue and time consuming routines. To do so, we adopt what had been done

by (Guidoum, 2013) to estimate the rth derivatives of the pdf of Zt with respect to z. We

extend the idea to estimate the first and the second derivative of the CCDF with respect

to z.

4.3 Simulation study

4.3.1 Model specification

The ARCH(q) models introduced by (Engle, 1982) is widely used in financial appli-

cations. An AR(1)-ARCH(1) is a mixed model from an AR(d) and GARCH(p,q) for

d = 1, p = 1 and q = 0. In time series, an observation at one time can be correlated

with the observations in the previous time. That is:

(∗) Autoregressive process of order p = 1, 2, . . .

AR(p) : Xt = µ+ δ1Xt−1 + δ2Xt−2 + · · ·+ δpXt−p + et, with εt i.i.d.

(∗) Autoregressive (p)- General Autoregressive Conditional Heteroscedastic pro-

cess of order (d = 1, 2, . . . ; p = 1, 2, . . . ; q = 1, 2, . . .)

AR(d)−GARCH(p, q) : Xt =

p∑
i=1

aiXt−i +ϖtet,

with et i.i.d. and ϖt =

w +

p∑
i=1

αiu
2
i−1 +

q∑
i=1

βiϖ
2
i−1

1/2

.

The data to be simulated is given byXt = µ+ δXt−1+
(
w + αX2

t−1

)1/2
et, t = 1, 2, . . .
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4.3.2 Specifications for AR(1)-GARCH(1,1)

Unconditional expectation

The unconditional expectation is

E[Xt] = µ+ δ E[Xt−1] + E[ϖtet] = µ+ δ E[Xt] + E[ϖt]E[et] (4.3.1)

Note that E[Xt] = E[Xt−1] is used to ensure the stationarity of the process. That is, the

expectation is therefore given by

E[Xt] =
µ

1− δ
(4.3.2)

Unconditional variance

The unconditional variance of the model is given by the law of total variance

V(Xt) = E
[
V(Xt | Xt−1)

]
+ V

(
E[Xt | Xt−1]

)
(4.3.3)

= E[ϖ2
t ] + V[αt] (4.3.4)

We have

E[ϖ2
t ] = ω + αE[X2

t−1] + β E[ϖ2
t−1] (4.3.5)

Using the i.i.d. assumption on the sequence of random variables X1, X2, . . . , Xn, the

expected value of X2
t can be calculated as follow

E[X2
t ] = E [µXt + δXt−1Xt +ϖtetXt] (4.3.6)

= µE[Xt] + δ
(
E[Xt]

)2 (4.3.7)

=
µ2

1− δ
+

δµ2

(1− δ)2
(4.3.8)

=
µ2

(1− δ)2
(4.3.9)
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Which is independent of time. In another way,

E[X2
t ] = E

[
α2
t + 2αϖtet +ϖ2

t e
2
t

]
(4.3.10)

= E[α2
t ] + E[ϖ2

t ] (4.3.11)

The equation (4.3.5) becomes

E[ϖ2
t ] = ω + α

(
E[α2

t ] + E[ϖ2
t ]
)
+ β E[ϖ2

t−1] (4.3.12)

= ω + αE[α2
t ] + (α + β)E[ϖ2

t ] (stationarity) (4.3.13)

We obtain

E[ϖ2
t ] =

ω + αE[α2
t ]

1− α− β
(4.3.14)

The expectation of α2
t is given by

E[α2
t ] = E

[
(µ+ δXt−1)

2
]

(4.3.15)

= µ2 + 2µδ E[Xt] + δ2 E[X2
t ] (4.3.16)

= µ2 + 2
δµ2

1− δ
+

δ2µ2

(1− δ)2
(4.3.17)

=
µ2

(1− δ)2
(4.3.18)

It follows that

E[ϖ2
t ] =

ω(1− δ)2 + αµ2

(1− α− β)(1− δ)2
(4.3.19)

and the variance in (4.3.4) becomes

V(Xt) =
ω(1− δ)2 + αµ2

(1− α− β)(1− δ)2
+ V(µ+ δXt−1) (4.3.20)

=
ω(1− δ)2 + αµ2

(1− α− β)(1− δ)2
+ δ2V(Xt) (4.3.21)

=
ω(1− δ)2 + αµ2

(1− α− β)(1− δ2)(1− δ)2
(4.3.22)

This variance is positive and finite for µ ∈ R, |δ| < 1, ω > 0, α > 0, β > 0 and

α + β < 1.
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4.3.3 Monte Carlo study

We simulated the data from (1.2.1) with µ = 0.5, δ = 0.3, for the AR(1) part, w =

0.1, α = 0.35, for the ARCH(1) and et ∼ i.i.d.N (0, 1). The data plot is represented by

figure 4.3.1.

ar(1)−arch(1) process

Time

D
at

a

0 200 400 600 800 1000

−
2

0
2

4

Figure 4.3.1: Plot of the simulated AR(1)-ARCH(1)

Our algorithm gives the estimation of the conditional scale function which suffers from

boundary effects as it’s seen on figure 4.3.2. This issue is recurrent while performing

Kernel Density Estimations. The reason is that at the boundaries, g(z) is underestimated

because of the minimal number of points (Karunamuni and Alberts, 2005). The consis-

tency of our estimator is dependent on this problem of big variations at the boundaries.

This increases the Average Squared Error between two different estimation from a same

model.
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Figure 4.3.2: Conditional scale function estimate at τ = 0.75

4.3.4 Boundary correction

The following figure 4.3.3 is the representation of Zt and the transformed response vari-

able X∗
t defined in (4.1.28) at level τ = 0.75.
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Z = X[t−1]

X
[t]

Figure 4.3.3: Scatter plot and outliers detection
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The gray points are outliers from (4.3.3). We loose some information by deleting them

but we get the possibility to perform the estimation a continuous curve of the CSF. The

next figure is the estimations of the CSF at levels 0.25, 0.5 (median), 0.75 and 0.9. As

we can see on the graphic, despite the optimal bandwidth for the empirical pdf of Zt at

point z, we get unsmoothed curves at high level τ > 0.5.
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Figure 4.3.4: CSF estimations

The curves represent the estimations of the CSF at τ = 0.9, 0.75, 0.50, 0.25 from

up to down. As it’s seen on figure 4.3.4, the curve are not smooth that why the NW

method discussed in section 4.1.1 which requires that unsmoothed estimator and the bins

z∗1 , z
∗
2 , . . . , z

∗
N . We obtain the following graphic which combines the two estimations.
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Figure 4.3.5: Smoothed estimate of the CSF

The next section discusses how precised is our estimation with the optimal bandwidth

selection with the calculation of the MASE(Mean Average Squared Errors).

4.3.5 Accuracy of the estimator

The consistency of the estimator can be shown with the calculation of the Mean Average

Squared Error providing the quantitative assessment of the accuracy of our estimator.

This is a kind of bootstrap method to calculate the average gap between m estimated

CSFs. The formula is

MASE
(
ϖ̂τ (z)

)
=

1

n

n∑
j=1

 1

m

m∑
i=1

(
ϖ̂τ,1(zi)− ϖ̂τ,j(zi)

)2 (4.3.23)

The following tables show the accuracy of the smoothed CSF compared to the rough

(nonsmoothed) one. We can see that our estimation is more accurate for all proportions.
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Table 4.3.1: MASE for QAR at τ = 0.25

n rough ϖ̂0.25 smooth ϖ̂0.25

250 0.04557 0.00082

500 0.09579 0.00036

1000 0.19245 0.00063

Table 4.3.2: MASE for QAR at τ = 0.50

n rough ϖ̂0.50 smooth ϖ̂0.50

250 0.24196 0.00567

500 0.23448 0.00367

1000 0.29932 0.00392

Table 4.3.3: MASE for QAR at τ = 0.75

n rough ϖ̂0.75 smooth ϖ̂0.75

250 0.54523 0.01936

500 0.49205 0.01658

1000 1.2227 0.01191

Table 4.3.4: MASE for QAR at τ = 0.90

n rough ϖ̂0.90 smooth ϖ̂0.90

250 2.60788 0.10582

500 2.11358 0.05296

1000 2.13707 0.04107
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4.4 Conclusion

We’ve derived an estimator for the conditional scale function in an AR(1)-GARCH(1)

despite the high variability of the simulated data, we were able to deal with the boundary

effect and were able to show the asymptotic behavior of the estimator through a Monte

Carlo study. We assumed that the QAR(1) is known and is zero and along with the

regularity assumptions, we derived the estimator which can be improved in some next

papers. In the chapter, the estimation when the QAR(1) is unknown is carried out.
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Chapter 5

Estimation of the QAR and QARCH

In the previous chapter, the quantile autoregressive (QAR) was assumed to be zero (0)

and we derived the estimator of the conditional scale function QARCH and showed

that it is asymptotically normal with bias O(b2/2) and variance O(1/nb) where n and

b are respectively the data size and bandwidth. In this chapter, the estimations of the

QAR and the QARCH functions are carried out considering the model (1.2.2) with the

same assumptions made for consistency proof. The estimation of the QARCH follows

the same proceeding and depends on the estimation of the QAR function. This can

be written theoretically but can have a dimension issue when it comes to computation

because the QAR’s estimate is a set of points that may not be of the same length as

the response variable due to the fact that, in non-parametric regression using(Nadaraya,

1964)-(Watson, 1964) methods, the unknown functions are estimated using bins. It’s

feasible if the number of bins are chosen to be equal to the length of Xt. To take care

of the dimension issue, a similar work was done in (Hall et al., 2002) on the prediction

based on non-parametric estimation of the conditional median using local least absolute

regression. Our approach will take care of all given quantile τ ∈ (0, 1). The estimation

of the QARCH is based on residuals (Koenker and Bassett, 1978), (Koenker and Zhao,

1996), (Koenker, 2005) and (Givord and Dhaultfoeuille, 2013) by removing the effect
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of the QAR effect fromXt at each level τ . The kernel function used for this application

is the Gaussian kernel function.

5.1 Conditional Quantile estimations

To obtain theQAR-QARCHmodel from (1.2.1), we simply take its τ th conditional quan-

tile and we obtain:

Qτ (Xt | Xt−1) = ατ (Xt−1) = α(Xt−1) +ϖ(Xt−1)q
e
τ (5.1.1)

where qeτ = F−1
e (τ) is the τ th quantile of {et}. To make the reading less difficult, Xt−1

is changed to Zt. Note that (5.1.1) is the estimation of the CVaR (Conditional Value-at-

Risk) discussed in . Now, centering the response variable in (1.2.1) at its τ th-quantile in

(5.1.1), we get:

Xt − ατ (Zt) = ϖ(Zt) (et − qeτ ) (5.1.2)

which is equivalent to the quantile autoregressive model:

Xt = ατ (Zt) + ετ , (5.1.3)

where ετ = ϖ(Zt) (et − qeτ ) is 0 τ -quantile, i.e, Qτ (ετ ) = 0.

5.1.1 Non-parametric QAR

Consider the model (5.1.1) and the assumptionmade on the innovation ετ . By definition,

ετ is zero τ -quantile meaning

Pr(ετ ≤ 0) = Pr(ετ ≤ 0 | Zt) = τ (5.1.4)

and using (5.1.4), we have

Pr(Xt ≤ ατ (Z) | Zt) = E
[
I
(
Xt ≤ ατ (Zt)

)
| Zt

]
= τ (5.1.5)
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which is equivalent to F
(
ατ (Zt) | Zt

)
= τ . The conditional quantile function ατ min-

imizes the objective function E
[
γτ (Xt, ατ ) | Zt

]
, i.e.

ατ (z) = argmin
ατ

E
[
γτ (X,ατ ) | Zt = z

]
(5.1.6)

and is empirically given by

α̂τ (z) = argmin
ατ

1

n

n∑
t=1

Kb(Zt − z)γτ (Xt, ατ ) (5.1.7)

Let’s denote φ̂n,τ = 1
n

∑n
t=1Kb(Zt−z)γτ (Xt, ατ ). The zero of the equation d

dατ
φn,τ =

0 is

α̂τ (z) = inf
{
µ : F (µ | z) ≥ τ

}
≡ F̂−1(τ | z) (5.1.8)

where

F̂ (x | z) =
[
nf̂(z)

]−1
n∑

t=1

Kb(Zt − z)I (Xt ≤ x) (5.1.9)

Theorem 5.1.1. Under the assumptions 1, 2 and 5,

F̂ (x | z) d−→F (x | z) (5.1.10)

if the assumption 4 holds, we have in addition

√
n
(
F̂ (x∗|z)− F (x∗|z)− Bias

(
F (x∗|z)

)) D−→N
(
0,V (Lt)

)
(5.1.11)

It follows that

α̂τ (z)
D−→ατ (z). (5.1.12)

Proof. The proof is similar to the one given in the chapter 4 using CLT and by the use

of the Delta Method we showed the consistency of α̂τ (z)

5.1.2 k Nearest Neighbor (k-NN) prediction

The prediction α̃τ (z) of a future value or any value Zn+1 = z is easy in parametric

regression once we have the estimated coefficients of a model. But in non-parametric
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regression, this prediction is somehow impossible. Recent research on this problem

suggests methods more or less feasible for our type of estimation. There is the kNN (k

Nearest Neighbor)(Caires and Ferreira, 2005) method which consists of finding the k

values, z∗1, . . . , z∗k close to z. The requirement of this method is that the estimator ατ is

to be smooth (Caires and Ferreira, 2005). Unfortunately, the estimation of the QAR in

(5.1.7) is not smooth and suffers from boundary issues. Having estimated α̂τ (z
∗
i ) and

the bin points z∗i , i = 1, . . . , N , thus, α̃τ (z) will be the average of α̂τ (z
∗
1), . . . , α̂τ (z

∗
k).

In other words,

α̃τ (z) =
1

k

k∑
i=1

α̂τ (z
∗
i ) (5.1.13)

This approach is used to predict the values α̃τ (Zt) which is a sequence of n points. The

figure 5.2.1 represents the prediction for the entire data (for instance, the daily returns)

at τ = 0.25, 0.50, 0.75, 0.9. In order to see if the prediction is accurate, the following

error is calculated (the mean squared error of the difference between α̂τ (z
∗
i ) and α̃τ (z

∗
i )

for bins z∗1 , . . . , z∗N )

ẽp =
1

N

N∑
i=1

(
α̂τ (z

∗
i )− α̃τ (z

∗
i )
)2 (5.1.14)

The same prediction applies when we have the non-parametric estimation of the condi-

tional scale function ϖ̂τ .

5.1.3 Non-parametric QARCH

Considering that the QAR is already estimated, we have

Qτ

[
γτ
(
Xt − ατ (Zt)

)]
= ϖ(Zt)Qτ

[
γτ (et − qeτ )

]
(5.1.15)

The ratio of Xt − ατ in (5.1.2) and the left part in (5.1.15) gives

Xt − ατ (Zt)

Qτ

[
γτ
(
Xt − ατ (Zt)

)] =
et − qeτ

Qτ

[
γτ (et − qeτ )

] (5.1.16)
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This transformation leads to the QAR-QARCH model

Xt = ατ (Zt) +ϖτ (Zt)ητ (5.1.17)

whereϖτ (Zt) = Qτ

[
γτ
(
Xt − ατ (Zt)

)]
and ητ = et−qeτ

Qτ

[
γτ(et−qeτ)

] is zero τ -quantile with
unit scale. This property leads to the expression

Pr
(
γτ (ητ ) ≤ 1

)
= Pr

(
γτ (ητ ) ≤ 1 | Z

)
= τ (5.1.18)

This is identifiable to (5.1.5), if Xt and ατ (Zt) are replaced by γτ
(
Xt − ατ (Zt)

)
and

ϖτ (Zt) respectively. Thus, ϖτ (Zt) minimizes E
[
γτ

(
γτ
(
Xt, ατ (Zt)

)
, ϖτ (Zt)

)
| Zt

]
,

i.e.

ϖτ (Zt) = argmin
ϖτ

E
[
γτ (X

∗
t , ϖτ ) | Zt

]
(5.1.19)

or is empirically given by

ϖ̂τ (Zt) = argmin
ϖτ

1

n

n∑
t=1

Kb(Zt − z)γτ (X
∗
t , ϖτ ) (5.1.20)

whereX∗
t = γτ

(
Xt, ατ (Zt)

)
. Again, if we denote φ̂n,τ = 1

n

∑n
t=1Kb(Zt−z)γτ (X

∗
t , ϖτ ),

then dφ̂n,τ

dϖτ
= 0 has as solution

ϖ̂τ (z) = inf
{
x∗ ∈ R+

∗ : F̂
(
x∗ | z

)
≥ τ

}
≡ F̂−1(τ | z) (5.1.21)

with

F̂
(
x∗ | z

)
=
[
nf̂(z)

]−1
n∑

t=1

Kb(Zt − z)I(X∗
t ≤ x∗) (5.1.22)

Where I(·) is the indicator function which is 1 if the condition X∗
t ≤ x∗ holds and 0

otherwise. The estimation of (5.1.22) and it’s inverse are the same as in chapter 3.1.

5.1.4 Quantile error estimation

In chapter 4, we showed the asymptotic properties of the conditional scale function es-

timate through inversion of the conditional CCDF as in (5.1.22) with the assumption
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that the quantile location shift ατ is zero. The properties for the QAR estimate are the

same given that the two CCDFs in (5.1.9) and (5.1.22) differ respectively in indicator

parts I(Xt ≤ x) and I(X∗
t ≤ x∗) only. Thus, assuming we have estimated the two

components using the prediction method, the quantile error ητ can be estimate as

η̂τ =
Xt − α̃τ (Zt)

ϖ̃τ (Zt)
(5.1.23)

and should verify the conditions (5.1.4) and (5.1.18). Moreover, if the conditions hold,

then the estimators are accurate. From our simulation, the estimations seem to be accu-

rate for quantile τ ≥ 0.75 (see Table 5.2.1).

5.2 Simulation study

The data of size n = 1000 was simulated from the model Xt = 0.5 + 0.3Xt−1 +√
1 + 0.35X2

t−1et with et generated from a student t-distribution with 4 degrees of free-

dom. The figure 5.2.1 represents the superposition of the process and the estimated

α̃τ (z) using the kNN prediction method. In fact, the non-parametric estimation of α̂τ (z)

was first carried out using the smoothed estimator along with the outliers detection using

box-plot fences in order to correct the boundary issue (see Chapter 5). The comparison

between α̂τ (z) and the predicted α̃τ (z) for bins z is represented by Figure 5.2.2. Note

that the prediction error in (5.1.14) was evaluated to 10−6 and the Figure 5.2.2 illustrates

it as well. The outliers detection technique and prediction give less weight to extreme

points that are not considered in the first estimation, then are re-involved in the predic-

tion. This made our estimations less sensitive to the boundaries (see Figure 5.2.2).
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Table 5.2.1: Summary of quantile errors
τ Min. 1st Qu. Med Mean 3rd Qu. Max. Pr(ητ ≤ 0) Pr (η∗τ ≤ 1)

0.25 -47.18 0.03 3.00 3.53 6.48 61.04 0.25 0.42

0.50 -16.78 -1.46 0.02 0.17 1.61 22.99 0.50 0.62

0.75 -16.61 -2.86 -1.49 -1.32 0.06 21.53 0.74 0.74

0.90 -16.62 -2.79 -1.95 -1.92 -1.09 12.96 0.89 0.96

η∗τ = γτ (ητ ).
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Figure 5.2.1: Predicted conditional quantile returns

On the graphs above, we see the smoothed estimation of the QAR for a given data set

from an AR(1)-ARCH(1) process. The fact that we able to estimate the daily conditional

returns from previous values, help here to calculate the smoothed QAR for every point
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Figure 5.2.2: Graphical superposition of α̃τ (z) [red points] and α̂τ (z) [blue curve]

The figures above represent the estimations of smoothed QAR for proportions 0.25,

0.50, 0.75 and 0.90. Given an AR(1)-ARCH(1) time series, we are able to calculate

today’s return based on the yesterday’s at proportion τ ∈ (0, 1). This feature describe

the response variable but not totally because we need to know the conditional variation

at the given proportion τ . That’s why the smoothed estimation of the CSF is necessary.
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Figure 5.2.3: Quantile errors for τ = 0.75

5.3 Accuracy of the estimates

The calculation of the MASE as in (4.3.23) for QAR and QARCH are recapitulated in

the following table

Table 5.3.1: MASE for QAR and QARCH at τ = 0.25

n rough α̂0.25 smooth α̂0.25 rough ϖ̂0.25 smooth ϖ̂0.25

250 1.13482 0.03078 0.03457 0.00075

500 0.94149 0.04128 0.04916 0.00075

1000 1.22881 0.00671 0.15645 0.00115
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Table 5.3.2: MASE MASE for QAR and QARCH at τ = 0.50 (median)
n rough α̂0.50 smooth α̂0.50 rough ϖ̂0.50 smooth ϖ̂0.50

250 0.6184 0.01963 0.08938 0.00401

500 1.21301 0.00873 0.3448 0.00526

1000 1.54507 0.0091 0.3595 0.00816

Table 5.3.3: MASE MASE for QAR and QARCH at τ = 0.75

n rough α̂0.75 smooth α̂0.75 rough ϖ̂0.75 smooth ϖ̂0.75

250 1.88628 0.03351 1.36976 0.0126

500 0.39451 0.02664 0.69214 0.02616

1000 1.28018 0.01356 1.21384 0.02367

Table 5.3.4: MASE MASE for QAR and QARCH at τ = 0.90

n rough α̂0.90 smooth α̂0.90 rough ϖ̂0.90 smooth ϖ̂0.90

250 0.66136 0.222 0.62655 0.17793

500 0.99836 0.12574 1.09674 0.27295

1000 1.76097 0.07349 1.47431 0.1794

From the tables we see that the MASE for smooth estimations are the smallest. This

means the smoothed estimations are more accurate than the ”rough” ones. This results

is very significant for further researches that involve conditional quantile estimations.

5.4 Conclusion

In this chapter, the problem of estimating the conditional scale function when the au-

toregressive part is not zero was addressed by first estimating the smoothed estimate of

the QAR, then, we used the kNN prediction to adjust the dimension in order to calculate
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the residuals from which the smoothed CSF was estimated. The showed that the soothed

estimates are accurate compared to the rough ones.
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Conclusion and recommendations

In this thesis, was derived an estimator of the Conditional Scale Function in two different

cases. The first is the one assuming the QAR function is zero and the second is the one

that requires the estimation of the QAR in the first place. This was possible by inverting

the CDF. We estimated the matrix of the Conditional Cumulative Distribution Function

and then its inverse. This approach is a first in the field of conditional quantile estimation.

The consistency of our estimates has been proven according to specific assumptions.

Monte Carlo studies were performed in order to show the performance of our estimators.

An application on real data could have been a very good application for our theories but

since it already works on simulations, we hope that these results will be of great use.

The method of Nadaraya - Watson is according to the literature very influenced by very

distant data whereas more researches could be based on very robust methods like local

polynomial of degree greater than equal to two (2) which is more robust that the former.

This may avoid using the outliers detection method. The estimations can be improved

using bootstrapping methods.
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Appendix

R codes

Data Generating process

#---------------------------------------------------------------

# Simulation of processes with heteroscedasticity

#---------------------------------------------------------------

# size: (output) data length

#---------------------------------------------------------------

# (ar.coef = c(.01, .3), arch.coef = c(.1, .1, .6), size = 1001)

if(!require(kedd)) install.packages("kedd")

ArGarch <- function(ar.coef = c(.5, .3), arch.coef = c(.1, .1, .75),

size = 1001){

if (sum(arch.coef[2:3]) >= 1){

stop(

"The process may not be stationary bacause the sum of coefficients ",

arch.coef[2], " and ", arch.coef[3],

" for GARCH(1,1) is greater than or equal to 1"

)

}

m <- size*3

varpi <- runif(1)
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x <- 1

for(i in 2:m){

varpi[i] <- sqrt(arch.coef[1] + arch.coef[2]*x[i-1]^2 +

arch.coef[3]*varpi[i-1]^2)

x[i] <- ar.coef[1] + ar.coef[2]*x[i-1] + varpi[i]*rt(1, df = 3)

}

Data <- tail(x, size)

return(Data)

}

# Simulating an AR(1)-ARCH(1) process

ar1arch1 <- function(ar.coef = c(.5, .3), arch.coef = c(.1, .35),

size = 1001){

m <- size*2

e <- rnorm(m)

varpi <- abs(runif(1))

x <- runif(1)

for(i in 2:m){

varpi[i] <- sqrt(arch.coef[1] + arch.coef[2]*x[i-1]^2)

x[i] <- ar.coef[1] + ar.coef[2]*x[i-1] + varpi[i]*e[i-1]

}

Data <- tail(x, size)

return(Data)

}

# Testing the parameters

# set.seed(1)

size <- 200

Data <- list(

Data1 = ar1arch1(c(.5, 0.25), arch.coef = c(1, 0.35), size),

Data2 = ar1arch1(c(.5, -0.75), arch.coef = c(1, 0.5), size),

Data3 = ar1arch1(c(.5, 0.95), arch.coef = c(1, 1.20), size),

Data4 = ar1arch1(c(.5, 1), arch.coef = c(1, 1), size)
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)

for (i in 1:length(Data)) {

pdf(paste(names(Data[i]),"pdf", sep = "."), width = 8,

height = 8)

par(mfrow = c(3,1))

ts.plot(Data[[i]], main = NULL, ylab = names(Data[i]))

acf(Data[[i]], main = "")

pacf(Data[[i]], main = "")

dev.off()

}

## Other way of simulating a AR(1)-ARCH(1) process

# m function: conditional mean

m <- function(x) sin(0.5*x)

# h function: conditional variance

h <- function(x){

# Definition of h1

h1 <- 1+0.01*x^2+0.5*sin(x)

# h2 <- 1-0.9*exp(-2*x^2)

h2 <- 0

return(h1+h2)

}

# Generating data and deleting the first 1000 points

processGen <- function(n, mfun = m, hfun = h, delete = 1000){

n <- n+delete

e <- rt(n, df=3)

# seed

y = 0
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for (t in 2:n) {

y[t] <- m(y[t-1]) + sqrt(h(y[t-1]))*e[t-1]

}

y <- y[-(1:delete)]

return(y)

}

Check-function γτ

## Check-function

checkfun <- function(x, tau) return(x*(tau - 1*(x <= 0)))

Outliers detection

# Code for ouliers detection. The code returns the indices of

# outliers in a sequence

extrems <- function(x, range = 2.5){

nx <- length(x)

q1 <- quantile(x, 0.25)

q3 <- quantile(x, 0.75)

iqr <- q3 - q1

# Extrem outlier are points outside

lower <- (q1 - range)*iqr

upper <- (q3 + range)*iqr

# Indices

id <- which(x < lower | x > upper);

return(id)

}
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rmextrems <- function(x, which.vect = 1, range = 3){

if(!is.data.frame(x)) stop(

"The input should be a data frame or a matrix of order (n x 2)"

)

id <- extrems(x[,which.vect], range)

rest <- x[-id, ]

freq.rm <- length(id)*100/nrow(x)

cat("Note: ", round(freq.rm,1), "% of your data is deleted \n")

return(rest)

}

Nadaray-Watson smoother

#--------------------------------------------------------------

# Smoothing the rough estimator from the inverse of the CCDF

#--------------------------------------------------------------

# x @matrix of order (N, 2).

# Y (exagenous)

qsmooth <- function(x, n = 512L, bw = h.amise(x[,1])$h){

if(!(is.data.frame(x))) stop(

"The input should be a data.frame or a matrix

of order (n x 2)"

)

N <- nrow(x)

# Calculate weights

FUN1 <- function(x, z) {

Mat <- t(sapply(x, FUN = function(m) m - z))
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return(Mat)

}

z <- x[,1]

Knorm <- function(u) (2*pi)^(-.5) * exp(-0.5 * u^2)

M <- Knorm(FUN1(z, x[,1])/bw)/bw

a <- as.numeric(M%*%x[,2])

D <- rowMeans(M)

estim <- cbind(x = z , y = a/(N*D))

return(estim)

}

Conditional quantile function calculator

# --------------------------------------------------------------

# THE CDF CALCULATION and CSF estimation

# --------------------------------------------------------------

np.qarch2 <- function(x, n = 512, tau,

Kernel = "gaussian",

rm.outliers = TRUE,

bw = h.amise(x[,1],

kernel = Kernel)$h){

# Backup

original.data <- x

# Check if x is a data.frame of order (n x 2)

if(!is.data.frame(x)) stop(

"The input should be a data.frame or a matrix of

order (n x 2)"

81



)

# Check if the level entered is between 0 and 1

if (tau < 0 | tau > 1) stop("Choose the level tau such

that : 0 < tau < 1")

if(rm.outliers == TRUE){

# Outliers detection and removal

x <- x[-extrems(x[,1], 2), ]

}

x[,2] <- checkfun(x[,2], tau = tau)

## Different Kernels functions

### - Gaussian kernel

Knorm <- function(u) (2*pi)^(-.5) * exp(-0.5 * u^2)

### - Epanechnikov kernel

Kepan <- function(u) 0.75 * (1 - u^2) * (abs(u) <= 1)

### - Uniform kernel

Kunif <- function(u) (abs(u) < 1)*0.5

### - Triangle kernel

Ktria <- function(u) (1-abs(u))*(abs(u) < 1)

### - Biweight

Kbiwe <- function(u) 0.9375*((1 - u^2)^2*(abs(u) < 1))

### - Cosine

Kcosi <- function(u) pi*cos(pi*u/2)*(abs(u) < 1)/4

if (Kernel == "gaussian"){K <- Knorm ;

} else if (Kernel == "epanechnikov"){K <- Kepan;

} else if (Kernel == "uniform"){K <- Kunif;

} else if (Kernel == "triangle"){K <- Ktria;

} else if (Kernel == "biweight"){K <- Kbiwe;

} else if (Kernel == "cosine"){K <- Kcosi;
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} else {K <- Kepan}

# xx <- seq(min(Z) - bw, max(Z) + bw, le = n)

xx <- seq(from = min(x[,1]), to = max(x[,1]), le = n)

# y <- seq(min(X) - 3*bw, max(X) + 3*bw, le = n)

y <- x[,2]

## substractions

FUN1 <- function(x, z) {

Mat <- t(sapply(x, FUN = function(m) m - z))

return(Mat)

}

## Test function

FUN2 <- function(x, test){

Mat2 <- sapply(test, FUN = function(m) 1*(x <= m))

return(Mat2)

}

## Matrix of xi - Zt

M <- FUN1(xx, x[,1])

MatKern <- K(M/bw)/bw

## The pdf estimate of Z

ngz <- rowSums(MatKern)

gz <- rowMeans(MatKern)

## Calculation of the numerator of F(Y|X)

MatCond <- FUN2(y, y)

Fxy <- (MatKern%*%MatCond)/ngz
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# Finding the y for which Fxy >= tau

csf <- apply(Fxy, 1, FUN = function(m){

min(x[,2][which(m >= tau)])

})

estim <- data.frame(x = xx, csf = csf);

## Smmothed version (mine)

csfs <- qsmooth(estim)

# Percentage of deleted data

freq.outliers <- round(100 - nrow(x)/nrow(original.data)*100,2)

# Message to be displayed

cat("Percentage of outliers (deleted):\t\t\t",

freq.outliers, "%\n")

cat("Optimal bandwidth for ", Kernel ,

" density estimation:\t", bw, "\n")

List <- list(

"Transformed" = data.frame(Z = original.data[,1],

X = checkfun(original.data[,2],

tau = tau)),

"Trimed" = x,

"csf" = estim,

"smooth.csf" = csfs

)

return(List)

}
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Predicting and correcting dimension: k-NN method

#------------------------------------------------------------

# k-NN version CQR

#------------------------------------------------------------

# new @ is the futur value (can be a vector)

# result @ is the nx2 data frame from quantiilestim2.R

# Function that calculate the distance between new

# and existing values:

abs.dist <- function(x,y) sum(abs(x-y))

distL2 <- function(x,y) mean((x-y)^2)

knn.cqr <- function(k, New, result, distance = distL2){

n.New <- length(New)

pred <- numeric()

for (i in 1:n.New) {

# Obtaining the KNN of new

d <- sapply(result[,1], function(a) distance(New[i], a))

# Selecting the k nearest in distance

ind.knn <- order(d)[1:k]

# Prediction for new

pred[i] <- mean(result[ind.knn,2])

}

return(pred)

}
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Mean Average Squared Error

## MASE to show the accuracy of the estimator

MASE <- function(ss = c(250, 500, 1000), n.iter = 10,

tau = tau, Kernel = "gaussian"){

errors <- matrix(NA, nrow = n.iter, ncol = 2)

colnames(errors) <- c("csf", "smooth.csf")

Errors <- matrix(NA, nrow = length(ss), ncol = 2)

rownames(Errors) <- paste("n = ", ss, sep = '')

for(k in 1:length(ss)){

for(i in 1:n.iter){

a = np.qarch2(transf.data(ar1arch1(size = ss[k])),

tau = tau, Kernel = Kernel,

rm.outliers = T)

b = np.qarch2(transf.data(ar1arch1(size = ss[k])),

tau = tau, Kernel = Kernel)

errors[i,] <- colMeans(data.frame(csf = a$csf[,2],

smooth.csf =

a$smooth.csf[,2]) -

data.frame(csf = b$csf[,2],

smooth.csf =

b$smooth.csf[,2])

)

}

Errors[k,] <- round(colMeans(errors),5)

}

colnames(Errors) <- c("csf", "smooth.csf")

write.csv(Errors, paste("mase", Kernel, tau, n.iter,
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".csv", sep = '-'))

return(Errors)

}

Estimation of the CSF assuming QAR = 0

# Level tau in (0,1)

tau = 0.75

set.seed(1111)

Data <- ar1arch1()

w = 8; he = 6 # for pdf(): save graphs in pdf

pdf("process.pdf", width = w, height = he)

# par(mfrow = c(2,2))

ts.plot(Data, main = "ar(1)-arch(1) process")

# acf(Data); pacf(Data); qqnorm(Data); qqline(Data)

dev.off()

#1.3 Data splitting

transf.data <- function(x){

x <- data.frame("Z" = x[2:length(x)], "X" = x[1:(length(x)-1)])

return(x)

}

# Estimation without outliers detection

pdf("curvewithouts.pdf", width = w, height = he)

aa1 <- np.qarch2(transf.data(Data), tau = tau, rm.outliers = F,

Kernel = "epanechnikov")

plot(aa1$Transformed, main = "CSF estimation with outliers",

xlab = 'Z', ylab = expression(X^'*'), pch = 8, col = 'grey') #

lines(aa1$csf, col = 'red', lwd = 2)

dev.off()
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# Boundary correction

aa1 <- np.qarch2(transf.data(Data), tau = tau,

rm.outliers = TRUE, Kernel = "epanechnikov")

pdf("curvewithouts1.pdf", width = w, height = he)

plot(aa1$Transformed, pch = 8, col = 'grey')

points(aa1$Trimed, main = "CSF estimation with outliers",xlab = 'Z',

ylab = expression(X^'*'), pch = 8) #

lines(aa1$smooth.csf, col = 'red', lwd = 2)

dev.off()

# Try to plot at different levels on the same graph

Levels <- c(.25, 0.5, 0.75)

pdf("curves.pdf", width = w, height = he)

B <- np.qarch2(transf.data(Data), tau = 0.9)

plot(B$csf, main = "CSF estimations", typ = 'l', xlab = 'Z',

xlim = c(min(B$Trimed$Z), max(B$Trimed$Z)),

ylim = c(min(B$Trimed$X), max(B$Trimed$X)),

ylab = expression(X^'*'), col = 1, lty = 1, lwd = 2) #

for(i in 1:length(Levels)){

C <- np.qarch2(transf.data(Data), tau = Levels[i])

lines(C$csf, pch = 8, lty = i+1, lwd = 2)

}

dev.off()

# Application of our smoothing method

pdf("comparisonofcurves.pdf", width = w, height = he)

C <- np.qarch2(transf.data(Data), tau = tau)

plot(C$csf, main = "Comparison with the smmothed version",

typ = 'l', xlab = 'Z', xlim = c(min(C$Trimed$Z),

max(C$Trimed$Z)),
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ylim = c(min(C$Trimed$X), max(C$Trimed$X)),

ylab = expression(X^'*'), col = 1, lty = 1, lwd = 2) #

lines(C$smooth.csf, pch = 8, col = "red")

dev.off()

## Application

n.iter = 10

# MASE(tau = tau, Kernel = "gaussian", n.iter = n.iter)

# MASE(tau = tau, Kernel = "epanechnikov", n.iter = n.iter)

# MASE(tau = tau, Kernel = "triweight", n.iter = n.iter)

Estimation of the CSF when the QAR is unknown

## Function that calculate QAR

#----------- THE CDF CALCULATION and CSF estimation -------------------------------------

np.qar <- function(x, n = 512, tau, Kernel = "gaussian",

rm.outliers = TRUE, range = 2){

# Backup

original.data <- x

# Check if x is a data.frame of order (n x 2)

if(!is.data.frame(x)) stop("The input should be a data.frame

or a matrix of order (n x 2)")

# Check if the level entered is between 0 and 1

if (tau < 0 | tau > 1) stop("Choose the level tau such that :

0 < tau < 1")

if(rm.outliers == TRUE){
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# Outliers detection and removal

x <- x[-extrems(x[,1], range), ]

}

## Different Kernels functions

### - Gaussian kernel

Knorm <- function(u) (2*pi)^(-.5) * exp(-0.5 * u^2)

### - Epanechnikov kernel

Kepan <- function(u) 0.75 * (1 - u^2) * (abs(u) <= 1)

### - Uniform kernel

Kunif <- function(u) (abs(u) < 1)*0.5

### - Triangle kernel

Ktria <- function(u) (1-abs(u))*(abs(u) < 1)

### - Biweight

Kbiwe <- function(u) 0.9375*((1 - u^2)^2*(abs(u) < 1))

### - Cosine

Kcosi <- function(u) pi*cos(pi*u/2)*(abs(u) < 1)/4

if (Kernel == "gaussian"){K <- Knorm ;

} else if (Kernel == "epanechnikov"){K <- Kepan;

} else if (Kernel == "uniform"){K <- Kunif;

} else if (Kernel == "triangle"){K <- Ktria;

} else if (Kernel == "biweight"){K <- Kbiwe;

} else if (Kernel == "cosine"){K <- Kcosi;

} else {K <- Kepan}

# Smoothing parameter estimation

bw = h.amise(x[,1], kernel = Kernel)$h

# xx <- seq(min(Z) - bw, max(Z) + bw, le = n)

xx <- seq(from = min(x[,1]), to = max(x[,1]), le = n)

# y <- seq(min(X) - 3*bw, max(X) + 3*bw, le = n)
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y <- x[,2]

## substractions (x - Z_t), t = 1,2, ..., n

FUN1 <- function(x, z) {

Mat <- t(sapply(x, FUN = function(m) m - z))

return(Mat)

}

## Test function

FUN2 <- function(x, test){

Mat2 <- sapply(test, FUN = function(m) 1*(x <= m))

return(Mat2)

}

## Matrix of xi - Zt

M <- FUN1(xx, x[,1])

MatKern <- K(M/bw)/bw

## The pdf estimate of Z

ngz <- rowSums(MatKern)

gz <- rowMeans(MatKern)

## Calculation of the numerator of F(Y|X)

MatCond <- FUN2(y, y)

Fxy <- (MatKern%*%MatCond)/ngz

## Finding the y for which Fxy >= tau

csf <- apply(Fxy, 1, FUN = function(m){

min(x[,2][which(m >= tau)])

})
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estim <- data.frame(x = xx, csf = csf);

## Smmothed version (mine)

csfs <- qsmooth(estim)

# Percentage of deleted data

freq.outliers <- round(100 - nrow(x)/nrow(original.data)*100,2)

# Message to be displayed

cat("Percentage of outliers (deleted):\t\t\t",

freq.outliers, "%\n")

cat("Optimal bandwidth for ", Kernel ,

" density estimation:\t", bw, "\n")

List <- data.frame('x' = xx,'qar' = estim[,2],

"smooth.qar" = csfs[,2])

return(List)

}

#------------------------------------------------------------------

# APPLICATION FOR np.qar.R

#------------------------------------------------------------------

# set.seed(1111)

Data <- ar1arch1(arch.coef = c(1, 0.35), size = 1001)

# ts.plot(Data)

#1# Compute QAR using bins (NW method)

#2# Use the estimated points to predict the QAR for the

# whole data

tau.vect <- c(0.25, 0.50, 0.75, 0.9)

pdf("predictions.pdf", width = w, height = 7)
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par(mfrow = c(2,2))

for (k in 1:length(tau.vect)) {

result <- np.qar(transf.data(Data), tau = tau.vect[k])

predict.data <- knn.cqr(10, New = Data,

result = result[,c(1,3)])

ts.plot(Data, main = letters[k])

lines(predict.data, col = (k+1))

}

dev.off()

#3# Using the results above to estimate the conditional variance

Z <- transf.data(Data)[,1]

X <- transf.data(Data)[,2]

result <- np.qar(transf.data(Data), tau = tau, rm.outliers = F,

range = 2)

qAR.predicted <- knn.cqr(3, New = Z, result = result[,c(1,3)])

pred.bins <- knn.cqr(3, New = result$x, result = result[,c(1,3)])

# Precision

ep <- mean((result$smooth.qar-pred.bins)^2)

Res <- X-qAR.predicted

pdf("compredic.pdf", width = w, height = he)

plot(Z, X, pch = 8)

points(Z, qAR.predicted, col = 'red', pch = 10)

lines(result[, c(1,3)], col = 'blue', lwd = 2)

dev.off()
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# # Data simulation

# set.seed(1125)

# Data <- ar1arch1(arch.coef = c(1, 0.35))

# tau.vect <- c(0.25, 0.50, 0.75, 0.9)

# ts.plot(Data)

Z <- transf.data(Data)[,1]

X <- transf.data(Data)[,2]

pdf("compredic1.pdf", width = w, height = he)

par(mfrow = c(2,2))

for (i in 1:length(tau.vect)) {

result <- np.qar(transf.data(Data), tau = tau.vect[i],

rm.outliers = T, range = 2)

qAR.predicted <- knn.cqr(3, New = Z, result = result[,c(1,3)])

plot(transf.data(Data), main = paste(letters[i], "/- tau = ",

tau.vect[i], sep = ''),

pch = 8)

points(Z, qAR.predicted, col = 'red', pch = 10)

lines(result[, c(1,3)], col = 'blue', lwd = 2)

}

dev.off()

# Use the result to

new.x <- data.frame(x = Z, y = Res)

# QARCH

result2 <- np.qarch2(new.x, tau = tau, rm.outliers = T)

qarch.predicted <- knn.cqr(10, New = Z,

result = result2$smooth.csf)
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# Estimation of epsilon

eta <- (X - qAR.predicted)/qarch.predicted

# Calculate the quantile of eps at tau

# Calculate the probability that eps <= 0

mean(eta <= 0)

summary(eta)

mean(checkfun(eta, tau) <= 1)

pdf("error.pdf", width = w, height = he)

par(mfrow = c(1,2))

plot(qAR.predicted, eta, main = "a",

xlab = expression(hat(alpha)[tau](z)),

ylab = expression(eta[tau])); abline(h = 0, col = 'red')

plot(qAR.predicted, checkfun(eta, tau), main = "b",

xlab = expression(hat(alpha)[tau](z)),

ylab = expression(gamma[tau](eta[tau])))

abline(h = 1, col = 'red')

dev.off()

# Table for eta_\tau

eta <- c()

pvalue0 <- c()

pvalue1 <- c()

pvalue2 <- c()

for (tau in tau.vect){

# Nonparametric estimation of the QAR
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qar.hat <- np.qar(transf.data(Data), tau = tau,

rm.outliers = T, range = 2)

# Prediction for QAR

qar.tilde <- knn.cqr(10, New = Z, result = qar.hat[,c(1,3)])

# Nonparametric estimation of the QARCH

qarch.hat <- np.qarch2(new.x, tau = tau, rm.outliers = T)

# Prediction for QARCH

qarch.tilde <- knn.cqr(10, New = Z,

result = qarch.hat$smooth.csf)

# The quantile error at each level tau

new.eta <- (X - qar.tilde)/qarch.tilde

eta <- cbind(eta, new.eta)

# print(head((X - qar.tilde)/qarch.tilde))

pvalue0 <- c(pvalue0, mean(new.eta <= 0))

pvalue1 <- cbind(pvalue1, mean(checkfun(new.eta, tau = tau) <= 1))

pvalue2 <- c(pvalue2, mean(checkfun(new.eta, tau = tau) <= 1))

}

eta.summary <- t(apply(eta, 2, summary))

rownames(eta.summary) <- paste("\tau = ", tau.vect)

df.eta <- round(cbind(tau.vect, eta.summary, pvalue0, pvalue2),2)

write.csv(df.eta, "table_eta.csv", row.names = F)

print(df.eta)
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The estimation of the Smoothed Conditional Scale Function for time series was taken out under the conditional heteroscedastic
innovations by imitating the kernel smoothing in nonparametric QAR-QARCH scheme.The estimation was taken out based on the
quantile regression methodology proposed by Koenker and Bassett. And the proof of the asymptotic properties of the Conditional
Scale Function estimator for this type of process was given and its consistency was shown.

1. Introduction

Consider a Quantile Autoregressive model,𝑋𝑡 = 𝛼𝜏 (𝑍𝑡) + 𝑢𝑡, 𝑡 = 1, 2, . . . , (1)

where 𝛼𝜏(𝑍𝑡) is the 𝜏th Conditional Quantile Function of 𝑋𝑡
given 𝑍𝑡 and the innovation 𝑢𝑡 is assumed to be independent
and identically distributedwith zero 𝜏th quantile and constant
scale function; see [1]. A kernel estimator of 𝛼𝜏(𝑍𝑡) has been
determined and its consistency is shown [2]. A bootstrap
kernel estimator of 𝛼𝜏(𝑍𝑡) was determined and shown to
be consistent [3]. This research will extend [3] by assuming
that the innovations follow Quantile Autoregressive Con-
ditional Heteroscedastic process similar to Autoregressive-
QuantileAutoregressiveConditionalHeteroscedastic process
proposed in [1]:𝑋𝑡 = 𝛼𝜏 (𝑍𝑡) + 𝜛𝜏 (𝑍𝑡) 𝜀𝑡, 𝑡 = 1, 2, . . . , (2)

where 𝛼𝜏(𝑍𝑡) is the conditional 𝜃-quantile function of 𝑋𝑡
given𝑍𝑡;𝜛𝜏(𝑍𝑡) is a conditional scale function at 𝜏-level, and

𝜀𝑡 is independent and identically distributed (i.i.d.) error with
zero 𝜏-quantile and unit scale. The function 𝜛𝜏(𝑍𝑡) can be
expressed as 𝜛𝜏 (𝑍𝑡) = 𝜆𝜛 (𝑍𝑡) , (3)

where 𝜛(𝑍𝑡) is the so-called volatility found in [4, 5] which
are papers of reference on Engle’s ARCH models among
many others and 𝜆 is a positive constant depending on 𝜏
[see [6]]. An example of this kind of function is Auto-
regressive-Generalized Autoregressive Conditional Hetero-
scedastic AR(1)-GARCH(1,1),𝑋𝑡 = 𝛼𝑡 + 𝜛𝑡𝑒𝑡, 𝑡 = 1, 2, . . . , (4)

where 𝛼𝑡 = 𝜇 + 𝛿𝑋𝑡−1, 𝜛𝑡 = √𝑤 + 𝛼𝑋2𝑡−1 + 𝛽𝜛2𝑡−1, 𝜇 ∈ (−∞,∞), |𝛿| < 1, 𝛽 > 0, 𝛼 > 0, 𝑤 > 0, 𝛼 + 𝛽 < 1, and 𝑒𝑡 ∼
i.i.d. with 0 mean and variance 1. Note that 𝛼𝑡 may also be an
ARMA (see [7]).The specifications for model (4) are given in
Section 4.2.
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[8] W. Härdle, H. Lütkepohl, and R. Chen, “A review of nonpara-
metric time series analysis,” International Statistical Review, vol.
65, no. 1, pp. 49–72, 1997.

[9] E. A. Nadaraya, “Some new estimates for distribution function,”
Theory of Probability and Its Applications, vol. 9, pp. 497–500,
1964.

[10] G. S. Watson, “Smooth regression analysis,”The Indian Journal
of Statistics. Series A, vol. 26, pp. 359–372, 1964.

[11] P.Mwita,On conditional scale function: Estimate and asymptotic
properties, 2004.

[12] P. Hall, R. C. Wolff, and Q. Yao, “Methods for estimating a con-
ditional distribution function,” Journal of the American Statisti-
cal Association, vol. 94, no. 445, pp. 154–163, 1999.

[13] K. Mynbaev and C. Martins-Filho, “Bias reduction in kernel
density estimation via Lipschitz condition,” Journal of Nonpara-
metric Statistics, vol. 22, no. 1-2, pp. 219–235, 2010.

[14] D. Bosq,Nonparametric statistics for stochastic processes, vol. 110,
Springer Science & Business Media, New York, NY, USA, 1996.

[15] R. Koenker andG. Bassett Jr., “Regression quantiles,” Economet-
rica, vol. 46, no. 1, pp. 33–50, 1978.

[16] R. F. Engle, “Autoregressive conditional heteroscedasticity with
estimates of the variance of United Kingdom inflation,” Econo-
metrica, vol. 50, no. 4, pp. 987–1007, 1982.
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