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Abstract

Derivative securities, when used correctly, can help investors to increase theirs

expected returns and minimize theirs exposure to risk. Options offer influence

and insurance for risk-averse investors. The pricing problems of the exotic op-

tions in finance do not have analytic solutions under stochastic volatility model

and so it is difficult to calculate option prices or at least it requires a lot of time

to compute them. Also the effect of stochastic volatility model resolving short-

coming of the Black-Scholes model its ability to generate volatility satisfying the

market observations and also providing a closed-form solution for the European

options. This study provides the required theoretical framework to practitioners

for the option price estimation. This thesis focuses on pricing for floating strike

lookback put option and testing option pricing formulas for the Heston stochas-

tic volatility model, which defines the asset volatility as the stochastic process.

Euler Maruyama method is the numerical simulation of a stochastic differential

equation and generate the stochastic process way approximation. To simulate

stock price and volatility stochastic processes in Heston’s model the Euler dis-

cretization can be used to approximate the paths of the stock price and variance

processes on a discretize grid. The pricing method depends on the partial dif-

ferential equation approach on Heston stochastic volatility model and homotopy

analysis method. Heston model has received the most attention then it can give

a acceptable explanation of the underlying asset dynamics. The resulting for-

mula is well connected to a Black-Scholes price that is the first term of the series

expansion, which makes computing the option prices fairly efficient.

ix



Chapter 1

Introduction

1.1 Background

Options are a type of financial derivative. This means that their price is not

based directly on an assets price. Instead, the value of an option is based on the

likelihood of change in an underlying assets price. More specifically, an option is

a contract between a buyer and a seller. This contract gives the holder the right

but not the obligation to buy or sell an underlying asset for a specific price (strike

price) within a specific amount of time. The date at which the option expires is

called the date of expiration.

European lookback options are kind of exotic option with path-dependency, intro-

duced at first by Goldman (1997) having their settlement based on the minimum

or the maximum value of an underlying index as registered during the lifetime

of the option. At maturity, the holder can look back and select the most con-

venient price of the underlying that occurred during this period: therefore they

offer investors the opportunity at a price of buying a stock at its lowest price and

selling a stock at its highest price. Since this scheme guarantees the best possible

result for the option holder, he or she will never regret the option payoff. As a

consequence, a look back option is more expensive than any other option with

similar payoff function. For the options traders this is clearly a major advantage,

as look back options can be used to solve one of the major problems they face:
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market timing. It is very important for the investor. It can be calls or puts,

therefore it is likely to speculate on either the price of the underlying security

increasing in value or decreasing in value. Look back options are classified into

two. These are fixed strike lookback option and floating strike lookback option.

Fixed strike is an option in which its strike price is fixed at the purchase. The

payoff is the maximum difference among the optimal underlying asset price and

the strike. In the case of call option the holder can look back above the life of

the option and the option can exercised at assets highest price. In the case of put

options, the option exercise at the lowest asset price. The options settle at the

certain previous market price. Floating strike is an option in which its strike price

is floating and determined at maturity. It is the optimal value of the underlying

asset’s price during the option life.

In this thesis the option pricing model under Heston more general setting than

in the Black-Scholes framework. The model is the stochastic volatility model, in

which not only let the stock price vary randomly, but also let the volatility of

these random fluctuation be random. It investigate that this model can better

reflect the market than the Black-Scholes model. It also assess how practically

implementable this model is and try to draw conclusions on how options behave

in a Heston framework.

1.2 Stochastic volatility

Stochastic volatility models are those in which a variance of a stochastic process

is itself randomly distributed. They are used in the field of the mathematical

finance to calculate derivative securities, such as options. The name derives from

the models treatment of the underlying security’s volatility as a random process,
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governed by state variables such as the price level of the underlying security, the

tendency of volatility to revert to some long-run mean value, and the variance of

the volatility process itself, among others. Stochastic volatility models are one

of the approach that resolve a shortcoming of a BlackScholes model. In partic-

ular, models based on the Black-Scholes assume that the underlying volatility is

constant over the life of a derivative, and not affected by a changes of the price

level of a underlying security. By assuming that the volatility of the underlying

price is a stochastic process rather than a constant, it becomes possible to model

derivatives more accurately.

Among the stochastic volatility model the popular Heston model is a commonly

used stochastic volatility model, in which the randomness of the variance process

varies as the square root of variance. It is a type of stochastic volatility model

developed by associate finance professor Steven Heston in (1993) for analyzing

bond,stock and currency options. It has also a closed-form solution for pricing

options that seeks to overcome the shortcomings in the Black-Scholes option

pricing model related to return skewness and strike-price bias. This model is a

tool for advanced investors.
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1.3 Statement of the problem

The assumption of constant volatility in the Black-Scholes formula is inappro-

priate for pricing lookback options. which means that the assumptions of the

Black-Scholes model are unrealistic due partly to its inability to generate the

volatility smile and the skewness in the distribution of the return. In particu-

lar, traders who use the BlackScholes model to hedge must continuously change

the volatility assumption in order to match market prices. Their hedge ratios

change accordingly in an uncontrolled way. More interestingly for us, the prices

of lookback options given by models based on Black-Scholes assumptions can be

wildly wrong and dealers in such options are motivated to find models which can

take the volatility smile into account when pricing these. However many sug-

gestions have been put for the use of stochastic volatility are appeared to the

standard conditional volatility by several authors instead of the assumption of

the Black-Scholes model. Among them, the Heston stochastic volatility model

has been popular in modeling option price. The main aim of this study is to drive

the appropriate pricing formula for floating strike lookback put option under the

Heston stochastic volatility model. In particular, Heston proposed a stochastic

volatility model with a closed-form solution for the price of the European look-

back put option when the underlying assets are correlated with a latent volatility

stochastic process.
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1.4 Objective

1.4.1 General Objective

The main aim of the study is to develop a lookback option pricing model using

stochastic volatility model. This will be achieved through the following specific

objectives.

1.4.2 Specific objectives

i. To derive pricing formula for an European lookback put option with floating

strike in relation to Heston model.

ii. To perform a simulation on the theoretical pricing model in (i).

iii. Fit the pricing model on empirical data to verify the theoretical stability of

results.

1.5 Significance of the study

This study provides the required theoretical framework to practitioners for the

lookback option price with floating strike price estimation and risk management in

the markets which are inherently ineffective and hence it shall justify and validate

the markets model to hedger in the real financial market and act as platform

for additional research on related problems. So this research will contribute a

model for the market and to markets participants in the sense that the financial

participant or the investors have equal chance to participate in the market without

insider information in the country. It uses for investor to buy your stocks at a

lower price, reduce your cost basis and generate additional income.
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1.6 The scope of the study

This study will focus on pricing derivatives for European look back put option

with floating strike under stochastic volatility model. The derivatives of the pric-

ing formula and present the numerical procedures used to construct the pricing

formula under a market which consists of one risk less asset and one non-dividend

paying risky asset (the stock) with price process to be formulated by Heston

stochastic volatility option price model.
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Chapter 2

Literature review
In this section we review some studies on look back option price. Higham (2004)

the basic types of options are the European lookback Call and Put options. A

European Call option gives the right for the buyer but not the obligation, to

purchase from a seller a prescribed asset for agreed price at the agreed time in

the future. On the other hand, a European Put option gives for the holder the

right, but not the obligation, to sell to the writer an agreed asset for an agreed

price at a prescribed time in the future.

The academic literature proposes several methods that accommodate the path

dependency of these options. For example, see Hull and White (1993), Cheuk

and Vorst (1997) and Wilmott, Howison, and Dewynne (1995).Their numerical

approaches deal with the path-dependency feature of look back options either by

explicitly including the historical minimum or maximum underlying asset values

as an additional dimension or by tracing the possible minimum or maximum val-

ues in the underlying asset price process. A standard look back put gives the

right to sell at the highest price. These options were first studied by Goldman et

al. (1979), who derived closed-form pricing formulas under the geometric Brow-

nian motion. Conze and Vishwanathan (2007) explain option price in case of

calls on the maximum and put on the minimum. A call on the high pays off the

difference among the realized high price and some specified strike, each is greater.

The difference between the strike price and the take in the minimum price or it
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may be zero, is the put on the minimum pays off. Those options are well-known

as the European fixed-strike look back option. In contrast, the normal look back

options are also known as European floating-strike look back option, since the

floating terminal underlying asset price helps as the strike in the normal look back

options. Tian and Boyle (1999) have initiated a study of barrier and European

look back options. They introduce European Look back call options give the right

for the investors to buy at the minimum price during the life of the options while

European Look back put options would permits investors to sell at the maximum

price. Bacinello and Ortu (1993) study about the stochastic interest rates, those

explain on pricing and they focus on a complete financial market which leads

to the existence of a unique or single corresponding martingale measure for the

fairness price.

Fischer and Myron(1973) state that the mathematical framework for evaluation

of option price for the basic vanilla European style option. Basic vanilla European

calls and puts have a systematic closed form solution and state the two most usu-

ally used techniques: European fixed strike lookback option price and European

float strike lookback option price. Guarino, (2010) suggests that a developing

market is the term which discusses to a country that has accepted change in the

political system, economic systems and experienced fast economic development.

(Arnold and Quelch, 1998) explains developing markets represent countries and

markets playing fastening up: nations with new or an undeveloped industrial

base and infrastructure on the one hand, but a rapidly rate of growth or usually

above that of developed nations on the other hand. Fischer and Myron (1997)

describe about European look back option pricing. Option pricing is important to

almost each area of the finance. European lookback Option pricing theory takes

a long and well-known history.Black-Scholes(1979) describe the first acceptable
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equilibrium option pricing model. In the similar way, Robert Merton (1973) long

their model in numerous important ways. Also proposed a mathematical model

for the pricing stock price options. Black-Scholes PDE is the method for the

pricing options in which the underlying stock is priced using the Black-Scholes

model. The Black Scholes formula is the formula that use for the pricing the

European lookback Call and Put options using a Black-Scholes PDE. The BS

model is depending on the assumption that the stock price follows the Brownian

motion, using a risk neutral probability.

In this part we review certain studies on stochastic volatility model Hestons

stochastic volatility model. There are a number of the methods that can use to

model volatility stochastically. Hull and White (1987) model the variance using a

geometric Brownian motion, in addition to an Ornstein-Uhlenbeck process with

the mean-reversion related to a volatility. In the general case, mean-reversion is

considered to be an important feature of observed volatility, and thus all plau-

sible models are of the Ornstein-Uhlenbeck type. Wiggins (1987) models the

logarithm of a volatility with the mean-reversion, where Scott (1987), Johnson

and Shanno (1987), Heston (1993) and Stein and Stein (1991) model the variance

using a square root process. Zhu (2000) also considers the double square root

process, that is an extension of a basic square root process in both the drift and

diffusion coefficients involves the volatility. In this thesis we focus on the Hestons

square root model, under the Heston (1993) provides an analytic expression for

European lookback option prices.

Under the Black and Scholes (1973) model, closed-form pricing formulas for con-

tinuously monitored lookback options were derived by Goldman et al. (1979) and

Conze and Viswanathan (1991). Heynen and Kat (1995) derived the analytical
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formulas for discretely monitored lookback options under the BlackScholes set-

ting and the corresponding formulas were further generalized to the general Lvy

setting by Liao (1992). In the BlackScholes model, the underlying asset price pro-

cess is assumed to follow the geometric Brownian process, in which the volatility

of the asset price is a constant. This assumption is inconsistent with the phe-

nomena of implied volatility smiles observed in the market data. Thus, stochastic

volatility models are proposed (see [610] for instance) to fix this problem.

The pricing of lookback options under the stochastic volatility model poses in-

teresting mathematical challenges. Leung (2013) derived semi-analytical pricing

formulas for lookback options under the two-factor stochastic volatility model and

both stochastic volatility factors are driven by mean-reverting processes. Their

results provide a good approximation of the price for both fixed strike and floating

strike lookback options when the mean-reverting rate of one stochastic volatil-

ity factor is large and the mean-reverting rate of the second factor is small. In

this work, the use the homotopy analysis method to derive the analytic pricing

formulas for lookback options under Hestons stochastic volatility model. In con-

trast to those of Black-Scholes (1973), our formulas are free from the assumption

of the relative magnitudes of all the model parameters. The homotopy analysis

method, as initially suggested by Ortega and Rheinboldt (1970), has been used

by Liao (1992) to solve many nonlinear problems. Recently, Zhu [18] was the

first to apply this method to derive the closed-form solution for the valuation of

European options and his work has been further extended to different asset price

processes and different types of options.

As largely discussed in the specialized literature by Johnson (1999), the effect of

stochastic volatility model resolving shortcoming of the Black-scholes model in its
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ability to generate volatility satisfying the market observations, and also providing

a closed-form solution for the European lookback options. However, it has not yet

been established whether closed form solution introduced by stochastic volatility

are suitable for the purpose of matching market prices than the Black-scholes

model.
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Chapter 3

The Black-Scholes Options Pric-

ing model
The Black-Scholes formula (also called Black-Scholes-Merton) was the first widely

used model for option pricing. It’s used to calculate the theoretical value of

European-style options using current stock prices, the option’s strike price, ex-

pected interest rates, time to expiration and constant volatility. The Black-

Scholes model make some assumptions:

1. The underlying assets follows the geometric Brownian motion with a constant

volatility

2. The price of a stock is log-normally distributed with the mean µ,and also

standard deviation σ

3. There is the constant risk-free rate

4. Market participant either borrow or lend at a risk-free rate

5. There are no transaction costs in buying the option, and No dividends are

paid out during the life of the option.

The Black-Scholes Model makes a assumption of a underlying asset, following the

geometric Brownian motion under some risk neutral measure as:

dst = rstdt+ σstdWt (3.1)
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where r is the interest risk free rate and volatility σ. Equation (3.1) which is a

short form of the following equation given as:

St = S0 +

∫ t

0

rSzdz +

∫ t

0

σSzdWz (3.2)

Assuming that the daily asset returns follows a log normal distribution and this

by introducing:

Yt = log

[
St
S0

]

By applying Ito’s formula receive the following expression

dYt =

[
r − 1

2
σ2

]
dt+ σdWt

by integrating both sides we can get

Yt =

[
r − 1

2
σ2

]
t+ σWt

substituting the value of

Yt

into above equation, finally, we can get

St = S0exp{(r −
1

2
σ2)t+ σWt} (3.3)

13



St is log normally distributed, volatility is constant and there by does the following

holds

log

[
St
S0

]
∼ N

[
(r − 1

2
σ2)t, σ2t

]
(3.4)

Definition 3.1: Let St be maximum asset price observed during the options life

and ST be stock price at the maturity time T. The payoff floating strike lookback

put option is the difference between maximum asset price observed during the

life the option and stock price observed at the expiration time T.

Flb = max(St − ST )|0 ≤ t ≤ T (3.5)

The theory of a pricing given by the arbitrage free price gives us the following

expression for a price of the floating strike lookback put option at the expiration

time

Flb = e−r(T−t)EQ [max(St − ST )] |0 ≤ t ≤ T (3.6)

where Q is the equivalent risk-neutral measure under which St is a geometric

Brownian motion. The analytical solution has been found, by Goldman et al.

(1979), the Black-scholes formula for lookback put option with floating strike

and with constant volatility σ given as:

Flb = Se−r(T−t)N(−d2)−MeT−tN(d1)

+Me−(T−t)σ
2

2r

[
eT−tN(d1) +

(
−M
S

)−2r

σ2

N(d1)−
(

2r

σ

)√
T − t

]
(3.7)

where d1 =

log

(
M

S

)
+

(
r +

σ2

2

)
(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

with N(.) being the standard normal cumulative distribution function.
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3.1 Time dependent volatility in the Black-Scholes

model

In this part we introduced the time dependent volatility in the model of the

Black-Scholes. These extension will be used for the bridge to gap between the

original Black-Scholes model and the one with the stochastic volatility.

3.1.1 Time dependent volatility

Let a stock price be modelled under a risk-neutral measure Q as

dst = rstdt+ σ(t)stdWt, S0 = S (3.8)

where σ : [0, T ] −→ (0,∞) is the deterministic function. Applying Ito’s formulas

the solution to SDE governing the dynamics of a stock price is given by

St = S0exp

[∫ t

0

{r − 1

2
σ2(s)}ds+

∫ t

0

σ(s)dWs

]
(3.9)

and let us define

σ̃2(t, T ) =
1

T − t

∫ T

t

σ(s)ds

then the solution of the SDE can be written as

St = S0exp

[
{r − 1

2
σ̃2(0, t)}t+

∫ t

0

σ(s)dWs

]
(3.10)
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and the solution of the SDE at the maturity is:

ST = Stexp

[
{r − 1

2
σ̃2(t, T )}(T − t) +

∫ T

t

σ(s)dWs

]

and the distribution of log

[
ST
St

]
conditioned on St is given by

log

[
ST
St

]
∼ N

[
{r − 1

2
σ̃2(t, T )(T − t), σ̃2(t)(T − t)}

]
(3.11)

Thus, we comparing this equation(3.11) with (3.4), that we can use the same

pricing formula as in the standard Black -Scholes case. We only have to replace

σ2 by σ̃2 with and doing so we arrive at, for t ≤ T.

V (t) = V BS(t;
√
σ̃2(t, T )) (3.12)

where as usual V Bs(t)denotes the price of the option at time t. In this case, the

volatility is not merely the number, but the whole function. With a approach

of a deterministic but the time-dependent volatility. We have moved away from

a constant volatility model of the Black-Scholes. But from Equation (3.11) that

the returns still will be normally distributed. Since this is emperically not fact,

we must move on, trying to find the model where the returns are not normally

distributed.

3.1.2 Finding time dependent from the implied volatility

By fixing a strike price, let look at the implied volatility as the function of the

time to the maturity only. It will be dependent on a observed options prices, but

since these are given by a market, and not possible to choose, As parameters and

suppress their dependence on the implied volatility. To conclude, let I(T) denote

the implied volatility given by the observed price of some European option with
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given strike price K and time to maturity T. By observing a implied volatility at

the some fixed time t0 as it changes over times to the maturity T, we recover the

time-dependent volatility σt for t0 ≤ t, We can make the assumption that there

exists an option with the maturity time T for every t0 ≤ T . The idea is to equate

the theoretical volatility under the model given by Equation (3.1), the LHS in

the next equation, with the observed implied volatility:

I(T ) =
1

T − t

√∫ T
t0
σ(s)ds

which gives as:∫ T
t
σ(s)ds = I2(T )(T − t0)

Differentiating both sides with respect to T and fixed t0

σ2(T ) = 2I(T )I ′(T )(T − t) + I2(T )

By converting T −→ t and we get

σ(t) =
√

2I(T )I ′(T )(t− t0) + I2(T )

Therefore, what we have accomplished is an explicit formula, showing how to

extract a volatility function σ(t) from the observed implied volatilities. From

the assumption there exists an option that mature at given time T ≥ t0 is not

realistic.

3.2 The model

Let (Ω, F,Q) be a price probability space with the filtration (Ft)t∈[0,T ] which is

generated by the Wiener processes W 1
t and W 2

t with correlated coefficient p and

Q is a risk-neutral measure. Assume that the underlying asset St in risk-neutral

and variance follow the following model:

dSt = rStdt+ St
√
vtdW

1
t (3.13)

dvt = k(Θ − vt)dt+ σ
√
vtdW

2
t (3.14)
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dW 1
t dW

2
t = pdt, p ∈ [−1, 1] (3.15)

where r, k,Θ and σ are constant. The variance vt is defined on the interval

[0,+∞]×<. The Heston asset process has a variance vt that follows Cox-Ingersoll-

Ross(1998) process described in equation in(3.14). For the square root process

in equation (3.14) the variance is always positive and if 2kΘ > σ2 then it cannot

reach zero. Note that the deterministic part of process (3.14) is asymptotically

stable if k > 0.

Theorem 4.1. Consider the Cox-Ingersoll-Ross (CIR) interest rate model

dvt = k(Θ − vt)dt+ σ
√
vtdW

2
t (3.16)

then the exact solution is

vt = v0e
−kt + Θ(1− e−kt) + σe−kt

∫ t

o

eks
√
vsdWs (3.17)

Proof: Equation(4.3) can be changed to the following form.

dvt + kvtdt = kΘdt+ σ
√
vtdWt (3.18)

Multiplying both sides of the relation(4.5) by ekt result in

ektdvt + kektvtdt+ kΘektdt = σekt
√
vtdWt

d(ektvt) = kΘektdt+ σekt
√
vtdWt (3.19)

Now, integrating both sides of the relation (4.6) on [0,t] gives us

ektvt − v0 = kΘ

∫ t

0

eksds+ σekt
∫ t

0

eks
√
vtdWs
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vt = e−ktv0 + Θ(1− e−kt) + σe−kt
∫ t

0

eks
√
vtdWs

According the theorem of the CIR model has no general explicit solution

The parameters used in the Heston model are as follows:

St is the price of the underlying asset at the time t

K is the rate of the mean reversion

r is the risk free interest rate

Θ is the long term mean variance

vt is the variance at the time t

σ is the volatility of the variance process.

Therefore, under a Heston model, the underlying asset follow an evolution process

which is similar to a Black-Scholes model model, but it also explains a stochas-

tic behavior for a volatility process. In particular, Heston makes a assumption

that a asset variance Vt follows the mean reverting Cox-Ingersoll-Ross process.

Consequently, a Heston model provides the versatile modelling framework which

can accommodate many of a specific characteristics which are typically observed

in the behavior of the financial assets. In particular, a parameter σ controls the

kurtosis of a underlying asset return distribution, while p sets its asymmetry.
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3.3 The PDE of the Heston model for the option

price

In this section we derive the PDE that the price of a derivative must solve, where

the tradeable security as well as the volatility of the tradeable security follows

general stochastic processes. The PDE that governs the prices of derivatives

written on a tradeable security with stochastic volatility is derived and describe

how to derive the PDE for the Heston model. This derivation is a special case of a

PDE for general stochastic volatility models which is described by Leung (2013).

Heston model is one of the most popular option pricing models. This is due in

part to the fact that the Heston model produces either call or put prices that are

in closed form, up to an integral that must evaluated numerically. In order to

price options in a stochastic volatility model, it is possible use the risk-neutral

valuation method.

To derive Heston PDE let form a portfolio consisting of one option being priced,

denoted by the value V = V (s, v, t) ,∆ units of the stock S, ψ of another option

U = U(S, V, T ) that is used to hedge the volatility. The portfolio has value

Π = V + ∆S + ψU (3.20)

Assuming the portfolio is self financing , the change in portfolio value is

dΠ = dV + ∆dS + ψdU (3.21)

Apply ito’s Lemma to dV and differentiate with respect to the variables t, S, v

we get

dV =
∂V

∂t
dt+

∂V

∂S
dS+

∂V

∂v
dv+

1

2
vS2∂

2V

∂S2
dt+

1

2
σ2v

∂2V

∂v2
dt+ σvp

∂2V

∂v∂S
dt (3.22)
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Applying Ito’s Lemma to dU produces the identical result, but in U. Combining

these two expressions, we can write the change in portfolio value as:

dΠ = dV + ∆dS + ψdU (3.23)

dΠ =

{
∂V

∂t
+

1

2
vS2∂

2V

∂S2
+ pσvS

∂2V

∂v∂S
+

1

2
vσ2∂

2V

∂v2

}
dt

+ψ

{
∂U

∂t
+

1

2
vS2∂

2U

∂S2
+ pσvS

∂2U

∂v∂S
+

1

2
σ2v

∂2U

∂v2

}
dt

+

{
∂V

∂S
+ ψ

∂U

∂S
+ ∆

}
dS +

{
∂V

∂v
+ ψ

∂U

∂v

}
dv

(3.24)

In order for the portfolio to be hedged against movements in the stock and against

volatility, the last two terms in Equation (3.23) involving dS and dv must be zero.

This implies that the hedge parameters must be

ψ = −

∂V

∂v
∂U

∂v

,∆ = −ψ∂U
∂S
− ∂V

∂S
(3.25)

Moreover, the portfolio must earn the risk free rate. Hence dΠ = rΠdt. Now with

the values of ∆ and ψ from Equation (3.24) the change in value of the riskless

portfolio is

dΠ =

{
∂V

∂t
+

1

2
vS2∂

2V

∂S2
+ pσvS

∂2V

∂v∂S
+

1

2
vσ2∂

2V

∂v2

}
dt

+ψ

{
∂U

∂t
+

1

2
vS2∂

2U

∂S2
+ pσvS

∂2U

∂v∂S
+

1

2
σ2v

∂2U

∂v2

}
dt

(3.26)

In risk less portfolio we have

dΠ = rΠdt (3.27)

which write as:

dΠ = X + ψY
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X + ψY = r(V + ∆S + ψU)

Substituting for ψ and re-arranging, produces the equality

X − rV + rS
∂V

∂S
∂V

∂v

=
Y − rU + rS

∂U

∂S
∂U

∂v

(3.28)

The left-hand side of Equation (3.24) is a function of V only, and the right-hand

side is a function of U only. This implies that both sides can be written as a

function f(S, v, t) of S, v, and t. Heston, specify this function as f(S, v, t) =

−K(θ−v) +λ(t, s, v) where λ(t, s, v) is market price of volatility risk. Substitute

f(S, v,t) into the left-hand side of Equation (3.24), substitute for Y and rearrange

to produce the Heston PDE for the option U expressed in terms of the price S

∂U

∂t
+

1

2
vS2∂

2U

∂S2
+ pσvS

∂2U

∂v∂S
+

1

2
vσ2∂

2U

∂v2
− rU

+rS
∂U

∂S
+ [K(θ − v)− λ(t, s, v)]

∂U

∂v
= 0

(3.29)

Equation(3.29) is the partial differential equation of the Heston models governing

the option price under this model.

3.4 The PDE in Terms of the Logarithm Price

In this section, the closed form of a partial differential equation in terms loga-

rithm price. Let x = lnS and describe the Heston partial differential equation

in terms of x, v and t instead of S, v, and t. This leads to a simpler form of the

PDE and need the following derivatives, which are direct to derive

∂U

∂S
,
∂2U

∂v∂s
,
∂2U

∂S2
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Insert into the Heston PDE Equation (3.29). All the S terms eliminated and

obtain the Heston PDE in terms of the logarithm price x = lnS and Heston

assumes that the price are risk-neutral. The reason for this term is that in

reality most investors are found to be risk averse in experimental settings (Holy

(2002)). Moreover, Lamoureux and Lastrapes find evidence from observed option

prices that the efficient-market hypothesis and investor risk-neutrality cannot

hold simultaneously. Often λ is assumed zero, so the price is given under the

risk-neutral measure, i.e, under the assumption that investors are risk-neutral.

∂U

∂t
+

1

2
v
∂2U

∂x2
+ pσv

∂2U

∂v∂x
+

1

2
vσ2∂

2U

∂v2
− rU + (r − v

2
)
∂U

∂x

+[K(θ − v)]
∂U

∂v
= 0

(3.30)

3.5 Floating strike lookback put option price

The payoffs of the floating strike lookback put options depend on the maximum

asset price reached during the life of the option and underlying asset price ob-

served at the maturity. Based upon the fundamental theorem of asset pricing (

Shreve (2000)), the no-arbitrage price of a European lookback put option with

floating strike is given by

U f (t, x, x∗, v) = EQ[e−r(T−t)Hf (XT , X
∗
T )|Xt = x,X∗t = x∗, Vt = v] (3.31)

where X∗T is the maximum asset price observed during the life of the option

and Hf is the payoff of the put option. In this section we consider a floating strike

lookback put option, where the underlying asset price is assumed to follow the

SDE. Then Hf (XT , X
∗
T ) = X∗T − XT (payoff put option), the risk-neutral price

of the floating strike lookback put option, denoted by U f (t, x, x∗, v) at the time
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t, t ∈ [0, T ] for Xt = x,X∗t = x∗ and Vt = v is given as

U f (t, x, x∗, v) = EQ[e−r(T−t)Hf (X∗T −XT )|Xt = x,X∗t = x∗, Vt = v] (3.32)

In this section Hf = (X∗T − XT ) payoff chosen. Transforming the governing

equation (3.30) in terms of the differential operators as follows:

£1 = pσv
∂

∂v
+ pσv

∂2

∂x∂v
+ k(Θ− v)

∂

∂v
+

1

2
σ2v

∂2

∂v2

£2 =
∂

∂t
+

1

2
v
∂2

∂x2
+ (r − v

2
)
∂

∂x

and the problem(3.32) can be transformed into the PDE problem as follows. since

both x∗t and xt are continuous and non decreasing. So that the quadratic variance

and covariance of the [x∗t , x
∗
t ] and [x∗t , xt] satisfy the following conditions

[x∗t , x
∗
t ] = lim

Π→0
Σm
i=0([x∗ti+1 − x∗ti])2 ≤ x∗t lim

Π→0
max(x∗ti+1 − x∗ti) = 0

and

[xt, x
∗
t ] = lim

Π→0
Σm
i=0(xti+1 − xti)2(x∗ti+1 − x∗t )

≤ lim
Π→0

max(xti+1 − xti) = 0

for any partition Π = {0 = t0, t1... = t}. This implies the integral involved with

the dxtdx
∗
t and dx∗tdx

∗
t will be zero. So from ito’s formula we can get

d(e−rtU f ) = e−rt(£1 + £2)U fdt+ U f
x dxt

Then have

E

[∫ T

t

e−rs(£1 + £2)U fds+

∫ T

t

U f
x dxs|xt = x, x∗t = x∗

]
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for t, T ∈ [0,∞] since e−rtU f is a martingale and the second part of the conditional

expectation is zero on the 0 < x < x∗ so that the PDE for the U f can obtained

on the interval 0 < x < x∗ and by using mean value theorem and taking the

T → t we can get

(£1 + £2)U f (t, x, x∗, v) = 0|0 ≤ t ≤ T |0 ≤ x ≤ x∗

U(T, x, x∗, v) = x∗ − x
∂U

∂x∗
(t, x, x∗, v) |x=x∗= 0

(3.33)

Here, the final condition follows from the definition (3.33) directly and the as-

sumption on the continuity of partial derivatives leads to the boundary condition.

As compared with (3.30) and (3.33) is much simpler to solve because its dimen-

sion is reduced by 1.

Definition 3.5.1: zeroth-order deformation equation. Let p ∈ [0, 1] denote the em-

bedding parameter and U0(t, x, x∗, v) be the initial approximation of the U(t, x, x∗, v)

such that as p increases from 0 to 1 , U(t, x, x∗, v) varies continuously from the

initial approximation U0(t, x, x∗, v), such kind of the continuous variation or de-

formations are defined by the zero order deformation equation. Applying the

definition and Following the same vein as Park (2011) method, the homotopy

analysis method is to solve U(t, x, x∗, v) from (3.33) can construct a homotopy

of the of (3.33). To construct let us consider U(t, x, x∗, v, p) denoting the solu-

tion of a PDE problem given by H(t, x, x∗, v, p) = 0 with the final and boundary

condition of (3.33),where H, called a homotopy, is defined by

H(t, x, x∗, v, p) = (1− p)(£2U(t, x, x∗, v, p)−£2U0(t, x, x∗, v))

+p(£1 + £2)U(t, x, x∗, v, p), p ∈ [0, 1]

(3.34)

Here U0(t, x, x∗, v) is the initial value approximation from Black-Scholes formula
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for the lookback put option price with the constant volatility. The Black-Scholes

formula is well-known and, for instance, see Wilmott (2006). By this choice of

U0, the homotopy problem becomes

H(t, x, x∗, v, p) = £2U(t, x, x∗, v, p) + p£1U(t, x, x∗, v, p) = 0 (3.35)

with the final and the boundary condition of (3.33) apply the homotopy analysis

method by the considering a Taylor series

U(t, x, x∗, v, p) =
∞∑
n=0

Un(t, x, x∗, v, )pn (3.36)

where Un denote a Taylor coefficient. Note that floating strike lookback put

option price Uf is then given by

Uf (t, x, x
∗, v, ) = lim

p→1
U(t, x, x∗, v, p) =

∞∑
n=0

Un(t, x, x∗, v) (3.37)

Inserting equation (3.36) into (3.35) and using a standard perturbation argument,

obtain formally a hierarchy of PDE problem as follows get

£2Un(t, x, x∗, v) + £1Un−1(t, x, x∗, v) = 0,

Un(T, x, x∗, v) = 0,

∂U

∂x∗
(t, x, x∗, v) |x=x∗= 0

(3.38)

for all n=1,2,3,....

To find the solution of the equation (3.38) use two lemmas: i.e a lemma about

a Feynman-kac formula for floating strike lookback put option price and lemma

about the joint probability density of the two Gaussian processes. For the con-

venience, use the notation
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Ex,x∗ [.] := EQ[.|St = x, S∗t = x∗]

where St and S∗t are the solution given by

St = rStdt+
√
VtStdW

t
t

S∗t = maxu≤tSu

respectively, for some
√
Vt ∈ R+.

Lemma 3.5.1 If Z(t, x, x∗, v) ∈ U1,2
b (R+ × R3) and solve the PDE problem

and also U1,2
b (R+ × R3) is the function space of bounded functions continuously

differentiable with respect to t > 0 and twice continuously differentiable with

respect to (t, x, x∗, v) ∈ R3.

£2Z(t, x, x∗, v) = g(t, x, x∗, v), 0 ≤ t ≤ T, 0 < x ≤ x∗

Z(T, x, x∗, v) = h(x, x∗)

,

∂Z

∂x∗
(t, x, x∗, v) |x=x∗= 0

where g and h satisfy the conditions g + h = o(ex
2+x∗) as x and x∗ →∞ then

Z(t, x, x∗, v) = Ex,x∗
[
e−r(T−t)h(ST , S

∗
T )−

∫ T

t

er(t−s)g(s, Ss, S
∗
s , v)ds

]

Proof. The solution of SDE (3.13) is well known geometric Brownian motion and

infinitesimal series solution as

As =
1

2
v2x2 ∂

2

∂x2
+ rx

∂

∂x
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If we define a joint process Gt = (t, St, Rt, S
∗
t ) with Rt = −rt, then Gt is an Ito’s

diffusion with generator given by

AGU = ASU+
∂U

∂t
−r∂U

∂R
+lim
t→0

1

t
Ex

[∫ t

0

(
∂U

∂S∗
dS∗s +

1∂2U

2∂(S∗)2
(dS∗s )

2 +
∂2U

∂S∂S∗
dSsdS

∗
s

)]
Since St is continuous, we have (dS∗t )

2 = dSsdS
∗
s = 0 symbolically. More over,

the integral ∫ t

0

∂U

∂S∗
dS∗s

is also zero due to
∂U

∂x∗
|x=x∗= 0 and dS∗s = 0 for St 6= S∗t . So that obtain

the identity AG(e−rtU) = e−rt£2U . Then using a function defined by φ de-

fined by φ(s, x,−rt, x∗, v) = e−rtU(s, x, x∗, v) and a stopping time τn defined by

τn = inft : S∗t ≤ n, dynkin’s formula (for example, in Oksendal (2003)) leads to

Ex,x∗ [φ(GTΛτn)] = φ(t, x,−rt, x∗, v) + Ex,x∗
[∫ TΛτn

t

AG(φ(Gs))dS

]

= φ(t, x,−rt, xEx,x
∗

, v) + Ex,x∗
[∫ TΛ

t

e−rsg(S, St, S
∗
t , v)dS

]

and so

U(t, x, x∗, v) = ertφ(t, x,−rt, x∗, v)

= Ex,x∗
[
e−r(TΛτn−t)U(TΛτn, STΛτn, S

∗
TΛτn, v)−

∫ TΛτn

t

er(t−s)g(S, Ss, S
∗
s , V )dS

]
Finally, the well-known dominated convergence theorem (in Royden (2010) for

instance in real analysis yields the theorem by taking n →∞.
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Lemma 3.5.2 If Ht and H∗t are the two Gaussian processes defined by

Ht = (r − 1

2
σ2)t+ σWt

and

H∗t = max{(r − 1

2
σ2)s+ σWs}

then the joint probability density of a processes (Ht, H
∗
t ) is given as

Q(Ht ∈ db,H∗t ∈ dc) =
2(2c− a)

σ3t
3
2

√
2Π

e

r − 1

2
σ2

σ2 b−
(r − 1

2
σ2)2

2σ2
t− (2c− b)2

2σ2t
dbdc

Proof. If define a martingale Z and probability measure P by

Z(t) = e
−
r − σ2

2

σ
Wt

− 1
2
(
r − σ2

2

σ
)2t

P (A) =
∫
A
Z(t)dQ for all A ∈ F

Respectively, then the process 1
σ
Ht is Brownian motion under P by Girsanov’s

theorem (for instance , in oksendal (2003)). Then the joint density function of

(Ht, H
∗
t under P is well known. Refer to shreve (2000) or Wilmott(2006). In the

present context, is given by

P (Ht ∈ db,H∗t ∈ dc) =
2(2c− 2b)
√

2Πσ3t
3
2

e−
1

2σ2t
(2c− b)2dbdc

So, by applying the identity Q =
1

Z(t)
P , obtain the lemma.

Using the above two lemmas we can approximate the solution of the PDE prob-

lem (3.38).

Theorem 3.5.1 Assume that the floating strike lookback put option price U f (t, x, x∗, v)

is represented as

U f (t, x, x∗, v) =
∞∑
n=0

U f
n (t, x, x∗, v),

then U f
n (t, x, x∗, v) is given by
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U f
0 (t, x, x∗, v) =

(
1 +

σ2

2r

)
xN(δ + (T − t, x

x∗
)) + e−r(T−t)x∗N(−δ − (T − t, x

x∗
))

−σ
2

2r
e−r(T−t)x

(
x∗

x

) 2r
σ2

N(−δ − (T − t, x
∗

x
))− x

for n=0 and U f
n (t, x, x∗, v) =

∫ T
t

∫∞
ln(x

∗
x

)

∫∞
−∞

2(2c− b)£1Un−1(s, xeb, xec, v)

σ3(s− t)3
2

√
2Π

.exp{r(t−

s) +
r−σ

2

2

σ2 b−
(r − σ2

2
)2

2σ2
(s− t)− (2c− b)2

2σ2(s− t)
}dbdcds,

where £1 is a differential operator given above , for n ≥ 1, where N denotes the

usual cumulative normal distribution, δ ± (t, x) =
1

σ
√
t
(lnx + (r ± 1

2
σ2)t) and

√
v = σ

Proof. Since U f
0 is the Black-scholes put option price. Thus the PDE of (4.17) for

U1 satisfies the required conditions of lemma and also Un for n > 1 are smooth

to be U2
o due to Q(Ht ∈ db,H∗t ∈ dc) = o(e−b

2−c2). Then from both lemmas we

can obtain

Un(t, x, x∗, v) = Ex,x∗
[∫ T

t

er(t−s)£1Un−1(s, Ss, S
∗
s , v)ds

]

= Ex,x∗
[∫ T

t

er(t−s)£1Un−1(s, xeHs−t , xeH
∗
s−t , v)ds

]

=

∫ ∞
ln(x

∗
x

)

∫ ∞
−∞

(∫ T

t

er(t−s)£1Un−1(s, xeb, xec, v)ds

)
Q(Hs−t ∈ db,H∗s−t ∈ dc)

=

∫ T

t

∫ ∞
ln(x

∗
x

)

∫ ∞
−∞

er(t−s)£1Un−1(s, xeb, xec, v)Q(Hs−t ∈ db,H∗s−t ∈ dc)ds

=

∫ T

t

∫ ∞
ln(x

∗
x

)

∫ ∞
−∞

2(2c− b)£1Un−1(s, xeb, xec, v)

σ3(s− t)3
2

√
2Π

.exp{r(t− s) + λ}dbdcds
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where

λ =
r − 1

σ2

σ2
b−

(r − σ2

2
)2

2σ2
(s− t)− (2c− b)2

2σ2(s− t)

this proves the theorem
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Chapter 4

Numerical method for stochastic

approximations

4.1 SDE Approximation

A stochastic differential equation (SDE) is a differential equation in which one or

more of the terms is a stochastic process, resulting in a solution which is also a

stochastic process. SDEs are used to model various phenomena such as unstable

stock prices or physical systems subject to thermal fluctuations. Typically, SDEs

contain a variable which represents a random white noise calculated as the deriva-

tive of Brownian motion or the Wiener process. To be able to approximate the

SDEs solution the process needs to be discretizised. This is achieved by dividing

the process into small grids between an interval [a: b]

a = t0 < t1 < ... < tn = b

where a and b are the partition interval.

4.1.1 Euler-Maruyama Method

The numerical method for solving of SDEs is a stochastic Euler scheme (also

called Euler-Maruyama scheme). The Euler-Maruyama scheme is the simple and

natural guessing method for the solution of different types of stochastic differen-

32



tial equations. The Euler- Maruyama method (EM method) is to approximate a

numerical solution of SDEs. It is the simple generalization of the Euler method

for the ordinary differential equations to stochastic differential equations. Euler-

Maruyama method is the numerical simulation of a stochastic differential equation

and generate the stochastic process way approximation. This method is demon-

strated by the following stochastic differential equation:

dy = µydt+ σydWt (4.1)

let

w0 = y0

the Euler-Maruyama Method is defined as:

Wi+1 = Wi + µWi(∆ti) + σWi(∆Wt) (4.2)

and ∆Wt is calculated as:

∆Wt = Zi
√

∆ti (4.3)

and Zi is a standard Gaussian random variable.

Using this Method to the Heston Model from equation (3.13) and (3.14) gives

the following discrete relationship.

St = St−1 + µSt−1dt+
√
Vt−1St−1

√
dtZS

t

Vt = Vt−1 +K(Θ− Vt−1)dt+ σ
√
Vt−1dtZ

v
t

(4.4)

where ZS
t and Zv

t is chosen from N (0,1) and are independent and identically

distributed.
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4.2 Parameter Estimation

In order to approximate the option prices using the Heston model, it need to

input parameters that are not observable from a market data. The change for

each parameter will gives a big impact for the exactness of the model to fit the

observed data. A variety of the method can be chosen. For example, one can

observe that the real market data, and use the statistical tools to fit the data in

the Heston model (Ait-Sahila, Kimmel, 2005). The method used in this thesis

is called optimization, which means that we want to get the data from a real

market first, and then estimate parameters by known data. To get Heston model

parameter’s minimize the error difference between the Heston model prices and

real market price. A simple and direct approach is to reduce the mean sum of

squared differences. For a put option that is calculated from a Heston model, the

optimization problem can be defined as

MinS(α) = Min(α)
n∑
j=1

(
ph(k, T, α)j − pmj (k, T )

)2
(4.5)

where phj and pmj are the jth put option price, respectively, calculated by a

Heston model with time to the maturity T and collected from a real market,

n is the number of the options price which are used to calibrate a model. The

function S is an objective function of a optimization. When calibrating the Heston

model from market data, we follow the equation (4.5). That is to choose the

parameters that produces the best fit of the theoretical prices compared to the

corresponding market price. Manually evaluating the optimal solutions produced

by all optimizations yielded the following parameter set S = (V0, θ, κ, σ, P ) as the

best fit are:

V0 = 0.069545829
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θ = 0.053565543

κ = 2.040210844

σ = 0.467514601

P = 0.50903932

Note that the condition 2κθ > σ2 which ensures that Vt is strictly positive is

fulfilled.

4.3 Numerical Results and Discussions

Stochastic volatility models are gradually important in the practical derivatives

pricing applications. European put option on Google Inc.goog shares listed on

the NASDAQ was used as the market data. The data is recorded on september

2016 to January 2017. To simulate stock price and volatility stochastic pro-

cesses in Heston’s model the Euler discretization can be used to approximate

the paths of the stock price and variance processes on a discretize grid. Let

0 = to < t1 < t3 < ... < tn = T be a partition of a time interval into n equal seg-

ments of length ∆t i.e ∆t= T
n

. Then simulate ∆t using Euler discretized method.

Figure (4.1) and ( 4.2) show the simulation results for the both stock price and

volatility are stochastic process using Euler discretization methods.

On the Figures (4.1) and (4.2) simulate the stock price and volatility stochas-

tic processes in Heston’s model using the Euler-Maruyama method, using the pa-

rameters S0 = 25, µ = 0.2, T = 100days,K = 2,Θ = 0.04, v0 = 0.022, p = −0.5,

m=1000 and σ = 0.1.

To simulate the option price i.e. the European lookback put option price with

floating strike from the Heston model, have to compute a integrals given by a

Theorem (3.5.1). This is done by using the Mat-lab function quadl(@fun,a,b)

which approximates the integral of the function (@fun, from a to b) using an

adaptive Gauss Lobatto quadrature rule.

35



Figure 4.1: Stock price dynamics in the Heston model

Figure 4.2: Volatility dynamics in the Heston model

Put option prices using both the Black-Scholes formula and Heston approxi-

mation is given in Figure (6.3). From the figure (6.3) put option prices with the

Heston approximation value are higher than Black-Scholes prices. Also observed
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that in the option values between our pricing formula under Heston model and

Black-Scholes formula which is a red and green line under Heston approximation

and Black-Scholes which is blue line. In all numerical simulations results the

graph shows that put option price decreases in both the Black-Schole formula

and the Heston approximation decline as the stock price increase and they are

approaching zero when S is too increase. Also the Heston approximations have

higher price than the Black-Scholes option as expected.

From Figure (4.3),(4.4),(4.5) and(4.6) sample analysis of the two models shows

Figure 4.3: put option price in Heston approximation and Black-scholes
when x∗ = 40, r = 0.05, K = 20, v0 = 0.73,Θ = 0.03, σ = 0.11, p = 0.5, k = 0.32

and T=1 years

that the Heston model performs better than the Black-Scholes model. The results

provided in the all Figure depict that the performance of the Heston stochastic

model is superior to that of the Black-scholes model. Now fit approximations of

the Heston model and with a real data as shown on the Figure (4.4) and (4.5)

respectively. A graph showing the comparison of Heston approximation, Black-

Scholes and real data with at times to maturity T =
3

12
, T = 2

12
and T = 1

12
years

respectively. From Figure (4.6), it can be seen that, a smaller time to maturity

produces the better fit for the approximate value of option price in the Heston

model to the real data than the Black-scholes model.
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Figure 4.4: put option price in Heston approximation,Black-scholes and exact
value

when x∗ = 40, r = 0.05, k = 2.040210844, v0 = 0.069545829,Θ =
0.053565543, σ = 0.467514601, p = 0.50903932

Figure 4.5: put option price in Heston approximation,Black-scholes and market
value

when x∗ = 40, r = 0.05, k = 2.040210844, v0 = 0.069545829,Θ =
0.053565543, σ = 0.467514601, p = 0.50903932
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Figure 4.6: put option price in Heston approximation,exact value and real data
when x∗ = 40, r = 0.05, k = 2.040210844, v0 = 0.069545829,Θ =

0.053565543, σ = 0.467514601, p = 0.50903932,
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Chapter 5

Conclusions and Recommendations
The study established a technique for the constructing analytic formula for look-

back put option with the floating strike price by violating one of the assumptions

in the Black-Scholes model, constant volatility. Stochastic volatility models tackle

one of the most restrictive hypotheses of the Black-Scholes model framework,

which assumes that volatility remains constant during the options life. However,

by observing financial markets it becomes apparent that volatility may change

dramatically in time.

The homotopy analysis method used in this study provides a analytic method

for pricing options under Heston stochastic volatility model. The price is given

by an infinite series whose value can be determined once the initial term is given

well. The conclusion drawn from the simulations made in this thesis is the the

Black-Scholes market model does not give a good description of actual market

behavior. The Heston framework provide remedy for this, and allows for market

shaped smiles as empirically shown in the thesis. The numerical simulation re-

sults shows that the Heston approximation works better than the Black-scholes

formula. The stochastic volatility model in the literature like to be a Heston

model, as it generates the exact value to the derivative prices. From the graph,

it is observed that the numerical simulation results of Heston stochastic model

has empirically perform more than the Black-scholes, and also derived the simple

analytic approximations for a solution for the lookback put option.
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Availability of closed-form valuation formulas is particularly important for the

calibration process. In our tests, although the objective function is not neces-

sarily convex, both local and global optimization methods provide reasonable

results within a relatively timeframe. However, in cases where the objective func-

tion may exhibit several local minima, local optimization may underperform a

global search. Once the model parameters have been calibrated to fit market

prices, the Heston dynamics can be used to price other products that are not

actively traded in the market.

The result shows that the Heston approximation works really well and only

face problems when options with high time to maturity are be priced. As one

could observe from the results above is that the Heston approximation loses its

accuracy as the time to maturity increases, but Black-Scholes is also facing the

same type of problem. However the Heston model is build on the assumption on

non constant volatility showed an improvement of modeling stocks and receiving

smile consistent option prices. The effect of stochastic volatility model resolving

shortcoming of the Black-scholes model in its ability to generate volatility satis-

fying the market observations, and also providing a closed-form solution for the

European options.

5.1 Future work

The suggested future research work on the calibration of a stochastic volatility

parameterization, and fixed explicit parameter restrictions so as to construct a

volatility surface which is suitable for the option price. Moreover, propose to

investigate a calibration of the Heston model in a clean space, and test a local

volatility model on the different sets of the market data. For further improvement

in the further studies could been done by the presenting better variance decline
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techniques for a Monte Carlo simulation resulting in a better option price. As

further matter, propose to investigate a calibration of the Heston model in a clean

space, and test a local volatility model on the differenterent sets of the market

data.
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Appendix

The simulation MATLAB code is shown below: APPENDIX 1: Mat-lab code

for simulation of stock price function stochastic(S0, V0,mu,kappa,theta,sigma,delt,rho

) times=10000

for i=1:times random1=randn(1,times); random2=randn(1,times);

S=zeros(1,times);

V=zeros(1,times);

V = V0+kappa*(theta-V0)*T+sigma*sqrt(V0)*random1*sqrt(delT);

S = S0 +mu ∗ S0 ∗ delT + S0 ∗ . ∗ (rho ∗ random1 + sqrt(1− rho)∗

random2) σ ∗ sqrt(T );

figure; plot(S)

figure; plot(V)

end

Script 1: Heston parameter estimation using Matlabs lsqnonlin (Heston-local.m)

clear all

global data; global cost; global finalcost;

load data.txt x0 = [.5,.5,1,-0.5,1]; lb = [0, 0, 0, -1, 0]; ub = [1, 1, 5, 1, 20];

tic; x = lsqnonlin(@costf,x0,lb,ub); toc; Heston-sol= [x(1), x(2), x(3), x(4), (x(5)+

x(3)2)/(2 ∗ x(2))]

x

min = final cost

APPENDIX 1: Mat-lab code for simulation of stock price function stochastic(S0, V0,mu,kappa,theta,sigma,delt,rho

) times=10000

for i=1:times random1=randn(1,times); random2=randn(1,times);
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S=zeros(1,times);

V=zeros(1,times);

V = V0+kappa*(theta-V0)*T+sigma*sqrt(V0)*random1*sqrt(delT);

S = S0 +mu ∗ S0 ∗ delT + S0 ∗ . ∗ (rho ∗ random1 + sqrt(1− rho)∗

random2) σ ∗ sqrt(T );

figure; plot(S)

figure; plot(V)

end

Script 1: Heston parameter estimation using Matlabs lsqnonlin (Heston-local.m)

clear all

global data; global cost; global finalcost;

load data.txt x0 = [.5,.5,1,-0.5,1]; lb = [0, 0, 0, -1, 0]; ub = [1, 1, 5, 1, 20];

tic; x = lsqnonlin(@costf,x0,lb,ub); toc; Heston-sol= [x(1), x(2), x(3), x(4), (x(5)+

x(3)2)/(2 ∗ x(2))]

x

min = final cost

Appendix 2: Mat-lab code for Simulation of put option price

Script 2: Heston global calibration using ASA (Heston calibration global.m)

global data; global cost; global final cost; load data.txt

x0 = [.5,.5,1,-0.5,5];

lb = [0, 0, 0, -1, 0];

ub = [1, 1, 6, 1, 20];

Optimization: put function costf2.m :

asamin(’set’, ’testin-cost-func’, 0);
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xtype = [-1;-1;-1;-1;-1]; tic;

[f, x0 option, grad, hessian, state] = asamin (’minimize’,’costf ′2, x
′
0,lb’,ub’, xtype)

toc;

Heston sol= [x(1), x(2), x(3), x(4), (x(5) + x(3)2)/(2 ∗ x(2))]

x

min= finalcost

Stochastic process stock simulation in matlab for stock X

Z in -rnorm(1479,0,1) Random normally distributed values, mean = 0, stdv = 1

u =- 0.3 Expected annual return (30sd =- 0.2 Expected annual standard

deviation (20s = 30 Starting price

price =-p(s) Price vector

a =- 2 See below

t =- 1years stock price to put on the x axis

for(i in Z)

S = s + s*(u/1479 + sd/sqrt(1479)*i)

price[a] =- S

S = S0

a = a + 1

plot(t,price,main=”Time series stock

X”,xlab=”time”,ylab=”price”, type=”l”,col=”blue”)

summary(price)

statistics-

c(sd(price),mean(price),(price[1480]-price[1])/price[1]*100)

names(statistics) - p(”Volatility”,”Average price)”,”Return print(statistics)

plot(RealData, type = ”l”, col = ”green”, lwd = 2, xlab =”time”, ylab = ”Put
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option Price”)

lines(price,type = ”l”, col = ”blue”, lwd = 2, xlab =”stock price”, ylab = ”Put

option price

Add Legend

legend(”topright”,legend=c(”Simulated”,”Real Data”),

text.col=c(”green”,”blue”,red),pch=c(16,15),col=c(”green”,”blue”,red))

title ( main = ”black-scholes,Real and Simulation Data on Heston model”)

MATLAB code for European lookback Put option: Black-Scholes Formula

Black Scholes Price function

p=bsm-price(S,K,r,t,sigma)

d1= (lnx+(r+0.5.∗sigma.2).∗ t)./(sigma.∗sqrt(t)); d2 = d1−sigma.∗sqrt(t);

p=normcdf(d1)*St-normcdf(d2)*exp(-r*t)*K;

load data2.txt

fori=1:length(data2)

y(i) = bsmputprice(data2(i, 1), data2(i, 2), data2(i, 3), data2(i, 4), 0.1706);

end

Matlab Function : lookback put option price in the Heston model (put-heston-

pf.m)

function v = lookback put option heston pf(s0, v0, vbar, a, vvol, r, rho, t, k)

Inputs: s0: stock price

v0: initial volatility (v0 initial variance)

vbar: long-term variance mean experiences

a: variance mean-reversion speed

vvol: volatility of the variance process

r: risk-free rate
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rho: correlation between the Weiner processes of the stock price and its variance

t: time to maturity

k: strike price

chfun-heston: Heston characteristic function

1st step: calculate

Inner integral 1

int1 = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax)

((2(2c− b))/(σ32)exp(r + (r − 1/σ2)/σ2 − (r − σ2/σ2

)/(σ2) − (2c − b)/(2σ2))dbdcd).*chfun-heston(s0, v0, vbar, a, vvol, r, rho, t,

).chfun-heston(s0, v0,

vbar,

a, vvol, r, rho, t, ))); inner integral1

int1 = integral(@(w)int1(w,s0, v0, vbar, a, vvol, r,

rho, t, k),0,100); numerical integration

Inner integral 2:

int2 = triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax)

((2(2c−b))/(σ32)exp(r+(r−1/2)/2−(r−σ2/σ2)/(2σ2)−(2c−b)/(2σ2))dbdcd).*chfun-

heston(s0, v0, vbar, a, vvol, r, rho, t, w).);

int2 = integral(@(w)int2(w,s0, v0, vbar, a, vvol, r, rho, t, k),0,100);int2 =

real(int2);

V = k∗exp(−r∗T )∗(normcdf(d2)−normcdf(d2)−(Sd./So).(−1+(2∗r/σ2)).∗

(normcdf(d1)-normcdf(d1)))-(So.*(normcdf(d1)-normcdf(d2)-... (Sd./So).(1+(2∗

r/σ2)). ∗ (normcdf(d1)− normcdf(d2)));

commands use to plot option price vs stock price plot(So,V,’–rs’)

title(’Option Price Vs Stock ’)

xlabel(’Stock Price’)
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ylabel(’Option Price’)

end

Heston solution for lookback option Matlab code.

Driver uses to put Heston function to compute lookback put option.

function [Vput-store]=HesExact-Driver

global kappa lamda theta v0 rho sigma r u1 u2 a b1 b2 global S0 K T x

para=[0.1237 0.0677 0.3920 1.1954 -0.6133];

Initial Values S0=20;

K=30; T=1;

Heston’s Parameters

kappa=para(4);

lamda=0;

theta=para(2);

v0=para(1);

rho=para(5);

sigma=para(3);

r=0.02;

change of variable to avoid negative stock prices.

x=log(S0);

put option Heston function to compute put option. store=size(K,2);

for w=1:store

Vput = Heston-Exact(S0,K(w),T,σ,r,v0 );

Vput-store(w)=Vput option

(end);

plot(So,V,’–rs’)

title(’Option Price Vs Stock Price’)
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xlabel(’Stock Price’)

ylabel(’Option Price’)

end
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