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ABSTRACT

Volatility is considered as a measure of risk of financial assets which is vital for prudent

financial decision of different stakeholders. GARCH models have been commonly

used to capture volatility dynamics of financial time series, particularly in modeling

volatility of stock returns and pricing of futures and options. Despite the generaliza-

tion of GARCH (p,q) model to assume different model orders, GARCH (1,1) model

continues to be widely used by practitioners when modeling volatility of financial as-

sets returns. A key assumption of the GARCH models utilized is that the processes are

stationary. This assumption allows for model identifiability. Financial asset returns,

however, often exhibit the volatility clustering property implying that assuming one

GARCH model is a poor fit. The IGARCH model may be perceived as a solution to

this problem as the assumption of stationarity is relaxed and thus the model is able

to model persistent changes in volatility. However, the IGARCH model is prone to a

shortcoming where the behavior of the process depends on the intercept. In this work,

change-point estimation is proposed as a solution to deal with this problem where ob-

served non-stationary series is assumed to be composed of a series of stationary series.

The main objective of this work is therefore to propose an estimator for the change-

point which is considered as the point in time at which the series departs from one

stationary GARCH model with order (1,1) to another stationary GARCH model with

order (p,q). Given that plausible values for the model orders p and q can be arrived

at through inspection of sample autocorrelations and sample partial autocorrelations

of a squared returns series, a change-point estimator based on the Manhattan distance
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of sample autocorrelation of squared series is proposed. The estimator is given as

the first point in time at which the Manhattan distance is maximum. To facilitate

the detection of multiple change-points, binary segmentation technique is applied to

extend the single change-point detection algorithm.

The asymptotic consistency of the estimator is proven theoretically based on some

properties specific to sequence of stationary random variables with finite second and

fourth moments. The limit theory of the process generating the estimator is also estab-

lished. The general theory of the sample autocovariance and sample autocorrelation

functions of a stationary GARCH process forms the basis. Specifically the point pro-

cesses theory is utilized to obtain their weak convergence limit at different lags. This

is further extended to the change-point process. The limits are found to be generally

random as a result of the infinite variance.

Monte Carlo simulations is used to examine the performance of the estimator when

the sample size, size and position of change vary using the Adjusted Rand Indices.

It is established that ARI increases and tends to one as the size of change increases

irrespective of the sample size and of the source of change. Histograms are utilized to

assess the sampling distribution of the change-point estimator.

The research culminates with the application of the change-point estimator in pricing

American options. Comparison is made between the performance of the fitted GARCH

models and Black-Scholes model by examining plots of the option prices against mon-

eyness. The fitted piecewise GARCH model, following change-point detection, gives

higher prices compared to the Black-Scholes when the option is out-of-the-money in-

dicating that the volatility dymanics affect the prices of options. It is therefore impor-

tant for a investor trading in American options to consider change-points within the

volatility structure of a financial returns series when choosing an early exercise date.

xiii



Chapter 1

INTRODUCTION

1.1 Background of the Study

Modelling volatility of financial asset returns is particularly an important area in Fi-

nance. This is because volatility is considered to be a measure of risk when pricing

financial instruments. GARCH models have been commonly used to capture volatility

dynamics in financial time series particularly in modelling of stock returns, interest

rates and pricing futures and options. Despite the generalization of GARCH (p,q)

model to assume different model orders, GARCH (1,1) model continues to be widely

used by practitioners when modeling volatility of financial assets returns(Xt)t∈Z. The

model is chosen prior without implementing any statistical identification procedure.

Following an investigation by Starica (2003) on how truthful the simple volatility dy-

namics imposed by a GARCH(1,1) process to the evolution of returns of main financial

indexes, it was established that GARCH(1,1) process is not the data generating process

for the series of returns on the indexes under study. However, it was established that the

GARCH(1,1) dynamics provides a poor fit for longer horizon as the model provided a

good fit for the data as a local, stationary approximation. Starica asserts this can be at-

tributed to the fact that the parameters of the GARCH(1,1) model change significantly

through time. Francq and Zakoian (2011) carried out a similar study and utilized 11
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different stock return series and 13 exchange rate return series. It was established that

the GARCH(1,2) and GARCH(1,3) models provided the overall best fit for some for

stock returns data whereas GARCH(2,1) provided the best fit for some exchange rate

return data. Out of the 24 series examined, the GARCH(1,1) model was rejected for

16 series. It can therefore be concluded that studies carried out to compare the suitabil-

ity of GARCH(1,1) over other models are prone to the limitation of the return series

used. According to Francq and Zakoian (2011) the practice of using GARCH(1,1) is

motivated by the belief that the model and its simplest asymmetric extensions is suffi-

cient to capture the properties of financial series and that higher-order models may be

unnecessarily complicated. This practice is not always statistically justified for a large

number of series and conclude that GARCH (1,1) model is certainly overrepresented

in empirical studies.

A key assumption when determining the model parameters is that the series (Xt)t∈Z is

stationary as this ensures model identifiability as this ensures that there is a one-to-one

correspondence between the distribution of data and the values of model parameters.

However, financial time series is particularly is characterized by the property of volatil-

ity clustering where large changes in volatility are followed by large ones and small

changes are followed by small ones. Volatility clustering can be attributed to different

mechanisms used by investors as their trading strategy. Long term investors focus on

the long-term behavior of asset prices whereas their counterparts who are the traders

focus on short term price fluctuations. The behavior assumed by these investors in a

financial market introduces heterogeneity in time scale which can be perceived to be

one of the sources of volatility clustering. In a study carried out by LeBaron (2000)

on an artificial market to examine the effects of diversity on price dynamics, it was

established that the presence of heterogeneity in horizons may lead to an increase in

return variability, as well as volatility-volume relationships similar to those of actual

markets. Various trading strategies models co-exist but evolve with time where their

relative profitability is viewed as a means of natural selection mechanism. These mod-
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els can be perceived to be a set of decision rules mapping investors information set,

say on price history, trading volume and other economic indicators, to a set of actions

to buy, sell or not to trade. These evolutionary models may represent the evolution by

a deterministic dynamical system or through the complex price dynamics it generates

which have been found to mimic some statistical properties of the returns process, in-

cluding volatility clustering Hommes et al. (2003). Volatility clustering can also be

attributed to behavioral change. Lux-Marchesi model attributes volatility clustering,

long memory and heavy tails in asset returns to behavioral switching Lux and March-

esi (2000). With this regard it may be considered that the market reflects behavior

switch from that of a fundamentalist to that of a chartist where the former evaluates

their performance from anticipated gain and the latter evaluates according to realized

gains. This decision-making process is driven by an exogenous factors creating imbal-

ances between demand and supply which may result to transient phases of destabiliza-

tion. An outbreak of volatility occurs if the fraction of agents using chartist techniques

surpasses a certain threshold value though such phases are brought to an end by stabi-

lizing tendencies. Thus the series can be considered to display a stationary behaviour

for some time then suddenly the variability changes, it stays constant for some time

at this new value until another change occurs. This therefore afffirms that the series is

non-stationary and thus fitting one stationary GARCH model is not appropriate.

The IGARCH(p,q) model is proposed to be the solution to this problem. In this model,

the stationarity assumption is relaxed and is thus able to model persistent changes in

volatility. However, the IGARCH(p,q) is prone to some shortcomings. According to

Nelson (1991) the behavior of an IGARCH process depends on the intercept, such that,

if the intercept is positive then the unconditional variance of the process grows linearly

with time. In practice this means that the amplitude of the clusters of volatility to

be parametrized by the model on the average increases over time. The rate of increase

need not, however, be particularly rapid. If the intercept is zero in the IGARCH model,

the realizations from the process collapse to zero almost surely. However, a potentially

3



disturbing fact is that the model assumes that the unconditional variance of the process

to be modeled does not exist in that the variance may be infinite as shown by Terasvirta

(2009) and Polzehl and Spokoiny (2006).

In contrast change-point detection can be considered as an alternative of dealing with

the volatility clustering phenomenon. According to Mikosch and Starica (2004) the

assumption of parameter constancy in GARCH models may not be appropriate espe-

cially when the series to be modeled are long. To overcome this problem of modeling

financial time series in the presence of structural changes, the duo suggests that one

option is to assume that the parameters change at specific points of time, divide the

series into sub-series according to the location of the change-points and fit separate

GARCH models to the sub-series. In line with this perspective, the non-stationary

series is looked at as a union of several stationary series. This brings about the chal-

lenge of determining the location of change-points and their number because they are

normally not known in advance.

1.2 Statement of the Problem

Empirical studies reveal the popular use of GARCH(1,1) to model volatility of an en-

tire financial time series as highlighted in the background of the study. Volatility clus-

tering, however, necessitates for the identification of the points in time, change-points,

at which the series departs from GARCH (1,1) model to GARCH (p,q) model with dif-

ferent model order specification. Various tests for detection of structural breaks exists.

A key assumption made in these tests is that structural breaks are as a result of change

in one or more parameters in the GARCH(p,q) model. However, the changes could

also be as a result of different orders specifications for the model, say, GARCH (p,q)

for t ∈ [0,k], GARCH (p∗,q) for t ∈ [k+1,m], GARCH (p,q∗) for t ∈ [m+1,n] and

GARCH (p∗,q∗) for t ∈ [n+1,T ] where 0 < i < m < n < T and p∗ 6= p and q∗ 6= q

and p 6= q. The study particularly seeks to investigate for the departure of the series

4



(Xt)t∈Zfrom GARCH (1,1) to GARCH (p,q)and vice versa. An assessment of the plots

in Figures 1.1, 1.2 and 1.3 reinforces this possibility. From the plots, arising from dif-

ferent model-order specification, it is observed that the auto-correlation and the partial

auto-correlation functions for different segments of the time series are different.

(a) (b)

Figure 1.1: ACF and PACF of Geometric Squared Return for Series t ∈ [1 : 400]

(a) (b)

Figure 1.2: ACF and PACF of Geometric Squared Return for Series t ∈ [401 : 800]
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(a) (b)

Figure 1.3: ACF and PACF of Geometric Squared Return for Series t ∈ [801 : 1000]

In particular, we can assign different orders (p,q) through the assessment of plots at

the by examing where the functions tail off. From Figure 1.1 (a) and (b) it can be

seen that the model orders are p = 1 and q = 2 respectively, which implies that a

GARCH (1,2) is the most suitable model for the geometric return series from time

t = 1 to time t = 400. In Figure 1.2 (a) and (b) it can be seen that the model orders are

p = 1 and q = 1 respectively, which implies that a GARCH (1,1) is the most suitable

model for the geometric return series from time t = 401 to time t = 800. Similarly,

an assessment of Figure 1.3 (a) and (b) it can be seen that the model orders are p = 2

and q = 2 respectively, which implies that a GARCH (2,2) is the most suitable model

for the geometric return series from time t = 801 to time t = 1000. This research

therefore proposes the use the auto-correlation function as a detector for change-points

in the series(Xt)t∈N. The location of change-points may be used to extract further

information about the underlying properties of the data and also be used to explain

why the break occurred.
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1.3 Justification of the Study

Given the changing pace of the underlying economic mechanism and technological

progress, modeling economic processes over a long time horizon, it is possible that

structural changes may occur. This can cause the time series to deviate from stationar-

ity and result to volatility clustering. The detection of these structural change points is

therefore vital to various players in a given economy to ensure timeliness of decisions.

A fundamental problem in financial trading is the correct and timely identification

of turning points in stock value or exchange-rate series. This detection enables one

to make profitable investment decisions, such as buying-at-low and selling-at-high,

hence traders require early identification of local troughs and peaks of stock values. In

macroeconomics, knowing the beginning of a recession leads to an increase of govern-

ment expenditure or an expansion of money supply.

1.4 Research Objectives

1.4.1 Main Objective

The general objective of this research is to apply the Manhattan Distance in model

order change-point estimation in GARCH models.

1.4.2 Specific Objective

The Specific Objectives are:

1. To develop an estimator for change-point.

2. To determine the consistency of the change-point estimator.

3. To determine the asymptotic distribution of the change-point process.

4. To apply the change-point estimator in pricing American options.
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1.5 Scope of the Study

The academic scope of the study is limited to GARCH model order change-point esti-

mation, particularly, assuming departure from GARCH (1,1) to a general GARCH (p,q)

model with different model order specification.
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Chapter 2

LITERATURE REVIEW

This chapter begins with reviewing various change-point estimation methods. This is

followed by methods used in examining the consistency of these change-point estima-

tion methods and the corresponding distribution of the change-point estimator. The

final section of the chapter describes option pricing models.

2.1 Estimation of Change-point

A change-point is the point in time at there is a change in the underlying distribu-

tion of the data. Market and institutional changes are assumed to cause change-points

in financial time series. This means that the assumption of homogenous distribution

throughout the whole financial time series is not correct. To be able to use all data

available for analysis, the change-points need to be located. The following methods

outline the theory surrounding change-point estimation with the aims to discover if and

where such changes are present in the data.

Zhang (2016) and Bin and Yongmiao (2012) propose a consistent test for smooth

structural changes as well as abrupt structural breaks with known or unknown change-

points. They estimate smooth time-varying parameters by local smoothing and com-

pare the fitted values of the restricted constant parameter model and the unrestricted
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time-varying parameter model. They utilize a smooth transition linear regression func-

tion. The transition function allows both the intercept and the slope to change smoothly

over time. One advantage of this nonparametric model is that little restriction is im-

posed on the functional forms of the time-varying intercept and slope, except for the

condition that they evolve over time smoothly. The proposed test was also established

to have appealing features. First, it is consistent against a large class of smooth time-

varying parameter alternatives as well as multiple sudden structural breaks with un-

known change-points. Second, no prior information on a structural change alternative

is needed. that is, one needs not to know whether the structural changes are smooth

or abrupt, and in the cases of abrupt structural breaks nor the dates or the number

of breaks. Third, different from many tests for structural breaks in the literature, our

test is asymptotically pivotal. The only inputs required are the ordinary least squares

and local linear time-varying parameter estimators. The latter is a locally weighted

least squares estimator, therefore any standard econometric software can be used to

implement the test. Fourth, because only local information is employed in estimating

parameters at each time point, the test has symmetric power against structural breaks

that occur either in the first or second half of the sample period. The nonparametric

methods have also been utilized in change-point estimation in other random variables.

However, the validity of the test relies critically on the assumption that the trend func-

tion is smooth, namely it does not contain any jump. Although the smoothness assump-

tion provides the basic motivation and technical justification for using nonparametric

smoothing methods, it is important to detect whether the trend function has any jump

before calling the nonparametric estimation procedure.

Non-parametric estimation is also proposed by Kanamori et al., (2010) who use direct

density-ratio estimation for change-point identication. Here, inference is made on the

ratio between the densities of the data before and after a change-point. By considering

a density ratio, these approaches do not require knowledge about the densities them-

selves. Gichuhi (2008) examined nonparametric changepoint analysis for Bernoulli
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random variables. They used neural network based likelihood ratio test statistic to

detect a change-point in a given set of data and derived the limit distribution of the

estimator under the assumption that the model is properly specified. The maximum

likelihood change-point estimation method was applied to determine the estimator.

A similar approach with respect to time varying parameters was considered under the

time varying ARCH (TV-ARCH) model of Dahlhaus and Subba Rao (2006) which

was later generalized by Rohan and Ramanathan (2012) to a time varying GARCH

(TV-GARCH) (1,1) model, by allowing the parameters of a stationary GARCH model

of Bollerslev (1986) to change slowly with time. In their approach, a two-step lo-

cal polynomial estimator of the parameter functions of the TV-GARCH (p,q) model

was initially used. The asymptotic distributions was also investigated where it was

established that the asymptotic distribution depends on the parameters of a stationary

GARCH process, which is unobservable thus limiting the scope of asymptotic results.

The stationary GARCH process is such that it locally approximates the TV-GARCH

process at specific time points. It was proved that the distribution of the proposed

bootstrap estimator of parameter functions of the TV-GARCH (p,q) model asymptoti-

cally coincides with that of the actual local polynomial estimator. Further investigation

of the validity of the bootstrapped estimator using a simulation study revealed that the

bootstrapped estimator provides a better approximation to normality than the actual lo-

cal polynomial estimator. However, test based on the least squares and the local poly-

nomial estimators of the parameter functions are not guaranteed to be non-negative.

These method results in some of the bootstrapped residual squares to be negative.

Some scholars also argue that volatility clustering can be as a result of investor’s inac-

tion. Liu (2000) argues that the notion that a Markovian regime switching mechanism

in volatility can lead to volatility clustering is not sufficient to generate long-range

dependence in absolute values of returns. According to this research, the time spent

in each regime, the duration of regimes, is more important than switching and should

have a heavy-tailed distribution. In light of this Luc et al. (2011) proposed the use of
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Markov-switching GARCH for modeling GARCH models in the presence of change-

points. The motivation for this is bore from the fact that the marginal likelihood os

a non-stationary GARCH cannot be established due to the path dependence problem.

The path dependence problem occurs because the conditional variance at time t de-

pends on the entire sequence of regimes visited up to time t, due to the recursive nature

of the GARCH process. Since the regimes are unobservable, one needs to integrate

over all possible regime paths when computing the likelihood function. However, the

number of possible paths grows exponentially with t, rendering the likelihood evalua-

tion unfeasible. Thus applying Markov chain Monte Carlo methods as the approach is

particularly suitable for conducting inference in non-linear state space models.

A Bayesian approach is considered by Tze Leung and Haipeng (2013). In this ap-

proach two time-scales are considered where the “short” time-scale is used to define

GARCH dynamics and the “long” time-scale to incorporate parameter jumps. This

leads to a Bayesian changepoint ARX-GARCH model, whose unknown parameters

can undergo occasional changes at unspecified times and can be estimated by explicit

recursive formulas when the hyperparameters of the Bayesian model are specified. Ef-

ficient estimators of the hyperparameters of the Bayesian model are developed, yield-

ing empirical Bayes estimates of the piecewise constant parameters in the stochastic

changepoint model. The empirical Bayes approach is applied to the frequentist prob-

lem of partitioning the time series into segments under sparsity assumptions on the

change-points.

Dynamic programming for optimal multiple change-point detection was adopted by R.

et al. (2012) and Frick and Sieling (2014) under the assumption of unknown number of

change-points. A dynamic programming algorithm retrieves the k− 1 change-points

minimizing the quadratic loss where n is the number of observations. However, at

most O(n2) computational complexity of various dynamic programming methods can

be achieved only if the objective function can be updated in O(1) time when a new

observation is included. This may not be true in general unless the objective function
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is chosen as the sum of squares or likelihood function for the Gaussian random vari-

ables in change-in-mean and changein-variance cases. In general, all terms in the log-

likelihood have to be re-estimated based on the new estimated parameters. Therefore,

the updating time may depend on the running sample size since the last change-point.

As such, the quadratic complexity in n restricts the use of such an algorithm to small

or intermediate values of n.

CUSUM test for change-points was originally developed for independent processes

for estimation a change-point in the mean Page (1954) or the variance Inclan and Tiao

(1994). The procedures were extended to β-mixing processes Kokoszka and Leipus

(2000). The residual CUSUM test for estimating change-points in the conditional

mean examines the point in time when there is a maximum deviation of the the obser-

vation from the mean. The squared residual CUSUM test is used for estimating breaks

in the conditional variance by examining the point in time when there is a maximum

deviation of the the observation from the variance. The K and L CUSUM test as pro-

posed by Kokoszka and Leipus (2000) is utilized to detect for changes in ARCH(∞)

models under the null hypothesis is that there is no change-point and the alternative is

that there is one change-point at an unknown time. The model rests on the assump-

tion that the error terms are normally independently distributed. They considered the

change-point process to be drawn from a weighted change in the second moment with

the change-point being estimated as the point at which there is maximal sample evi-

dence for a change in the squared series. The duo Kokoszka and Leipus (2000) also

proved that in the presence of a single break k is a consistent estimator of the unknown

change-point where under the null hypothesis which states that there is no break the

change-point processes asymptotic distribution was a Brownian bridge. Advantage of

the K and L test is its validity under a wide class of processes including long memory,

GARCH-type and non-linear time series models. It is also adapted for multiple break

points, with the number of breaks determined using the sequential sample segmenta-

tion approach. The K and L test has good power only for large and non-monotone
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(rather than small and gradual) changes in the GARCH parameters for any of the ab-

solute rather than the squared returns transformations. Similarly it shares good power

for detecting changes in the variance of the error term in the GARCH process. As

the sample size increases the performance of the test improves even for small change

points. However, the CUSUM test have different powers against change-points that

have the same magnitudes but occur at different time points.

In order to extend the single change-point estimation method to multiple change-point

estimation several methods have been proposed. First is the hierarchical divisive es-

timation which sequentially identifies change-points via a bisection algorithm. This

approach estimates multiple change-points by iteratively applying a procedure for lo-

cating a single change-point. A new change point location is estimated at each iteration

so that it divides an existing segment. This progresses as a binary tree where the root

node corresponds to the case of no change-points, and thus contains the entire time

series. The other non-root nodes are either a copy of their parent, or correspond to one

of the new segments created by the addition of a change-point to their parent. This is

often referred to binary segmentation as the method extends any single change-point

method to multiple change-points by iteratively repeating the method on different sub-

sets of the sequence. According to (Matteson and James, 2013) utilize the hierarchical

divisive estimation method and shows that this procedure generates strongly consistent

change-point estimates. This method requires that an initial segmentation of the data

be provided. This initialization helps reduce the computational time of the procedure

as well as allowing for the inclusion of a priori knowledge of possible change-point

locations. However, in the absence of such assumptions, then each observation is as-

signed to its own segment.

Secondly is the agglomerative algorithm estimates change-point locations by deter-

mining an optimal segmentation. This method requires that an initial segmentation of

the data be provided. This initial segmentation can help to reduce the computational

time of the procedure. It also allows for the inclusion of a priori knowledge of possible
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change point locations, however if no such assumptions are made, then each observa-

tion can be assigned to its own segment. Neighbouring segments are then sequentially

merged to maximize a goodness-of-fit statistic. The estimated change-point locations

are determined by the iteration which maximized the penalized goodness-of-fit statis-

tic. When using this procedure it is assumed that there is at least one change-point

present within the time series. Within these segmentation approaches, the choices of

techniques we can apply are diverse. All these techniques aim at the identification of

the prominent points which are used for decisions in the segmentation approaches. The

Perceptually Important Points (PIP) method as introduced for time series by (Chung

et al., 2001) and later used by (Jiang et al., 2007) and (Fu et al., 2006). Others like

(Oliver and Forbes, 1997) pursue a change-point detection approach, (Bao and Yang,

2008) propose turning points sequences applied to financial trading strategies, (Gu-

ralnik and Srivastava, 1999) present a special event detection, (Oliver et al., 1998)

and (Fitzgibbon et al., 2002) use minimum message length approaches, and (Fancourt

and Principe, 1998) tailor PCA to locally stationary time series. (Duncan and Bryant,

1996) suggest the use dynamic programming for time series segmentation which is

furthered by (Himberg et al., 2001) through approximating them with Global Iterative

Replacement (GIR) algorithm results and they illustrate their segmentation technique

with mobile phone applications in context recognition. A piecewise generalized likeli-

hood ratio is used by (Wang and Willett, 2004) who apply it to establish first segmen-

tation and then elaborate the segments further. Recently, (Cho and Fryzlewicz, 2012)

segment a piecewise stationary time series with unknown number of breakpoints using

a nonparametric locally stationary wavelet model. A combination of recursive and dy-

namic Principal Component Analysis (PCA) for multivariate time series segmentation

is adopted by (Dobos and Abonyi, 2012).

Thirdly are the exact segmentation methods. The Segment Neighbourhood and opti-

mal partitioning method are examples of the exact methods. These methods are based

on minimizing the cost function which can be considered as twice the negative log like-

15



lihood (Chen and Gupta, 2000), quadratic loss and cumulative sums (Rigaill, 2010).

The segment neighbourhood begins by setting an upper limit on the size of the seg-

mentation space, the maximum number of changepoint, that is required. This approach

searches the entire segmentation space using dynamic programming and continues by

computing the cost function for all possible segments. Following (Jackson et al., 2005)

the optimal partitioning (OP) method begins by first conditioning on the last point of

change. It then relates the optimal value of the cost function to the cost for the optimal

partition of the data prior to the last changepoint plus the cost for the segment from

the last changepoint to the end of the data. According to (Killick and Eckley, 2012)

pruning can be used to increase the computational efficiency of the optimal partition-

ing method whilst still ensuring that the method finds a global minimum of the cost

function. The essence of pruning in this context is to remove those values of k which

can never be minima from the minimization performed at each iteration.

2.2 Consistency of the change-point estimation

General theory on examining consistency of estimators is reviewed following (Jacod

and Sorensen, 2016). The theory covers consistent estimators obtained by maximising

(or minimising), with respect to θ , a function Hn (θ ;X1, · · · ,Xn) of the data and the

parameter. The general set-up is as follows. Consider a measurable space (Ω,F)

with a probability measure P, the true measure, and a family (P(θ))θ∈Θ of probability

measures indexed by Θ ⊆ Rp , the statistical model. Often it is assumed that there

exists a θ0 ∈ Θ , the true parameter value, such that P = P(θ0) , but this need not be

the case. At stage n, we have a set of observations which generates a P–complete

σ– f ield Fn ,that is, Fn is the P–complete of the σ– f ield F 0
n n generated by those

observations. Taking the completion simplifies the mathematical formulation of the

results below, and it has no negative consequences from a practical viewpoint since all

statements about estimators are always up to a P−null set. To be consistent, it is also
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suppose that F is P–complete. If a continuous time stochastic process Xt is observed,

then Fn could, for instance, be the complete σ − f ield generated by the variables Xs

for s ∈ [0, tn] for some increasing sequence tn, or by the variables Xi∆n for i = 0, · · · ,n

and some ∆n > 0. An estimating function at stage n is a function (θ ,ω)→ Gn(θ ,ω)

that takes its values in Rp and depends on the statistical parameter θ ∈ Θ and on the

observation at this stage, that is (θ ,ω)→ Gn(θ ,ω) is measurable with respect to the

product of the Borel σ − f ield of Θ with Fn. An estimator is obtained by solving

the estimating equation Gn(θ) = 0. For n large enough the estimating equation has a

solution that converges to a particular parameter value θ̂ . When the statistical model

contains the true model, is consistent, the estimating function should preferably be

chosen such that θ̂ = θ0. This approach has been utilized in examining the change-

point estimates by Chen and Hong (2012) and Kokoszka and Leipus (2000) reviewed

in Section 2.1.

2.3 Distribution of the change-point estimator

The asymptotic distribution of change-point estimators rely on the data generating

mechanisms. In particular, we are interested in data generated by the GARCH model.

As such the point process theory is reviewed as an appropriate method of examining

the limiting structure of partial sums of stationary random variables (Davis and Hsing

(1995)). Consider {Xt} to be a strictly stationary sequence of random variables with

regularly probabilities. Point process methods are considered suitable for determining

the weak convergence of the partial sums, Sn = X1 + · · ·Xn, suitably normalized, when

{Xt} satisfies the mixing condition. This is achieved through characterization of the

limit point processes for the sequence of point processes Nn with mass at the points

{Xt/an} for t = 1, · · · ,n and an being the 1−n−1 quantile of the distribution of |Xt |. Sn

is asymptotically stable if Nn converges to N for the tail index κ ∈ (0,2).
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2.4 Option Pricing

Consider a financial market in which the total supply of an asset is N. At the beginning

of each period t1, all participants observe the unit asset price p(t). Further assume that

all the traders are perfectly competitive; they take the price as given, imagining that

they are so small that they cannot affect the price, no matter how much they demand.

In particular, we consider the behavior of two types of traders; noise traders and value

assets. The noise traders’ demand is defined in terms of the cash value they spend on

the asset which follows an autoregressive random process. When there are only noise

traders the price is set such that demand, D, is equal to the total supply of assets,D=N.

On the other hand, value investors base their demand D on a mispricing signal on an

asset. The presence of the value investors dramatically alters the statistical properties

of price returns. Thurner et al. (2012) established that with only noise traders the log

returns are nearly normally distributed. When value investors are added without lever-

age the volatility of prices drops slightly, but the log returns remain approximately

normally distributed. However, when leverage is increased, the distribution becomes

much more concentrated in the center and the negative returns develop fat tails. In gen-

eral, when value investors are unleveraged, they will always buy into a falling market

since when prices drop there are guaranteed to be buyers thus damping price move-

ments away from the fundamental value. When value investors are leveraged, they sell

into a falling market thus amplifying the deviations of price movements away from the

fundamental value.

Assume that we begin at a point where the wealth of all value investors is small. In the

early stages, all these investors will tend to accumulate wealth, with aggressive funds

growing faster than cautious funds. The overall increase in the wealth of funds lowers

volatility. As a result, the increase in the wealth of the most aggressive value investors

drives up the overall use of leverage. In due course, a substantial downward fluctuation

in noise trader demand happens to occur at the same time that one or more aggressive
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value investors are fully leveraged. This prompts a large sell-off by the aggressive value

investors, which drives prices down, and generates a crash. After the crash the overall

wealth of funds is substantially diminished, and as a result volatility goes back up.

This leverage cycle results into volatility clustering where volatility patterns change

following a leverage point. It is thus important to incorporate this behavior in financial

modelling. In particular this study utilizes the change-point estimator to locate the

point of change.

More specifically we utilize this in pricing options in a derivative market. There are

two basic types of options. A call option (put option) or more simply a call (put)

is a derivative giving to the holder the right, but not the obligation, to buy (sell) an

agreed quantity of the underlying asset S, from the seller of the option on (or before)

the expiration date T , for a specified price K, the strike price or exercise price. The

value of an option is a sum of two parts, its intrinsic value and extrinsic value. The

intrinsic value is the fundamental value of a financial asset, in this case the payoff of the

option. The payoff is the difference between the exercise price and the current stock

price. For a call option, the buyer receives the amount max(ST −K,0) = (ST −K)+

since the option will not be exercised unless it is ‘in the money’. Similarly, for a put,

the payoff at time T is (K− ST )
+. Generally the value of a call option increases as

the price of the underlying asset increases and the value of a put option will increase

when the value of the underlying asset decreases. Extrinsic value is commonly known

as time value. Time value can be measured by subtracting intrinsic value from the

price of the option yielding the premium that the investor pays for the current exercise

value. Time value will decrease over time as maturity nears since the lesser the time

to maturity the lower the probability of a better exercise value. Volatility is also very

important in option pricing because after all the changes in price are the reason why

options exist. The more volatile the price of the underlying asset, the better the odds

are, that the underlying price will end up further away from the current price by the

time of expiration. Therefore rise in volatility of the underlying asset’s movements
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drives up both call and put option prices Hull (2011).

In the financial context, volatility is used to express the uncertainty of the financial

returns. If volatility is high the probability that a stock will perform exceptionally well

or exceptionally poor is high. Therefore the probability that an option is in-the-money

at the time of expiration is higher when the volatility is high. As it can be seen there

is a distinct connection between volatility of the underlying asset and the returns of

the option. This also leads to the fact that the volatility of the underlying asset has a

major impact on the option price. Historical or realized volatility can be calculated

from historical data but future volatility is more difficult to estimate. Calculation us-

ing the realized volatility is the simplest way but the problem is how long the sample

should be. Longer sample might make the estimate more accurate but since volatility

is not constant over time the past returns might not be a good estimate of the future

volatility. There are numerous ways to estimate volatility statistically in addition to

realized volatility. Moving average models smooth the random price fluctuation and

form a lagged trend for volatility. Two well-known moving averages are SMA (Simple

moving average) and EWMA (exponentially weighted moving average) which gives

more weight to the latest observations. Autoregressive models have become popular

in academic research due to their good future volatility forecasting ability. Some com-

mon autoregressive models are ARMA (autoregressive moving average), ARCH (au-

toregressevie conditional heteroscedasticity) and GARCH (generalized autoregressive

conditional heteroscedasticity). The motivation behind ARCH and GARCH models is

that, there is a relationship between todays squared returns and past squared returns.

ARCH and GARCH models utilize this relationship to estimate volatility. This way

they can forecast future volatility very accurately by using the past returns Abdalla and

Winker (2012).

A research on financial speculation in energy and agriculture futures markets was car-

ried out by Matteo et al. (2012). A GARCH model was used to estimate energy and

agricultural commodities’ returns where returns were explained by macroeconomic
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variables and a measure of speculation. MGARCH models were also used to investi-

gate the presence of spillovers across commodities. It was established that speculation

in one market does not seem to significantly affect returns in other markets. An option

pricing model in the context of GARCH asset return process was developed by utiliz-

ing the locally risk-neutral valuation relationship Duan. (1995). This was furthered by

Heston and Nandi (2000) who developed a closed-form option pricing formula for an

asset whose variance follows a GARCH process and allows for correlation between

returns of the asset and variance as well as admits multiple lags in the dynamics of

the GARCH process. These models have been utilized by others researchers over time

with Hsieh and Ritchkeny (2005) particularly comparing the performance of these two

models. It was established that the Heston and Nandi Model model can explain a

significant portion of the volatility smile whereas the NGARCH model is superior in

removing biases from pricing residuals for all moneyness and maturity categories.

The Black-Scholes model is the most widely used model in pricing options. It was

originally designed to value options that can be exercised only at maturity and on un-

derlying assets that do not pay dividends. In practice, assets do pay dividends, options

sometimes get exercised early and exercising an option can affect the value of the un-

derlying asset. Adjustments to provide partial corrections to the Black- Scholes model

exist. This research primarily focusses on the American options which can be exercised

any time until expiration. To be able to use the Black-Scholes model it is thus neces-

sary to adjust the value of the option for the possibility of early exercise Damodaran

(2012). There are two approaches for doing so. One uses the Black-Scholes to value

the option to each potential exercise date. With options on stocks, this basically re-

quires that we value options to each ex-dividend day and choose the maximum of the

estimated call values. The second approach is to use a modified version of the binomial

model to consider the possibility of early exercise. In this version, the up and down

movements for asset prices in each period can be estimated from the variance and the

length of each period. In particular, we propose the use of the change-point estimator
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to locate the change-points of the asset prices which are assumed to be the early excer-

cise dates. Following the identified change-points, suitable GARCH(p,q) models are

fitted to model the period specific variance. Black-Scholes model is then applied.

2.5 Summary and Critique of Existing Literature

Reviewed literature reveal that the use of one model may not be appropriate to model

a non-stationary series and as such various change-point estimation methods have pro-

posed. These methods include the use of nonparametric estimation, transition function,

markov switching, dynamic programming and CUSUM test. These methods have their

pros as discussed in section 2.1. However, they are limited in different ways and their

suitability depend on the underlying assumptions. Some methods are based on the use

of local smoothed time-varying parameters where a smooth transition regression func-

tion is utilized. Where the transition function is linear, both the intercept and the slope

to change smoothly over time. However, this does take care of abrupt changes. In con-

trast the transition function is considered by some to be a polynomial. In such cases the

local polynomial estimators of the parameter functions are not guaranteed to be non-

negative. When considering the Markovian switching estimation, the regimes are un-

observable thus one needs to integrate over all possible regime paths when computing

the likelihood function. However, the number of possible paths grows exponentially

with t, rendering the likelihood evaluation unfeasible. Bayesian approaches to change-

point detection are also prone to the shortconing that require the specication of priors

on the number and position of change points and the parameter vectors θi between any

two change points. The latter can be specied to allow for a specic type of change, that

is, in only one element of θi. The CUSUM test are focus on univariate processes with

changes in the mean only or variance only. The assumption of changes occurring in

the mean only can yield severe distortions, even in from a detection point of view. In

a similar manner as with the change in mean-only case, if the assumption of changes
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occurring only in the variance is inappropriate the consequences can be substantial. In

addition, the CUSUM tests have different powers against change-points that have the

same magnitudes but occur at different time points. In conclusion, it is arguably that

most change-point detection tests focus on changes in parameter values while others

are not particular on the data generating mechanisms. This research particularly seeks

to estimate change-points assuming that GARCH model is data generating mechanism

and that change occurs particularly in the model order specification.
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Chapter 3

METHODOLOGY

This chapter discusses concepts required for the achievement of results.

3.1 GARCH Model

3.1.1 Model Definition

In this section we start with a definition of GARCH processes based on the first two

conditional moments, the ARCH (∞), the ARMA(max(p,q),q) and the Stochastic Dif-

ferential Equations (SDE). The various model definitions are utilized in the proof of

results in the methodology.

Definition (GARCH(p,q) Process) A process (Xt)t∈N is called a GARCH(p,q) pro-

cess if its first two conditional moments exist and satisfy:

(i) E (Xt | Xu,u < t) = 0 for t ∈ Z

(ii) There exist constants α0 > 0,αi≥ 0, i= 1, · · · , pand β j ≥ 0, j = 1, · · · ,q such that
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σ
2
t = Var (Xt | Xu,u < t)

= α0 +
p

∑
i=1

αiX2
t−i +

q

∑
j=1

β jσ
2
t− j

(iii) Let εt be an independent and identically distributed sequence with zero mean and

unit variance εt ∼ iid (0,1), then

Xt = σtεt f or t ∈ Z

σ
2
t = α0 +

p

∑
i=1

αiX2
t−i +

q

∑
j=1

β jσ
2
t− j (3.1)

Definition (GARCH(p,q) as ARMA(max(p,q),q)) Bollerslev (1986) showed that the

GARCH(p,q) model (3.1) can also be represented as an ARMA(max(p,q),q) written

X2
t −

p

∑
i=1

αiX2
t−i−

q

∑
j=1

β jX2
t− j = α0 +ut−

q

∑
j=1

β jut− j f or t ∈ Z (3.2)

where ut = X2
t −σ2

t and (ut)t∈Z is white noise

Definition (GARCH(p,q) as SDE) By iterating the defining difference equation (3.1)

for σ2
t the GARCH model can be further expressed as a stochastic differential equation

as follows:
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Let Yt =



σ2
t+1
...

σ2
t−q+2

X2
t

X2
t−p+1


, At =



α1ε2
t +β1 β2 · · · βq−1 βq α2 α3 · · · αp

1 0 · · · 0 0 0 0 · · · 0

0 1 · · · 0 0 0 0 · · · 0
...

... . . . ...
...

...
... . . . ...

0 0 · · · 1 0 0 0 · · · 0

ε2
t 0 · · · 0 0 0 0 · · · 0

0 0 · · · 0 0 1 0 · · · 0
...

... . . . ...
...

...
... . . . ...

0 0 · · · 0 0 0 0 1 0



,

Bt =

(
α0 0 · · · 0

)′
then (Yt) satisfies the following stochastic differential equa-

tion

Yt = AtYt−1 +Bt f or t ∈ N (3.3)

Theorem 1. (Strictly Stationary)

A necessary and sufficient condition for the existence of a strictly stationary solution

to the GARCH(p,q) model (3.1) is the negativity of the top Lyapunov exponent γ given

by

γ =
in f

n≥ 1
n−1E log ||An · · ·A1||< 0 (3.4)

where γ is the top Lyapunov exponent of the sequence At , t ∈ Z defined by (3.3).

Proof. The proof of this theorem can be found as Theorem 2.4 in Francq and Zakoian

(2011).

When the strictly stationary solution exists, it is unique, nonanticipative and ergodic.

According to (Bougerol and Picard, 1992) γ cannot be calculated explicitly but a suf-

ficient condition for γ < 0 is given by
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p

∑
i=1

αi +
q

∑
j=1

β j < 1 (3.5)

Following the works of (Bougerol and Picard, 1992), when p = q = 1 in models (3.1)

the Lyapunov exponent is obtained as

At =
(
ε

2
t ,1
)
(α1,β1)

AtAt−1 · · ·A1 =
t−1

∏
i=1

(
α1ε

2
t−i +β1

)
At

log‖AtAt−1 · · ·A1‖ =
t−1

∑
i=1

log
(
α1ε

2
t−i +β1

)
+ log‖At‖

γ = E log
(
α1ε

2
t−i +β1

)
(3.6)

Thus the necessary and sufficient condition for the strict stationarity in this case is

γ = E log
(
α1ε2

t +β1
)
< 0

Theorem 2. (Second-Order Stationarity)

If there exists a GARCH(p,q) process, in the sense of Definition (3.1), which is second-

order stationary and nonanticipative, and if α0 > 0, then

p

∑
i=1

αi +
q

∑
j=1

β j < 1 (3.7)

Conversely, if (3.7) holds, the unique strictly stationary solution of model (3.1) is a

weak white noise and thus is second-order stationary.

Proof. The proof of this theorem can be found as Theorem 2.5 in Francq and Zakoian

(2011).

Since the conditions in Theorems 1 and 2 are necessary and sufficient, we necessarily

have
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[
p

∑
i=1

αi +
q

∑
j=1

β j < 1

]
⇒ γ < 0 (3.8)

This is in line with (Bougerol and Picard, 1992), who indicate that the sufficient con-

dition for γ < 0 is given by (3.7) since the Lyapunov exponent γ cannot be calculated

explicitly.

3.1.2 Model Order Identification

Order determination is based on inspection of the sample autocorrelations and partial

autocorrelations functions. To identify the orders of a GARCH (p,q) model (3.1), the

series
(
X2

t
)

t∈Z is first represented as an ARMA(p,q) as given in definition 3.2.

Beguin et al. (1980)propose the Corner Method as a suitable method for studying the

sample autocorrelation function and sample partial autocorrelation function patterns.

Let D(i, j) denote a j× j matrix whose determinant is denoted by ∆(i, j) where

D(i, j) =



ρi ρi−1 · · · ρi− j+1

ρi+1 ρi · · · ρi− j

...
...

...
...

ρi+ j−1 · · · ρi+1 ρi


(3.9)

Since ρh = 0 for all h > Q, then p and q are minimal orders if and only if

∆(i, j) = 0 ∀ i > q ∀ j > p

∆(i, p) 6= 0 ∀ i≥ q

∆(q, j) 6= 0 ∀ j ≥ p

(3.10)

The minimal orders p and q are thus characterized by the following table with × de-

noting non-zero entries:
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AR Order i
MA Order j

1 2 · · · q q+1 · · · · · · · · · · · ·
1 ρ1 ρ2 ρq ρq+1 · · · · · · · · · · · ·
...
p × × × × × ×

p+1 × 0 0 0 0 0
... × 0 0 0 0 0
... × 0 0 0 0 0
... × 0 0 0 0 0

Table 3.1: Corner Method Table

The orders p and q are thus characterized by a corner of zeros in Table 3.1 with the

entries obtained using the recursion on j given by

∆(i, j)2 = ∆(i+1, j)∆(i−1, j)+∆(i, j+1)∆(i, j−1) (3.11)

with ∆(i,0) = 1 ∆(i,1) = ρi

In practice however, we only have a finite number of onservations, say n. This results

into a finite number of sample autocorrelations ρ̂1, · · · , ρ̂n which allows for ∆̂( j, i) to

be computed for i ≥ 1, j ≥ 1 and i+ j ≤ n+ 1. Since ∆̂( j, i) consistently estimates

∆( j, i), the orders p and q are characterized by a corner of small values in Table 3.1.

It is thus prefable to consider Studentized statistics defined for i = −n, · · · ,n and j =

0, · · ·n− i+1 , by

t (i, j) =
√

n
∆̂( j, i)
σ̂

∆̂( j,i)
(3.12)

σ̂
2
∆̂( j,i) =

∂ ∆̂( j, i)
∂ρ

′
n

Σ̂ρ̂n

∂ ∆̂( j, i)
∂ρ

′
n

(3.13)

where Σ̂ρ̂n is a consistent estimator of the asymptotic covariance matrix of the first n
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SACRs. When ∆(i, j)= 0 the statistic t (i, j) asymptotically follows a Standard Normal

distribution. In contrast, however, when ∆(i, j) 6= 0 the
√

n |t (i, j)| → ∞ almost surely

as n→ ∞. The hypothesis ∆(i, j) = 0 is thus rejected at α if |t (i, j)| > Φ−1 (1− α

2

)
.

The detection of a corner of small values in the Table 3.1 if no entry in this corner is

greater than
(
1− α

2

)
quantile in absolute value.

3.1.3 Model Parameters Estimation

Assume that the observations X1, · · · ,Xn constitute a realization of length n of a GARCH(p,q)

process (3.1). Assume that the orders p and q are known. The vector of parameters

θ =
(
θ1, · · · ,θp+q+1

)′
=
(
α0,α1, · · · ,αq,β1, · · · ,βp

)′
belongs to a parameter space of

the form Θ⊂ (0,∞)× (0,∞)p+q,

The true value of the parameter is unknown, and is denoted by θ0 =
(
α00,α01, · · · ,α0q,β01, · · · ,β0p

)′
.

To enable us write a likelihood function for this model we make the following assump-

tion

Assumption 1. (Independence)

(i) ε ′t s are independent and under H0 identically distributed with zero mean and a

variance of one

(ii) X ′t s are independent of the ε ′t s for 1≤ t ≤ n

Then it follows that :

Ln (θ) = Ln (θ ;X1, · · · ,Xn) =
n

∏
t=1

1
σt
√

2π
exp
(
− X2

t

2σ2
t

)
(3.14)

A Quasi Maximum Likelihood Estimator (QMLE) of θ is the measurable solution θn

of θ̃n = arg max
θ∈Θ

Ln (θ)

The log-likelihood function of the parameter vector θ ∈Θ is given by
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lt (θ) =
(

ln σ
2
t −

X2
t

σ2
t

)
(3.15)

Maximizing the likelihood is equivalent to minimizing, with respect to θ

In (θ) = n−1
n

∏
t=1

lt (3.16)

Thus the QMLE of θ is the measurable solution θ̂ = argmin
θ∈Θ

In (θ)

Assumption 2. (i) θ0 ∈Θ and Θ is compact.

(ii) γ (A0)< 0 and for allθ ∈Θ, and Θ is compact ∑
q
j=1 β j < 1.

(iii) ε2
t has a nondegenerate distribution and E

(
ε2

t
)
= 1

(iv) κn = E
(
ε4

t
)
< ∞

Theorem 3. Under assumptions 1 and 2, the QMLE is aymptotically normal

√
n
(
θ̂n−θ0

)
→ N

(
0,(κn−1)J−1) (3.17)

where J is a positive definite matrix specified as

J = Eθ0

(
∂ 2lt (θ0)

∂θ∂θ
′

)
= Eθ0

(
1

σ4
t (θ0)

∂ 2σ2
t (θ0)

∂θ

∂ 2σ2
t (θ0)

∂θ
′

)
(3.18)

Proof. The proof of this theorem can be found as Theorem 7.2 in Francq and Zakoian

(2011).

3.1.4 Testing for Second-Order Stationarity

Testing for second-order stationarity of the GARCH(p,q) model involves testing
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H0 :
p

∑
i=1

α0i +
q

∑
j=1

β0 j < 1 against H1 :
p

∑
i=1

α0i +
q

∑
j=1

β0 j ≥ 1 (3.19)

Suppose that c = (0,1, · · · ,1)
′
∈Rp+q+1 then the hypothesis (3.19) to be tested can be

represented as

H0 : c
′
θ0 < 1 against H1 : c

′
θ0 ≥ 1 (3.20)

Following Theorem 3, we have that

√
n
(

c
′
θ̂n− c

′
θ0

)
→ N

(
0,(κn−1)c

′
J−1c

)
(3.21)

An appropriate stationarity test for the hypothesis is the Wald Statistic Tn

Tn =

√
n
(

α0i +∑
q
j=1 β0 j−1

)
√(

(κn−1)c′J−1c
) (3.22)

which converges to a Standard Normal distribution when c
′
θ0 = 1. Assuming an α

level of significance, the corresponding rejection region is Tn > Φ−1 (1−α).

3.1.5 Testing for Significance of GARCH Coefficients

Assumption 3. E (X)6 < ∞

Theorem 4. Under Assumptions 1 and 3, the asymptotic distribution of
√

n
(
θ̂n−θ0

)
is λΛ where λ Λ = arg in f

λ∈Λ

(λ −Z)
′
J (λ −Z)

′
with Z ∼ N

(
0,(κn−1)J−1).

Proof. The proof of this theorem can be found as Theorem 8.1 in Francq and Zakoian

(2011).

Assume that θ
(1)
0 > 0 and consider the hypothesis testing problem
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H0 : θ
(2)
0 = 0 against H1 : θ

(2)
0 6= 0 (3.23)

Following Theorem 4 and under H0 we have that

√
nθ̂

(2)
n

d→ Kλ
Λ, K = (0d1×d2 , Id2) (3.24)

The Wald test is used to examine the hypothesis (3.23) where the Wald Statistic Wn is

defined as

Wn = nθ̂
(2)
′

n

(
KΣ̂K

′
)−1

θ̂
(2)
n (3.25)

where Σ̂ is a consistent estimator of Σ = (κn−1)J−1.

At the asymptotic level of significance α , the rejection region is Wn > χ2
d2
(1−α),

where χ2
d2
(1−α) is the (1−α) quantile of the χ2 distribution with d2 degrees of

freedom.

3.2 Change-Point Detection

The detection of structural changes in macroeconomic and financial time series is cru-

cial for prudent statistical inference, forecasts, and sensible policy implications to be

drawn from any underlying model. In particular, ignoring these structural changes may

lead to spurious persistence in the conditional volatility dynamics. Here, methods of

structural changes in volatility detection of GARCH models are considered.

Definition Let X=X1, · · · ,Xn be a sequence of independently distributed random vari-

ables. A change-point as the point k ∈ (1,n) at which the data generating mechanism

of X changes.

In the presence of a single change-point k, X can be segmented into two parts with

different GARCH (p,q)model specifications. Various scholars have dedicated their re-

search work to examining and creating methods of detecting these changes. Frequently,
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change in model specification has been attributed to change in parameter specifica-

tion. This has bore tests that examine change-points for abrupt structural breaks while

others check for smooth structural changes in parameters. However, the structural

changes could also be attributed to change in model order specification. Change-point

detection entails testing the null hypothesis H0 against the alternative hypothesis H1.

Particularly we consider that H0 postulates that the model order specification does

not change throughout the whole time period. H1 postulates that the model order re-

mains unchanged as in H0 up to a certain unknown time point k when the model order

changes. The objective of change-point detection is to create an estimator for the pos-

sible change-point k given set of random variables.

Assume that the set of random variables given by the data {Xt}n
t=1 describes a finan-

cial returns time series modeled using GARCH (p,q) process. A single change-point

testing problem is first considered where it is assumed that a change-point can happen

only at time k where 1 < k < n−1. The hypotheses to be investigated are assumed to

follow the following definition:

H0 : Xt ∼ GARCH (1,1) f or t = 1, · · · ,n

against

H1:Xt ∼


GARCH (1,1)

GARCH (p,q)

f or t = 1, · · · ,k

f or t = k+1, · · · ,n

where p,q ∈N\{0} (3.26)

Location of change-points can be investigated using a segmentation approach which

aims at discretization to accurately approximate a time series. The general approach

begins by segmenting a time series into subsequences and to then choosing a prim-

itive shape patterns which represent the original time series best. There exist two

segmentation procedures for a possible change-point namely hierarchical divisive and

agglomerative algorithms.
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3.3 Adjusted Rand Index

The performance of the proposed test is evaluated by measuring the degree of simi-

larity between the correct classification and the resultant segmented clusters following

identified change-point positions. This is achieved by the use of the Adjusted Rand

Index (ARI) lies between 0 and 1. When the two partitions agree perfectly, the ARI

is 1. Let X be a set representing a time series with finite cardinality |X| = n. A clus-

tering C is a set
{

C1,C2, · · · ,Cq
}

of non-empty disjoint subsets of X such that their

union equals X. Let P (X) denote the set of all clusterings of X. For a clustering C

we assume |Ci|> 0 for all i = 1, · · · , l. Let C′ =
{

C
′
1,C

′
2, · · · ,C

′
r

}
∈P (X) denote the

second clustering of X. C′ is a refinement of C implying that C is coarser than C′ such

that the following is true: ∀C′j ∈C′∃Ci ∈C implying C
′
i ⊆Ci. Let M =

(
mi j
)

be a q×r

confusion matrix of the pair C,C′with the i. j− th element being equal to the number

of elements in the intersection of the clusters Ci and C
′
j such that:

mi j = |Ci∩C
′
j|, 1≤ i≤ q, 1≤ j ≤ r (3.27)

To compare clusterings, we utilize the approach of counting pairs that are classified in

the same way in both clusterings, that is, pairs of elements of X that are in the same

cluster (in different clusters, respectively) under both clusterings. The set of all pairs

of elements of X is the disjoint union of the following sets: S11={pairs that are in the

same clusters under C and C′}, S00={pairs that are in the different clusters under C and

C′}, S10={pairs that are in the same cluster under C but in different ones under C′} and

S01={pairs that are in different clusters under C but in the same under C′}. Let nab :=

|Sab| for a,b ∈ {0,1} denote the repective sizes; then n11 +n00 +n10 +n01 =

 n

2


Specifically, the performance of the proposed test is compared to the reviewed exist-

ing methods using the Adjusted Rand index (ARI) as specified by Hubert and Arabie

Hubert and Arabie (1985) and Fowlkes and Mallows Fowlkes and Mallows (1983).
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Fowlkes and Mallows introduced their index as a measure for comparing hierarchical

clusterings where the degree of similarity of two clusterings corresponds to the devia-

tion from the expected value under the null hypothesis of independant clusterings with

fixed cluster sizes. The index is given by:

RFM

(
C,C

′
)
=

q
∑

i=1

r
∑
j=1

m2
i j−n√√√√( q

∑
i=1
|Ci|2−n

)(
r
∑
j=1

∣∣C′i∣∣2−n

) (3.28)

Under this index, the null hypothesis, is that clusterings are independent. This is how-

ever violated in reality as it would be against the intuition to compare two clusterings

when assuming that there is no relationship between them since we compare cluster-

ings because we suppose a certain relationship and want to know how strong it is.

Hubert and Arabie (ARI) relaxes this assertion and assumes a generalized hypergeo-

metric distribution as null hypothesis where the two clusterings are drawn randomly

with a fixed number of clusters and a fixed number of elements in each cluster though

the number of clusters in the two clusterings need not be the same. It is considered to

be the normalized difference of the Rand Index and its expected value under the null

hypothesis and defined as follows:

RHA

(
C,C

′
)
=

q
∑

i=1

r
∑
j=1

 mi j

2

− 2
n(n−1)

 q
∑

i=1

 |Ci|

2

 r
∑
j=1


∣∣∣C′j∣∣∣

2




1
2

 q
∑

i=1

 |Ci|

2

+
r
∑
j=1


∣∣∣C′j∣∣∣

2


− 2

n(n−1)

 q
∑

i=1

 |Ci|

2

+
r
∑
j=1


∣∣∣C′j∣∣∣

2




(3.29)
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3.4 Lp Space

When time is modelled as a sequence of discrete dates, then financial time series are

sequences of real numbers. An important family of sequences that is utilized to char-

acterize financial time series in this work is the family of Lp spaces. To facilitate the

construction of the proposed change-point estimator we make the following defini-

tions.

Definition (Lp
w Space) Let I be a finite or countably index set. Let w : I → [0,∞).

Given a sequence of scalars X = (Xi)i∈I , set

||X ||p,w =


(

∑
i∈I
|Xi|pwp

i

) 1
p

0 < p < ∞

sup |Xi|wi p = ∞

(3.30)

Then we set weighted Lp
w space as

Lp
w (I) =

{
X = (Xi)i∈I : ‖X‖p,w < ∞

}
(3.31)

The Lp
w space is characterized by several useful propoerties as outlined in the subse-

quent theorems. These properties are used in the proof of theoretical results.

Theorem 5. For 0 < p < ∞, the space Lp is a vector space.

Proof. If f and g are each in Lp and let c be a constant, then

(i) Lp is closed under scalar multiplication

|c f |p ≤ cp | f |p (3.32)

(ii) Lp is closed under addition

| f +g|p ≤ [2(| f |∨ |g|)]p ≤ 2p (| f |p + |g|p) (3.33)
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Thus f +g is also in Lp Faris (2004).

Theorem 6. For 0 < p < ∞, the space Lp is complete.

Proof. Suppose that
∞

Σ
j=1

f j is absolutely convergent in Lp, then

∞

∑
j=1

∥∥ f j
∥∥

p = B < ∞ (3.34)∥∥∥∥∥ ∞

∑
j=1

∣∣ f j
∣∣∥∥∥∥∥

p

≤
∞

∑
j=1

∥∥ f j
∥∥

p ≤ B (3.35)

By the monotone convergence theorem h=
∞

Σ
j=1

∣∣ f j
∣∣ is in Lp with Lp semi-norm bounded

by B. In particular, it is convergent almost everywhere. It follows that the series
∞

Σ
j=1

f j

converges almost everywhere to some limit g. The sequence
k
Σ

j=1
f j is dominated by

h in Lp and converges pointwise to
∞

Σ
j=1

f j. Therefore, by the dominated convergence

theorem, it converges to the same limit g in Lp semi-norm Faris (2004).

Theorem 7. (Schwarz inequality)

Let u,v be vectors in the vector space in Lp, then it follows that

|〈u,v〉| ≤ ‖u‖‖v‖ (3.36)

Proof. The proof of this theorem can be found as Theorem 2.1 in Faris (2004).

Theorem 8. (Triangle inequality)

Let u,v be vectors in the vector space in Lp, then it follows that

‖u+ v‖ ≤ ‖u‖+‖v‖ (3.37)
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Proof. The proof of this theorem can be found as Theorem 2.2 in Faris (2004).

Theorem 9. (Reverse Triangle inequality)

Let u,v be vectors in the vector space in Lp, then it follows that

‖u‖−‖v‖ ≤ ‖u− v‖ (3.38)

Proof. Let u = (u− v)+ v. Taking norms and applying the Triangle inequality (3.37)

yields

‖u‖ = ‖(u− v)+ v‖

≤ ‖u− v‖+‖v‖

‖u‖−‖v‖ ≤ ‖u− v‖ (3.39)

Theorem 10. (Holder’s Inequality) Let I be a finite or countable index set. Given

1 ≤ p ≤ ∞, if X = (Xk)k∈I ∈ Lp (I) and Y = (Yk)k∈I ∈ Lp
′
(I), where 1

p +
1
p′
= 1 then

XY = (XkYk)k∈I ∈ L1 (I) and

||XY ||1 ≤ ||(Xk)k∈I ||p ||(Yk)k∈I ||p′ =

(
∑
k∈I
|Xk|p

) 1
p
(

∑
k∈I
|Yk|p

′
) 1

p′

< ∞ (3.40)

Proof. The proof of this theorem can be found as Theorem 1.2.9 in Okikiolu (1971).

Definition (Absolutely Convergent Series) Let X be a normed space and let { fn}n∈N

be a sequence of elements of X . If
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∞

∑
n=1
‖ fn‖< ∞ (3.41)

then we say that the series ∑n fn is absolutely convergent in X .

3.5 Point Process Theory

Point process techniques are utilized in obtaining the structure of limit variables and

limit processes which occur in the theory of summation in time series analysis. By

utilizing the point process theory as developed by (Kallenberg, 1983), consider the

state space of the point processes S = R̄n where R̄n = R∪{∞}∪{−∞}. Let B be the

collection of Borel sets bounded away from the origin in Rn \{0}. Let the number of

points of Xi belonging to B ∈B be denoted by

|{Xi ∈ S : i ∈ I}∩B|= ∑
i∈I

εXi (B) (3.42)

where εX (B) =


1 f or Xi ∈ B

0 f or Xi /∈ B
is a Dirac measure. A point measure µ repre-

senting the observed points Xi, i ∈ I on the σ − f ield B is given by

µ = ∑
i∈I

εXi (3.43)

Write M for the space of point measures on Rn \{0} such that M ≡M (S,B). Con-

sider subspaces indicated by certain indices so that we have My ⊂M being a col-

lection of measures µ such that µ ({X : |X |> y}) > 0 so that M0 = M \ {0}. De-

fine M f = ∪i∈IN0Mi as finite point measures which include the zero measure. Let

IN0 := IN∪{0} and ¯IN0 := IN0 ∪{∞}. Since µ may be identified with (µ (B))B∈B

then πB such that πB : M → IN0 or πB : µ → µ (B) is a projection with index B. The

σ − f ield M ≡M (S,B) introduced by M is the smallest one such that the projec-
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tions πB are measurable. Thus M is a σ− f ield generated by sets of the form π
−1
B (C),

that is,

M := σ ({πB : B ∈B}) = σ
({

π
−1
B (c) : B ∈B,C ⊂ ¯IN0

})
(3.44)

Let (Ω ,A ,P)be a probability space on which the random variables are defined, the

mapping

N : Ω →M (S,B) (3.45)

is called a Point process on (S,B)if it is measurable with respect to A and M (S,B)

meaning that N is a random point measure on (S,B). X1, · · ·Xn can be represented by

point process

Nn =
n

∑
i=1

εXi (3.46)

Consider g : (S,B)→ (T,C) to be a measurable mapping. Observing g(Xi) instead of

Xi can be rephrased in terms of point processes by having point measure defined as

∑
i∈I

εg(Xi) such that

∑
i∈I

εg(Xi) =∑
i∈I

1c (g(Xi)) =∑
i∈I

εXi

(
g−1 (c)

)
= (gu)(c) (3.47)

thus the mapping g∗ : M (S,B)→M (T,C) can be defined as g∗ (µ) := gµ such that

for a point process N on (S,B)we obtain another point process g∗ (N)on (T,C) if g∗ is

a measurable mapping.

To facilitate the characterization of point processes, define the intensity measure ν (B)

also known as the mean measure which denotes the expected number of points in the

set B as ν (B) = E [N (B)]

The realisations of a point process N are point measures. Therefore the distribution

of N is defined on subsets of point measures. Consequently, the distribution of N is

uniquely determined by the family of the distributions of the finite dimensional random
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vectors (N (A1) , · · · ,N (Am)) for any choice of A1, · · · ,Am.

Theorem 11. (Uniqueness theorem) Let S be a system generating B and for i = 0,1

let

Ni : (Ω,A ,P)→ (M (S,B) ,M (S,B)) (3.48)

be point processes, where N0 is σ − f inite over S . Then the following assertions are

equivalent:

(i) N0
d
= N1

(ii) for every m ∈ IN and A1, · · · ,Am ∈S

(N0 (A1) , · · · ,N0 (Am))
d
= (N1 (A1) , · · · ,N1 (Am)) (3.49)

Proof. The proof of this theorem can be found as Theorem 1.1.1 in Reiss (1993).

The distribution of the of a random vector is described analytically by the use of the

Laplace transforms.

Definition (Laplace transform) The Laplace transform ΨX : [0,∞)n→ [0,1] of a real

valued [0,∞)n random vector X = (X1, · · · ,Xn) is defined by

ΨX (λ1, · · · ,λn) =

ˆ
exp

(
−

n

∑
i=1

λiXi

)

Definition (Laplace functional) The Laplace functional

ΨN :
{

g : (S,B)→
(
[0,∞), IB |[0,∞)

)}
→ [0,1] (3.50)
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of the point process N : (Ω,A ,P)→ (IM (S,B) ,M (S,B)) is defined for non-negative

measurable functions g on the state space S as

ΨN(g) = E exp
{
−
ˆ

g dN
}

=

ˆ
exp
{
−
ˆ

S
g(x) dµ (x)

}
dPN(µ) (3.51)

The Laplace functional ΨN determines the distribution of a point process uniquely. It

is also useful for studying the weak convergence of point processes. Suppose that the

real valued function g has compact support, that is, there exists a compact set K ⊂ S

such that g(x) on Kc the complement of K. Then we define

C+
K = {g : g is a continuous non−negative f unction on S with compact support g}.

Theorem 12. (Criterion for weak convergence of point processes via convergence of

Laplace functionals)

The point processes Nn converge weakly to the point process N if and only if the cor-

responding Laplace functionals converge for every g ∈C+
K as n→ ∞, that is

ΨNn (g) = E exp
{ˆ

S
g dNn

}
→ΨN (g) = E exp

{ˆ
S

g dN
}

(3.52)

Proof. The proof of this theorem can be found as Theorem 8.1.2 in Reiss (1993).

Consider a strictly stationary sequence (Xt)t∈N of random row vectors with values in

Rn, that is, X = (X1, · · · ,Xn). The characterization of the asymptotic behavior of the

tails of the random variable X are examined through the regular variation condition.

Theorem 13. (Regular Variation Condition)

In light of (Kesten, 1973) assume ε has a density with unbounded support, α0 > 0,

E
[
ln
(
α1ε2 +β1

)]
< 0, E

∣∣α1ε2 +β1
∣∣ p

2 ≥ 1 and E |ε|p ln |ε|< ∞ for some p > 0 holds,

then:
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(i) there exist a number κ ∈ (0, p] which is a unique solution of the equation

E
[(

β1 +α1ε
2
n
)κ/2

]
= 1 (3.53)

and there exist a positive constant c0 = c0 (α0,α1,β1) such that

P(σ > x)∼ c0x−κ as x→ ∞ (3.54)

(ii) If E |ε|κ+ξ < ∞ for some ξ > 0, then

P(|X |> x)∼ E |ε|
κ

P(σ > x) (3.55)

and the vector (X ,σ) is jointly regularly varying such that

P(|X ,σ |> xt,(X ,σ)/ |X ,σ | ∈ B)
P(|X ,σ |> t)

v

−→
x−κP(Θ ∈ B)

where
v

−→
denotes vague convergence on the Borel σ− f ield of the unit sphere

S1of R2, relative to the norm |· | with

P(Θ ∈·) =
E |(ε,1)|κ I{(ε,1)/|(ε,1)|∈·}

E |(ε,1)|κ
(3.56)

Proof. Following the works of (Kesten, 1973) and (Breiman, 1965), assume ξ and

η are independent non-negative random variables such that P(ξ > x) ∼ L(x)x−κ for

some slowly varying function L and Eηκ+ε < ∞ for some ε > 0, then P(nξ > x) ∼

EηκP(ξ > x) as x→ ∞.

Applying Theorem 13 yields
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P(|X ,σ |> xt,(X ,σ)/ |X ,σ | ∈ B) = P(σ |ε,1|> xt,(ε,1)/ |ε,1| ∈ B)

= P
(
σ |ε,1| I{(ε,1)/|ε,1|∈B} > xt

)
∼ E |ε,1|κ I{(ε,1)/|ε,1|∈B}P(σ > xt)

∼ E |ε,1|κ I{(ε,1)/|ε,1|∈B}x
−κP(σ > t)(3.57)

also

P(|X ,σ |> t) = P(σ |ε,1|> t)

∼ E|ε,1|κP(σ > t) (3.58)

which completes proof.

Theorem 14. (Strongly Mixing Condition)

Let (an) be a sequence of positive numbers such that

nP(|X |> an)→ 1 (3.59)

The sequence (an) can be chosen as the
(
1−n−1)− quantile of |X |. Since |X | is

regularly varying, an = n
1
α L(n) for slowly varying function L(x). The condition (3.59)

holds for (Xt) if there exists a sequence of positive integers (rn) such that rn −→ ∞,

kn = [n/rn]−→ ∞ as n−→ ∞ and

E

[
exp

{
−

n

∑
t=1

f (Xt/an)

}]
−

(
E

[
exp

{
−

rn

∑
t=1

f (Xt/an)

}])kn

→ 0 as n−→∞,∀ f ∈Fs

(3.60)
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Proof. For proof of this theorem see Davis and Mikosch (1998).

The condition (3.60) implies by the strong mixing condition of the stationary sequence

(Xt)Davis and Mikosch (1998). This condition ensures convergence of the Laplace

functional form outlined in Theorem 3.5.

Assume that the joint regular variation in Theorem 13 and strongly mixing conditions

in Theorem 14 are satisfied for a stationary sequence (Xt), then, the statement can be

made for the weak convergence of the sequence of point processes

Nn =
n

∑
t=1

εXt/an, n = 1,2, · · · (3.61)

Theorem 15.

Assume that (Xt) is a stationary sequence of random vectors for which all finite-

dimensional distributions are jointly regularly varying index κ > 0. To be specific,

let θ−m, · · · ,θm be the (2m+1)n−dimensional random row vector with values in the

unit sphere
(

S(2m+1)n−1
)

, m ≥ 0. Assume that the strongly mixing condition for (Xt)

and that

lim
m→∞

lim
n→∞

sup P

(
rn∨

t=1

|Xt |> any | |X0|> any

)
= 0, y > 0, (3.62)

Then the limit

γ = lim
m→∞

E
(
|θ (m)

0 |κ −
∨m

j=1 |θ
(m)
j |κ

)
+

E|θ (m)
0 |κ

exists and is the extremal index of the sequence (|Xt |).

(i) If γ = 0, then Nn
d→ o

(ii) If γ > 0, then Nn
d→ N d

= ∑
∞
i=1 ∑

∞
j=1 εPiQi j
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where ∑
∞
i=1 εPi is a Poisson process on R+with Pi describing the radial part of the

points and ∑
∞
j=1 εQi j is a sequence of independent and identically distributed point pro-

cesses with Qi j decribing the spherical part and a joint distribution Q on
(
M̃,B

(
M̃
))

,

where Q is the weak limit of

Q = lim
m→∞

E
(∣∣∣θ (m)

0

∣∣∣κ −∨m
j=1

∣∣∣θ (m)
j

∣∣∣κ)
+

I
(

∑|t|≤m ε
θ
(k)
t

)
E
(
|θ (m)

0 |κ −∨m
j=1|θ

(m)
j |κ

)
+

Proof. For proof of this theorem see Davis and Hsing (1995).

Define

Ñn =
mn

∑
i=1

Ñrn,i, i = 1,2, · · · ,mn (3.63)

where Ñrn,i are independent and identically distributed as Ñrn,0 = ∑
rn
t=1 εXt/an . It there-

fore follows from Theorems 3.5, 14 and 15 that (Nn) converges weakly if and only

if Ñn does and they have the same limit N. N is identical in law to the point process

∑
∞
i=1 ∑

∞
j=1 εPiQi jwhere ∑

∞
i=1 εPi is a Poisson process R+with Pi describing the radial part

of the points and ∑
∞
j=1 εQi j is a sequence of independent and identically distributed

point processes with Qi j describing the spherical part and a joint distribution Q on(
M̃,B

(
M̃
))

.

We now consider the convergence of point processes which are products of random

variables, which forms the basis of the results on the weak convergence of sample

autocovariance and autocorrelation for stationary processes.

Theorem 16. Let (Xt) be a strictly stationary sequence such that (Xt)= ((Xt , · · · ,Xt+m))

satisfying the jointly regularly varying condition for some m ≥ 0 and further assume

that Theorem 15 hold, then:
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N̂n =
(
N̂n,h

)
h=0,··· ,m =

(
n

∑
t=1

εa−1
n XtXt+h

)
h=0,··· ,m

d

→
N̂ =

(
∞

∑
i=1

∞

∑
j=1

ε
P2

i Q(0)
i j Q(h)

i j

)
h=0,··· ,m

(3.64)

where the points Qi j =
(

Q(0)
i j , · · · ,Q(m)

i j

)
and Pi are as previously defined, N̂n and N̂ are

point processes on R̄\{0} meaning that points are not included in the point processes

if XtXt+h = 0 or Q(0)
i j Q(h)

i j = 0

Proof. For proof of this theorem we follow the works of Davis and Mikosch (1998)

who begin by showing the marginal convergence of N̂n,h to N̂h. For h = 0, · · · ,m define

the mapping T̂h : (X0, · · · ,Xm) ∈ R̄m+1 \{0} → X0Xh. Then N̂n,h = Nn ◦ T̂−1
h and N̂h =

N ◦ T̂−1
h with all the null points excluded from N̂n,h and N̂h. Let A1, · · · ,Ak be bounded

interval in R̄m+1 \ {0}. By application of Theorems 3.5 and 3.5 then convergence of

the finite-dimensional distributions is established as,

(
N̂n,h (A1) , · · · , N̂n,h (Ak)

) d→
(
N̂h (A1) , · · · , N̂h (Am)

)
(3.65)

We study the weak limit behaviour of the sample autocovariance and sample autocorre-

lation of a stationary sequence (Xt). Construct from this process the strictly stationary

n-dimensional processes (Xt) = ((Xt , · · · ,Xt+n)), n≥ 0. Define the sample autocovari-

ance function

γn,X (h) = n−1
n−h

∑
t=1

XtXt+h, h≥ 0 (3.66)

and the corresponding sample autocorrelation function

ρn,X (h) =
γn,X (h)
γn,X (0)

, h≥ 1 (3.67)
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Define the deterministic counterparts of the autocovariance and autocorrelation func-

tions as follows

γX (h) = EX0Xh, h≥ 0 (3.68)

ρX (h) =
γX (h)
γX (0)

, h≥ 1 (3.69)

Theorem 17. Assume that (Xt) is a strictly stationary sequence of random variables

and that for a fixed m ≥ 0, (Xt) satisfies the regular variation condition and Nn =

∑
n
t=1 εXt/an

d

→
N = ∑

∞
i=1 ∑

∞
j=1 εPiQi j where the points Qi j =

(
Q(0)

i j , · · · ,Q(m)
i j

)
and Pi

are as previously defined.

(i) If κ ∈ (0,2), then

(
na−2

n γn,X (h)
)

h=0,··· ,m
d

→
(Vh)h=0,··· ,m (3.70)

(ρn,X (h))h=1,··· ,m
d

→

(
Vh

V0

)
h=1,··· ,m

(3.71)

where

Vh =
∞

∑
i=1

∞

∑
j=1

P2
i Q(0)

i j Q(h)
i j , h = 0,1, · · · ,m (3.72)

The vector (V0, · · · ,Vm) is jointly κ/2 stable in Rm+1.

(ii) If κ ∈ (2,4) and for h = 0, · · · ,m

lim

ε → 0

lim sup

n→ ∞

Var

(
a−2

n

n−h

∑
t=1

XtXt+hI{|XtXt+h|≤a2
nε}

)
= 0, (3.73)
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then

(
na−2

n (γn,X (h)− γX (h))
)

h=0,··· ,m
d

→
(Vh)h=0,··· ,m (3.74)

which implies that

(
na−2

n (ρn,X (h)−ρX (h))
)

h=1,··· ,m
d

→
γ
−1
X (0)(Vh−ρX (h)V0)h=1,··· ,m (3.75)

Proof. Part (i) of Theorem 17 follows immediately from Theorem 16 and continous

mapping theorem 24. The convergence of γn,X in part (ii) is also a direct consequence

of Theorem 16. To prove (3.75) we express (3.74) as

γn,X (h) = γX (h)+Op
(
n−1a2

n
)

(3.76)

Since n−1a2
n → 0 as n→ ∞ and applying a Taylor series expansion to the function

f (x,y) = x
y , then ρn,X (h) can be expressed as

ρn,X (h) = ρX (h)+
γn,X (h)− γX (h)

γX (0)
−

(γn,X (h)− γX (h))γX (h)
γ2

X (0)
+Op

(
n−1a2

n
)

(3.77)

The result in (3.75) follows from immediate application of Continous Mapping and

Slutsky’s theorems on equation (3.77) resulting to (3.75).

Theorem 17 outlines the limit distributions of the sample autocovariance γn,X (h) and

sample autocorrelation functions ρn,X (h). When κ ∈ (0,2) the sample autocorrelations

have a constant limit only if Vh = ρhV0 for some constant ρh, otherwise the limit is

50



random. For κ ∈ (2,4), the sample autocorrelations has a random limit and Vh 6= ρhV0.

The limit distributions are however κ

2 −stable for κ ∈ (0,2) and regularly varying with

a rate of n1− 2
κ L(n) for κ ∈ (2,4) with some slowly varying function L.

3.6 Option Pricing

Here we outline the formulas for the option pricing.

3.6.1 Black-Scholes Option Pricing Model

Black-Scholes pricing model for an option on a non-dividend paying stock is as fol-

lows:

C = StN (d1)−Ke−r(T−t)N (d2) (3.78)

P = Ke−r(T−t)N (−d2)−StN (−d1) (3.79)

where d1 =
log
(

St
K

)
+
(
r+ 1

2σ2)(T − t)

σ
√

(T − t)

d2 = d1−σ
√

(T − t)

Where C is the price of a call option, P is the price of a put option, St is the spot price

of the underlying at time t, N(d1) is a standard normal random variable with the value

d1, K is the strike price, r is the risk-free rate, (T − t) is the time to maturity and σ is

the annualized volatility. The volatility for the Black-Scholes model is estimated to be

equal to annualized volatility of the underlying asset, that is, σ = sdRt

√
252 , where

sdRt is the standard deviation of the log-return series and 252 is the average number of

trading days in a year.
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3.6.2 Garman Kohlhagen Option Pricing Model

The Garman Kohlhagen model is an extension of Black–Scholes model and generally

used on a dividend paying stock with the prices for the call and put given in (3.78) and

(3.79) modified as:

C = Ste−q(T−t)N (d1)−Ke−r(T−t)N (d2) (3.80)

P = Ke−r(T−t)N (−d2)−Ste−q(T−t)N (−d1) (3.81)

where d1 =
log
(

St
K

)
+
(
r−q+ 1

2σ2)(T − t)

σ
√

(T − t)

d2 = d1−σ
√
(T − t)

The Garman Kohlhagen model is also extended to cater for two interest rates as in the

presence of currency options where (3.80) and (3.81) are modified as:

C = Ste−r f (T−t)N (d1)−Ke−rd(T−t)N (d2) (3.82)

P = Ke−rd(T−t)N (−d2)−Ste−r f (T−t)N (−d1) (3.83)

where d1 =
log
(

St
K

)
+
(
rd− r f + 1

2σ2)(T − t)

σ
√

(T − t)

d2 = d1−σ
√

(T − t)

Where C is the price of a call option, P is the price of a put option, St is the spot price

of the underlying at time t, q is the dividend rate, N(d1) is a standard normal random

variable with the value d1, K is the strike price, r is the risk-free rate, rd is the is

domestic risk free rate, rd is the is foreign risk free rate, (T − t) is the time to maturity

and σ is the annualized volatility. The volatility is estimated to be equal to annualized

volatility of the underlying asset, that is, σ = sdRt

√
252 , where sdRt is the standard
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deviation of the log-return series and 252 is the average number of trading days in a

year.

3.6.3 Heston and Nandi GARCH Option Pricing Model (HN-GARCH)

The Heston and Nandi GARCH option pricing models (HN−GARCH(p,q)) as devel-

oped by (Heston and Nandi, 2000) model is based on the assumption that the underly-

ing spot price (St) follows a GARCH process with the log-returns stochastic volatility

model defined as

Rt = ln
(

St

St−1

)
= r− 1

2
σ

2
t +σtzt (3.84)

where σ
2
t = α0 +

p

∑
i=1

αi (zt−i−λiσt−i)
2 +

q

∑
j=1

β jσ
2
t− j

zt |Ft−1
P∼ N(0,1)

They arrive at the risk-neutral GARCH (p,q) model and derive an almost closed-form

option pricing formula. They derive the following option pricing formula for the Eu-

ropean call option with strike price K that expires at time T:

C = 1
2 St+

e−r(T−t)
π

Re
[

K−iφ f∗(iφ+1)
iφ

]
dφ−Ke−r(T−t)

(
1
2+

1
π

Re
[

K−iφ f∗(iφ+1)
iφ

]
dφ

)
(3.85)

where Re[ ] denotes the real part of a complex number. f ∗ (iφ) is the conditional char-

acteristic function of the log asset price using the risk neutral probabilities. i is the

imaginary number,
√
−1. They also show that the conditional generating function of

the asset price under the physical measure takes the form for the GARCH(1,1) model

with σ2
t = α0 +∑

p
i=1 αi (zt−i−λiσt−i)

2 +∑
q
j=1 β jσ

2
t− j
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Chapter 4

CHANGE-POINT ESTIMATOR

4.1 Single Change-Point Estimator

Consider a financial time series modelled at discrete dates as a sequence of real num-

bers belonging to the Lp spaces. To facilitate the construction of the proposed change-

point estimator the properties inherent to the Lp spaces as outlined in the literature

review are utilized. Following Defintion (Lp
w Space) in Section 3.4, let I be a finite or

countably infinite index sequence. For p = 2, then L2 (I) consists of all sequences of

scalars X = (Xk)k∈I such that

||X ||2 = ||(Xk)k∈I ||2 =

(
∑
k∈I
|Xk|2

) 1
2

< ∞ (4.1)

Definition (Inner Product)

If X and Y are random variables in L2 then we define the inner product of X and Y by

〈X ,Y 〉= E (XY ) satisfying the following properties

(i) 〈X ,Y 〉= 〈Y,X〉

(ii) 〈X ,X〉 ≥ 0 and 〈X ,X〉= 0 if and only if P(X = 0) = 1 implying that X = 0

(iii) 〈aX ,Y 〉= a〈X ,Y 〉 for any constant a
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(iv) 〈X +Y,Z〉= 〈X ,Z〉+ 〈X ,Z〉

Definition (Expectation operator)

Let X and Y be random variables, then;

(i) by linearity of the expectation operator we have

E (X +Y ) = E (X)+E (Y ) (4.2)

(ii) by absolute value of inequalities of the expectation operator we have

|E (X) | ≤ E (|X |) (4.3)

Let I = N be a finite index sequence and (Xt)t∈N be a stationary time series. Let X =

(X1,X2, · · ·Xk) and Y = (X2,X3, · · · ,Xn−1) be a (n−1) dimensional vectors satisfying

Theorem 6 in Section 3.4. Consequently the subsequent Theorems 5, 3.4, 3.4 and 3.4

are satisfied. These Theorems are now applied to construct the proposed change-point

estimator.

By application of Theorem 3.4 on Holders inequality in we have that, for a finite and

countable index I if X = (Xk)k∈I ∈ L2 (I) and Y = (Yk)k∈I ∈ L2 (I), where 1
2 +

1
2 = 1

then XY = (XkYk)k∈I ∈ L1 (I) and

||XY ||1 ≤ ||(Xk)k∈I ||2 ||(Yk)k∈I ||2 =

(
∑
k∈I
|Xk|2

) 1
2
(

∑
k∈I
|Yk|2

) 1
2

< ∞ (4.4)

On application of the Schwartz inequality in Theorem 3.4 we can express the autoco-

variance and autocorrelation functions in terms of the inner product defined in Section

4.1 as

acovar 〈X ,Y 〉= 〈X−E (X) , Y −E (Y )〉 (4.5)
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acorr 〈X ,Y 〉=
〈

X−E (X)

sd(X)
,
Y −E (Y )

sd (Y )

〉
(4.6)

where sd(X) and sd(Y ) represents the standard deviation of X and Y respectively

which represents an L2 distance from the mean.

By the expectation operator previously defined in Section 4.1 we have that

E (|X | |Y |)≤
√

E (X2)
√

E (Y 2) (4.7)

thus, applying the result in (4.7) to (4.5) and (4.6) yields

|acovar (X ,Y ) | ≤ sd (X)sd (Y ) ∈ L1space (4.8)

|acorr (X ,Y ) | ≤ 1 ∈ L1space (4.9)

By the assumption that the series (Xt)t∈N is ergodic, then it is implied that the sample

moments converge in probability to the population moments. It therefore follows that

the sample autocovariance and autocorrelation converge in probability to the popula-

tion autocovariance and autocorrelation respectively.

Following (4.9) we can define a sequence of autocorrelation functions ρi+1, j where for

fixed i = 0, 1≤ j≤ n−1 and for fixed j = n, 1≤ i≤ n−1 to be such that we have two

subsequences ρ1 j =
(
ρ1,1,ρ1,2, · · · ,ρ1,k, · · ·ρ1,n−1

)
and ρin =

(
ρ2,n,ρ3,n, · · · ,ρk+1,n, · · · ,ρnn

)
where ρ1,k and ρk+1,n denote the autocorrelation of the sequence

{
X2

t
}k

t=1 and
{

X2
t
}n

t=k+1

for 1≤ k ≤ n.

Assumption 4. In this work, it will be assumed that the autocorrelation function is

bounded such that 0.05≤
∣∣ρi, j

∣∣≤ 1.

We propose a change-point process Dk
n quantifying the deviation between ρ1,k and

ρk+1,n using a divergence measure motivated by the weighted Lp distance, with k de-
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noting the change-point. For p > 0 we define

Lp
(
ρ1,k−ρk+1,n

)
=

(
n

∑
k=1

wk|φ k−φk+1|p
) 1

p

(4.10)

where

φk =
∑

k−h
t=1 X2

t X2
t+h

∑
k
t=1 X4

t
f or

0 < k < n

0 < h < n

Specifically, we assume the case when p = 1 in (4.10) hence the Manhattan distance.

Applying the Reverse Triangle inequality in Theorem 3.4 and by linearity and absolute

value of inequalities of the expectation operator we have

L1
(
ρ1,k−ρk+1,n

)
=

(
n

∑
k=1

wk|φ k−φk+1|

)
= E (wk|φ k−φk+1|)

≥ wk |E (φ k)−E (φ k+1)| (4.11)

To facilitate the construction of the proposed estimator the lower bound of the diver-

gence measure L1
(
ρ1,k−ρk+1,n

)
is assumed. Further assume that the autocorrelation

function is calculated at lag h : 0 < h < n. The proposed change-point estimator is thus

developed from the process generated by this measure as follows:

wk |E (φ k)−E (φ k+1)|= wk

∣∣∣∣∣1k k

∑
i=1

φ i−
1

n− k

n

∑
i=k+1

φi

∣∣∣∣∣ (4.12)

From (4.12) it can be seen that the proposed change-point process is a weighted differ-

ence between the sample autocorrelation functions φ1,k and φk+1,n with wk denoting

the weight. The weight wk is a measurable function that depends on the sample size n

and change-point k. It is arbitrarily chosen such that it satisfies the condition that
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k

∑
i=1

φi =
k
n

n

∑
i=1

φi

⇒ 1
n

(
k

∑
i=1

φi−
k
n

n

∑
i=1

φi

)
= 0 (4.13)

Equating (4.12) and (4.13) determines the weight wk as follows:

wk

(
1
k

k

∑
i=1

φ i−
1

n− k

n

∑
i=k+1

φi

)
=

1
n

(
k

∑
i=1

φi−
k
n

n

∑
i=1

φi

)

=
1
n

(
k

∑
i=1

φi−
k
n

k

∑
i=1

φi−
k
n

n

∑
i=k+1

φi

)

=
1
n

([
1− k

n

] k

∑
i=1

φi−
k
n

n

∑
i=k+1

φi

)(
k
k

)(
n− k
n− k

)

=
k
n

(
1− k

n

)(
1
k

k

∑
i=1

φ i−
1

n− k

n

∑
i=k+1

φi

)

⇒ wk =
k
n

(
1− k

n

)
(4.14)

The resultant change-point process is obtained from (4.12) and (4.14) and defined as

Dk
n =

k
n

(
1− k

n

)∣∣∣∣∣1k k

∑
i=1

φ i−
1

n− k

n

∑
i=k+1

φi

∣∣∣∣∣ (4.15)

Since the autocorrelation functions ρ1,k and ρk+1,n are each in L1 as shown in (4.9)

then by application of Theorem 5 where the Lp is closed under scalar multiplication

and addition, it is implied that the divergence measure L1
(
ρ1,k−ρk+1,n

)
specified in

equation (4.10) is also in L1 and thus the change-point process Dk
n also belongs to the

L1 space. On application of Theorem 6 L1 is complete and under Assumption 4 we can

conclude that Dk
n has a supremum.

The change-point estimator k̂ of a change-point k∗ is the first point at which there is

maximal sample evidence for a break in the sample autocorrelation function of the

58



squared returns process. It is therefore estimated as the least value of k that maximizes

the value of Dk
n where 1 < k < n is chosen as:

k̂ = min
{

k : Dk
n = max

1<k<n

∣∣∣Dk
n

∣∣∣} (4.16)

4.2 Multiple Change-Point Estimation

The proposed change-point estimator k̂ , see equation (4.16), is designed for a sin-

gle change-point detection. This can be extended to allow for multiple change-points

through binary segmentation procedure. Let Ii = {1,k1, · · · ,kn,n} denote the partition

of the interval [1,n] into sub-intervals [1,k1],· · · ,[kT−1,kT ],[kn,n] where 1 < k1 < · · ·<

kT < n. The technique is performed as follows:

1. The initial partition is taken to be the whole sample, that is, I0 = {1,n}.

2. Each of the sub-intervals given by Ii is tested for change-points k j using (4.16).

3. The m identified significant change-points k j are added to the partition so that

Ii+1 = {1,k1, · · · ,kTi,n} for Ti = Ti−1 +m .

4. Step (2) above is repeated until no more change-points are found.
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Chapter 5

CONSISTENCY OF THE

CHANGE-POINT ESTIMATOR

Assume that the data Xt , for t ∈ Z, are independent and sampled at equispaced points.

(Xt)t∈Z describes a financial returns time series modeled using GARCH (p,q) model

specified as model (3.1). Assume that this GARCH(p,q) model has a finite fourth

moment and let E
(

ε
j

t

)
= ν j, j = 2,4. In addition let α0 > 0, αi ≥ 0 and β j ≥ 0 for

i = 1,2, · · · , p and j = 1,2, · · · ,q in model (3.1). Let p = q and ci,t−i = βi +αiε
2
t−i for

i = 1,2, · · · , p, where {ci,t} is a sequence of independent and identically distributed

random variables such that ci,t is independent of σt . This allows us to rewrite (3.1) as:

Xt = σtεt f or t ∈ Z

σ
2
t = α0 +

p

∑
i=1

αiX2
t−i +

p

∑
j=1

β jσ
2
t− j

= α0 +
p

∑
i=1

(
βi +αiε

2
t−i
)

σ
2
t−i

= α0 +
p

∑
i=1

ci,t−iσ
2
t−i (5.1)

Proposition 1. Consider a sample X2
1 ,X

2
2 , · · · ,X2

n satisfying alternative change-point
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hypothesis (3.26) and the change-point estimator k̂ given by (4.16). If the sequences{
X2

1,k

}
and

{
X2

2,k

}
satisfy

δ =
ν2γ

h−1
11

[
γ̄11
(
1− γ2

11
)
−ν2γ11 (1− γ12)

]
ν4
(
1− γ2

11

)
−ν2

2 (1− γ12)
− ν2γS1 (1− γ1)M2 (h)−ν2

2 γS2 [1− (1− γ1)M1 (h)]
ν4γS1 (1− γ1)−ν2

2 γS2

6= 0

(5.2)

then for τ̂ = k̂
n ,

P{|τ̂− τ
∗|> ε} ≤ C

ε2δ 2n
1
2

(5.3)

where C is a positive constant.

Proof. Suppose that
{

X2
1,k,k ∈ Z

}
and

{
X2

2,k,k ∈ Z
}

are two GARCH(p,q) sequences

as defined in model (5.1). Further suppose that we observe a sample X2
1 ,X

2
2 , · · · ,X2

n

from the model such that

X2
k =


X2

1,k i f 1≤ k ≤ k∗

X2
2,k i f k∗ < k ≤ n

(5.4)

where k∗is the unknown change-point. More specifically assume that the two se-

quences have different model order specification such that

X2
k =


GARCH (p1,q1) i f 1≤ k ≤ k∗

GARCH (p2,q2) i f k∗ < k ≤ n
(5.5)

where p1 6= p2 and q1 6= q2 but p1 = q1 = 1 and p2 = q2. Let k∗ = τ∗n and assume that

0 < τ < 1, then in the presence of the change-point, the sequence
{

X2
k

}
is no longer

stationary.
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The proposed change-point estimator k̂ of a change-point k∗ is the point at which there

is maximal sample evidence for a break in the sample autocorrelation function of the

squared returns process. It is therefore estimated as the least value of k that maximizes

the value of Dk
n as specified in (4.16) and (4.15) where 1 < k < n is chosen as:

k̂ = min
{

k : Dk
n = max

1<k<n

∣∣∣Dk
n

∣∣∣} (5.6)

where

Dk
n =

k
n

(
1− k

n

)∣∣∣∣∣1k k

∑
i=1

φ i−
1

n− k

n

∑
i=k+1

φi

∣∣∣∣∣ (5.7)

φk =
∑

k−h
t=1 X2

t X2
t+h

∑
k
t=1 X4

t
f or

0 < k < n

0 < h < n
(5.8)

Model (5.1) is utilised in the proof of consistency of the proposed change-point es-

timator. The foundation of this proof is based on the second and fourth moments of{
X2

t
}

which will first be derived. Following the assumption that the second moment of

{Xt} exist it implies that E (ci,t−i) = βi+αiν2 < 1. Let γi1 = E (ci,t−i), γi2 = E
(

c2
i,t−i

)
and γi = ∑

p
i=1 γi j for i = 1,2, · · · , p and j = 1,2.

E
(
σ

2
t
)

= E

(
α0 +

p

∑
i=1

ci,t−iσ
2
t−i

)

= α0 +
p

∑
i=1

γi1E
(
σ

2
t−i
)

= α0 + γ1E
(
σ

2
t−i
)

E
(
σ

2
t
)

=
α0

1− γ1
(5.9)

Equation (5.9) shows that E
(
σ2

t
)
< ∞ exists for γ1 < 1.
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E
(
σ

4
t
)

= E

(
α

2
0 +2α0

p

∑
i=1

ci,t−iσ
2
t−i +

p

∑
i=1

c2
i,t−iσ

4
t−i +2

p

∑
l<m

cl,t−lcm,t−mσ
2
t−lσ

2
t−m

)

= α
2
0 +2α0γ1E

(
σ

2
t
)
+ γ2E

(
σ

4
t
)
+2

p

∑
l<m

E
(
cl,t−lcm,t−mσ

2
t−lσ

2
t−m
)

(5.10)

To establish the E
(
cl,t−lcm,t−mσ2

t−lσ
2
t−m
)

we make use of the following Theorem as

proved by (Changli and Timo, 1999).

Theorem 18. Assume that λ (Γ)< 1. Under this condition,

E
(
cl,t−lcm,t−mσ

2
t−lσ

2
t−m
)
= α0γl1γm1M1 (l,m)E

(
σ

2
t
)
+ γl1M2 (l,m)E

(
σ

4
t
)

(5.11)

where for m− l > 1

M1 (l,m) = 1+ γ
′
P\{m−l}

[
m−l−1

∑
i=1

(
i

∏
j=1

Γ j

)
e1 +

m−l

∏
i=1

Γi

(
jp−1 +Γm−l+1 (Ip∗−Γ)−1 ep−1

)]
jp−1 = (1,1, · · · ,1)

′
is a (p−1)×1 vector

ep−1 = (1, · · · ,1,0, · · · ,0)
′

is a p∗×1 vector with the f irst p−1 elements equal to 1

Γk = E (Ck) is a matrix o f order (p−1)× (p−1)

with Γm−l+1 a matrix o f order (p−1)× p∗

and Γ a matrix o f order p∗× p∗

λ (Γ) = max{|λi|} is maximum absolute eigenvalue o f the matrix Γ

In particular
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M1 (m−1,m) = 1+ γ
′
P\{1}

[
jp−1 +Γ2 (Ip∗−Γ)−1 ep−1

]
M2 (l,m) = M21 (l,m)+ γm1

4

∑
i=2

M2i (l,m)

M21 (l,m) = γ̃m−l,m + γ
′
P\{m−l}

[
m−l−1

∑
i=1

(
i

∏
j=1

Γ j

)
e1γ̃m−l−i,m

]

M22 (l,m) =
m−l−1

∑
i=1

γi1M22 (m− l− i)+
p

∑
j=m−l+1

γ̃ j−m+l, j

M23 (l,m) =
m−l+p−1

∑
i=m−l+1

γ (c(m− l) ,2, i−1)

M24 (l,m) = γ
′
P\{m−l}

[(
m−l+1

∏
j=1

Γ j

)
(Ip∗−Γ)−1

]
γ (m− l + p+1,m− l +2p−1)

Proof. For proof of Theorem 18 see Appendix 5 of (Changli and Timo, 1999).

Substituting (5.9) and (5.11) in (5.10) yields

E
(
σ

4
t
)

= α
2
0 +2α0γ1E

(
σ

2
t
)
+ γ2E

(
σ

4
t
)
+2

p

∑
l<m

E
(
cl,t−lcm,t−mσ

2
t−lσ

2
t−m
)

= α
2
0 +2α

2
0 γ1

1
1− γ1

+ γ2E
(
σ

4
t
)
+2

p

∑
l<m

α
2
0

1
1− γ1

γl1γm1M1 (l,m)(5.12)

+2
p

∑
l<m

γl1M2 (l,m)E
(
σ

4
t
)
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E
(
σ

4
t
)[

1− γ2−2
p

∑
l<m

γl1M2 (l,m)

]
= α

2
0 +2α

2
0 γ1

1
1− γ1

+2
p

∑
l<m

α
2
0

1
1− γ1

γl1γm1M1 (l,m)

=
1

1− γ1

[
α

2
0 −α

2
0 γ1 +2α

2
0 γ1 +2

p

∑
l<m

α
2
0 γl1γm1M1 (l,m)

]

=
α2

0
1− γ1

[
1+ γ1 +2

p

∑
l<m

γl1γm1M1 (l,m)

]

E
(
σ

4
t
)

=
α2

0
[
1+ γ1 +2∑

p
l<m γl1γm1M1 (l,m)

]
(1− γ1)

[
1− γ2−2∑

p
l<m γl1M2 (l,m)

] (5.13)

From (5.13) it can be deduced that E
(
σ4

t
)
<∞ for γ1 < 1 and γ2+2∑

p
l<m γl1M2 (l,m)<

1.

Now we can evaluate the fourth moment of {Xt}as

E
(
X4

t
)

= E
(
σ

4
t
)

E
(
ε

4)
=

α2
0 ν4
[
1+ γ1 +2∑

p
l<m γl1γm1M1 (l,m)

]
(1− γ1)

[
1− γ2−2∑

p
l<m γl1M2 (l,m)

] (5.14)

Equation (5.14) implies that fourth moment of {Xt} exist if γ1<1 and γ2+2∑
p
l<m γl1M2(l,m)<1.

Theorem 19.

The mixed moment E
(
X2

t X2
t+h

)
has the form

E
(
X2

t X2
t+h
)
= α0ν

2
2 M1 (h)E

(
σ

2
t
)
+ν2M2 (h)E

(
σ

4
t
)

(5.15)

where for h≥ 1,
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M1 (h) = γ
′
p+1Γ

h−1
∗

[
eα0 +Γ

∗
h+1 (Ip∗−Γ)−1 ep−1

]
(5.16)

M2 (h) = M21 (h)+ν2

4

∑
i=2

M2i (h) (5.17)

M21 (h) = γ̄h1 + γ
′
P\{h}

[
h−1

∑
i=1

(
i

∏
j=1

Γ j

)
e1γ̄h−i,1

]
(5.18)

M22 (h) =
h−1

∑
i=1

γi1M22 (n− i)+
p

∑
j=h+1

γ̃ j−h, j (5.19)

M23 (h) =
h+p−1

∑
i=h+1

γ (c(h) ,2, i−1) (5.20)

M24 (h) = γ
′
P\{h}

[(
h+1

∏
j=1

Γ j

)
(Ip∗−Γ)−1

]
γ (h+ p+1,h+2p−1) (5.21)

eα0 =
(
α
−1
0 ,0,1, · · · ,1

)′
is a (p+1)×1 vector (5.22)

Proof. For proof of Theorem 18 see Appendix 9 of (Changli and Timo, 1999).

The expected value of the sample autocorrelation function, E (φk), is first evaluated

using (5.14) and (5.15).

E (φh) =
E
(
X2

t X2
t+h

)
E
(
X4

t
) f or

0 < k < n

0 < h < n

=
ν2γS1 (1− γ1)M2 (h)−ν2

2 γS2 [1− (1− γ1)M1 (h)]
ν4γS1 (1− γ1)−ν2

2 γS2

(5.23)

Further assuming that (5.4) and (5.5) are satisfied for p1 = q1 = 1 , we evaluate (5.23)

as follows:
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M1 (h) =

(
α0 γ11

) 1 0

α0 γ11


h−1 α

−1
0

0


=

(
α0 γ11

) α
−1
0

∑
h−2
i=0

(
∏

i
j=1 γ

j
11

)


= 1+ γ11 + γ
2
11 + · · ·+ γ

h−1
11

=
1− γh

11
1− γ11

(5.24)

M2 (h) =

(
α0 γ11

) 1 0

α0 γ11


h−3 0

γ11γ̄11


=

(
α0 γ11

) 0

γ
h−2
11 γ̄11


= γ

h−2
11 γ̄11 (5.25)

For GARCH (1,1) model, γ21 = γ̃12 = γ̄21 = 0. Substituting (5.24) and (5.25) in (5.23)

results to

E (φh) =


ν2γ

h−1
11 [γ̄11(1−γ2

11)−ν2γ11(1−γ12)]
ν4(1−γ2

11)−ν2
2 (1−γ12)

f or 1≤ k ≤ k∗

ν2γS1(1−γ1)M2(h)−ν2
2 γS2 [1−(1−γ1)M1(h)]

ν4γS1(1−γ1)−ν2
2 γS2

f or k∗ < k ≤ n
(5.26)

Equation (5.26) shows that, in the presence of a change-point, the expected value of the

sample autocorrelation function before and after the true change-point k∗ is not equal.

We consider a special case of change from GARCH (1,1) to GARCH (2,2) where we

evaluate (5.23) for p2 = q2 = 2 as follows:
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M1 (h) =

(
α0 γ11 γ21

)
1 0 0

α0 γ11 γ21

0 1 0


n−1

α
−1
0

0

(1− γ21)
−1



=

(
α0 γ11 γ21

)
α
−1
0

(1− γ21)
−1

∑
h−2
i=0

(
∏

i
j=1 γ

j
11

)
(1− γ21)

−1
∑

h−2
i=0

(
∏

i
j=1−γ

j
21

)


= (1− γ21)
−1
[

1+
1− γh

11
1− γ11

−
1− γh

21
1− γ21

]
(5.27)

M1 (1) = (1− γ21)
−1 (5.28)

Applying (5.18), (5.19), (5.20), and (5.21) and letting h = 1 yields M2 (1)

M21 (1) = γ̄11

M22 (1) = γ̃12

M23 (1) = γ (c(1) ,2) = E (c2,t−3c2,t−4,c1,t−4) = γ21γ̃12

M24 (1) = γ21Γ2 (1− γ21)
−1

γ̃12 = γ21γ̃12 (1− γ21)
−1

M2 (1) =
γ̄11 (1− γ21)+ν2γ̃12

(1− γ21)
(5.29)

The expected value, E (φk), for (5.5) for model order specification p1 = q1 = 1 and

p2 = q2 for lag 1 results to

E (φ1) =


ν2[γ̄11(1−γ2

11)−ν2γ11(1−γ12)]
ν4(1−γ2

11)−ν2
2 (1−γ12)

f or 1≤ k ≤ k∗

ν2γS1 [γ̄11(1−γ21)+ν2γ̃12](1−γ1)−ν2
2 γS2γ11

(1−γ21)[ν4γS1(1−γ1)−ν2
2 γS2 ]

f or k∗ < k ≤ n
(5.30)

From (5.26) and (5.30), it can be seen that the expected values of the sample autocor-

relation for GARCH (1,1) and GARCH (2,2) are not equal and we consequently assert
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that

δ =
ν2γ

h−1
11
[
γ̄11
(
1− γ2

11
)
−ν2γ11 (1− γ12)

]
ν4
(
1− γ2

11
)
−ν2

2 (1− γ12)
−

ν2γS1 (1− γ1)M2 (h)−ν2
2 γS2 [1− (1− γ1)M1 (h)]

ν4γS1 (1− γ1)−ν2
2 γS2

6= 0

(5.31)

Thus the
∣∣E (Dk

n
)∣∣ is evaluated noting that it reaches its maximum at the point k∗resulting

to

E
(

Dk
n

)
=


δτ (1− τ∗) i f k ≤ k∗

δτ∗ (1− τ) i f k > k∗
(5.32)

Thus

E
(

Dk∗
n

)
= δτ

∗ (1− τ
∗) (5.33)

From (5.32) and (5.33) it follows that

∣∣∣E (Dk∗
n

)∣∣∣− ∣∣∣E (Dk
n

)∣∣∣ =


|δ |(τ∗− τ)(1− τ∗) i f k ≤ k∗

|δ |(τ− τ∗)τ∗ i f k > k∗

implying∣∣∣E (Dk∗
n

)∣∣∣− ∣∣∣E (Dk
n

)∣∣∣ ≥ |δ | |τ∗− τ|(τ∗∧ (1− τ
∗)) (5.34)

We also have that
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Dk
n−Dk∗

n =
[
Dk

n−E
(

Dk
n

)
+E

(
Dk

n

)]
−
[
Dk∗

n −E
(

Dk∗
n

)
+E

(
Dk∗

n

)]
∣∣∣Dk

n

∣∣∣− ∣∣∣Dk∗
n

∣∣∣ ≤ ∣∣∣Dk
n−E

(
Dk

n

)∣∣∣+ ∣∣∣E (Dk
n

)∣∣∣+ ∣∣∣Dk∗
n −E

(
Dk∗

n

)∣∣∣− ∣∣∣E (Dk∗
n

)∣∣∣
≤ 2 max

1≤k≤n

∣∣∣Dk
n−E

(
Dk

n

)∣∣∣+ ∣∣∣E (Dk
n

)∣∣∣− ∣∣∣E (Dk∗
n

)∣∣∣
implying∣∣∣E (Dk∗

n

)∣∣∣− ∣∣∣E (Dk
n

)∣∣∣ ≤ 2 max
1≤k≤n

∣∣∣Dk
n−E

(
Dk

n

)∣∣∣+ ∣∣∣Dk∗
n

∣∣∣− ∣∣∣Dk
n

∣∣∣
≤ 2 max

1≤k≤n

∣∣∣Dk
n−E

(
Dk

n

)∣∣∣ since
∣∣∣Dk∗

n

∣∣∣≥ ∣∣∣Dk
n

∣∣∣ (5.35)

Thus from (5.34) and (5.35) as well as replacing τ with τ̂ in (5.34) we have that

|δ | |τ∗− τ|(τ∗∧ (1− τ
∗)) ≤

∣∣∣E (Dk∗
n

)∣∣∣− ∣∣∣E (Dk
n

)∣∣∣
≤ 2 max

1≤k≤n

∣∣∣Dk
n−E

(
Dk

n

)∣∣∣ (5.36)

Consider Dk
n as given in (5.7), the estimate max

1≤k≤n

∣∣Dk
n−E

(
Dk

n
)∣∣ is now established as

follows
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∣∣∣Dk
n−E

(
Dk

n

)∣∣∣ =
1
n2

∣∣∣∣∣(n− k)
k

∑
i=1

[φ i−E (φ i)]− k
n

∑
i=k+1

[φ i−E (φ i)]

∣∣∣∣∣
=

1
n2

∣∣∣∣∣n k

∑
i=1

[φ i−E (φ i)]− k
k

∑
i=1

[φ i−E (φ i)]− k
n

∑
i=k+1

[φ i−E (φ i)]

∣∣∣∣∣
=

1
n2

∣∣∣∣∣n k

∑
i=1

[φ i−E (φ i)]− k
n

∑
i=1

[φ i−E (φ i)]

∣∣∣∣∣
≤ 1

n

∣∣∣∣∣ k

∑
i=1

[φ i−E (φ i)]

∣∣∣∣∣+ 1
n

k
n

∣∣∣∣∣ n

∑
i=1

[φ i−E (φ i)]

∣∣∣∣∣
≤ 1

n

∣∣∣∣∣ k

∑
i=1

[φ i−E (φ i)]

∣∣∣∣∣+ 1
n

∣∣∣∣∣ k

∑
i=1

[φ i−E (φ i)]

∣∣∣∣∣
≤ 2

n

∣∣∣∣∣ k

∑
i=1

[φ i−E (φ i)]

∣∣∣∣∣ (5.37)

implying

max
1≤k≤n

∣∣∣Dk
n−E

(
Dk

n

)∣∣∣ ≤ 2 max
1≤k≤n

1
n

∣∣∣∣∣ k

∑
i=1

[φ i−E (φ i)]

∣∣∣∣∣ (5.38)

Theorem 20. Let Y1,Y2, · · · ,Yn be any random variables with finite second moments

and c1,c2, · · · ,cn be any non-negative constants. Then

ε2P
{

max
m≤k≤n

ck|∑k
i=1 Yi|>ε

}
≤ c2

m ∑
m
i, j=1 E(YiY j)+∑

n−1
k=m|c2

k+1−c2
k|∑k

i, j=1 E(YiY j)

+ 2∑
n−1
k=m c2

k+1E(|Yk+1||∑k
j=1 Y j|)+∑

n−1
k=m c2

k+1E(Y 2
k+1) (5.39)

Proof. For proof of Theorem 20 see Theorem 4.1 of (Piotr and Remigijus, 2000).

Applying Theorem (20) with m = 1, c1 = c2 = · · · = cn = 1
n , Yk = φ i−E (φ i) and

Assumption 4 yields
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ε
2P

{
max

1≤k≤n

1
n

∣∣∣∣∣ k

∑
i=1

[φ i−E (φ i)]

∣∣∣∣∣> ε

}
≤ 1

n2

1

∑
i, j=1

E
(
(φ i−E (φ i))

(
φ j−E

(
φ j
)))

+
n−1

∑
k=1

∣∣∣∣ 1
n2 −

1
n2

∣∣∣∣ k

∑
i, j=1

E
(
(φ i−E (φ i))

(
φ j−E

(
φ j
)))

+2
n−1

∑
k=1

1
n2 E

(
|φ k+1−E (φ k+1)|

∣∣∣∣∣ k

∑
j=1

(
φ j−E

(
φ j
))∣∣∣∣∣
)

+
n−1

∑
k=1

1
n2 E (φ k+1−E (φ k+1))

2

≤ 2
n2

n−1

∑
k=1

E

(
|φ k+1−E (φ k+1)|

∣∣∣∣∣ k

∑
j=1

(
φ j−E

(
φ j
))∣∣∣∣∣
)

+
1
n2

n−1

∑
k=1

E (φ k+1−E (φ k+1))
2

≤ 2
n2

n−1

∑
k=1

√
var (φ k+1)

√√√√ k

∑
j, j′=1

cov
(

φ 2
j ,φ

2
j′

)

+
1
n2

n−1

∑
k=1

var (φ k+1)

=
C
n2 ≤

C√
n

(5.40)

implying

P

{
max

1≤k≤n

1
n

∣∣∣∣∣ k

∑
i=1

[φ i−E (φ i)]

∣∣∣∣∣> ε

}
≤ C√

nε2

Substituting the result in (5.40) to (5.36) we have that

P{|δ | |τ∗− τ|(τ∗∧ (1− τ
∗))> ε} ≤ P

{
max

1≤k≤n

1
n

∣∣∣∣∣ k

∑
i=1

[φ i−E (φ i)]

∣∣∣∣∣> ε

}
≤ C√

nε2 (5.41)

P{|τ∗− τ|> ε} ≤ C

ε2δ 2n
1
2

(5.42)

As n→ ∞ from (5.41) we can see that C

ε2δ 2n
1
2
→ 0, which completes proof. Thus the
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estimator τ is a consistent estimator of τ∗ implying that k

is a consistent estimator of k∗.
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Chapter 6

LIMITING DISTRIBUTION OF THE

CHANGE-POINT ESTIMATOR

The following proposition is our main result on weak convergence for our proposed

change-point process Dk
n (h) for GARCH processes based on the point process theory.

Proposition 2. Let (Xt)t∈N be a strictly stationary sequence of random variables irre-

spective of the distribution of initial value X0. Specifically, let (Xt)t∈N be a GARCH (1,1)

process defined in the form of a stochastic differential equation (3.3). For fixed h≥ 0,

set Xt = (Xt , · · · ,Xt+h). Assume that the regular variation conditions provided in The-

orem 13 and the strongly mixing property in Theorem 14 hold. It therefore follows that

the convergence of point processes Nn is established and thus Theorem 16 is satisfied.

By extension of Theorem 17 then the convergence of the change-point process Dk
n as

specified in (4.15) is established such that the following statements hold:

(i) If κ ∈ (0,2), then

(
Dk

n (h)
)

h=1,··· ,m
d→Ch

(
Vh

V0

)
h=1.··· ,n

(6.1)

(ii) If κ ∈ (2,4)and for h = 0, · · · ,m
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lim
δ→0

lim
n→∞

SupVar

(
a−4

n

n−h

∑
t=1

X2
t X2

t+hI{|X2
t X2

t+h|≤a4
nε}

)
= 0, (6.2)

then

(
na−4

n

(
Dk

n (h)−Dk∗ (h)
))

h=1,··· ,m
= na−4

n
(
Cnρn,X2 (h)−ρX2 (h)

)
h=1,··· ,n

d→ γ
−1
X (0)(ChVh−ρX2 (h)C0V0)h=1,··· ,m(6.3)

where

Ch =
V0

Vh

(
V k

0 Vh−V k
h V0

V k
0
(
V0−V k

0
)) (6.4)

Vh =
∞

∑
i=1

∞

∑
j=1

P2
i Q(0)

i j Q(h)
i j , h = 0,1, · · · ,n (6.5)

V k
h =

∞

∑
i=k+1

∞

∑
j=k+1

P2
i Q(0)

i j Q(h)
i j , h = 0,1, · · · ,n (6.6)

Proof. Consider the GARCH(1,1) model in the context of a stochastic differential

equation (3.3) defined as σ2
t = α0 +

(
α1ε2

t−1 +β1
)

σ2
t−1, then the necessary and suf-

ficient conditions for stationarity are α0 > 0 and E
[
log
(
β1 +α1ε2

n
)]

< 0 where the

latter implies that ∑
p
i=1 αi +∑

q
j=1 β j < 1.

If we assume that the sample vector X1, · · · ,Xncomes from a stationary model, then

the initial values X0 also have a stationary distribution. This means that the distri-

bution of Xt is stationary whatever the distribution of X0, given the latter is indepen-

dent of (εt)t=1,2,··· and stationarity conditions. To show this consider two sequences

Xt (X0)t=0,1,2,··· and Xt (Z)t=0,1,2,··· given the same stochastic differential equation re-

cursion (3.3) but with initial conditions X0 and Z where both vectors are independent

of the future values (At ,Bt)t=1,2,···. Futher assume that X0 has stationary distribution.
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By iteration of stochastic differential equation (3.3) we have

Yt = Bt +
∞

∑
i=1

At · · ·At−i+1Bt−i, t = 1,2, · · ·

Thus for any initial values Z we have the following recurssion

Xt (Z) = At · · ·A1Z +
t

∑
j=1

At · · ·A j+1B j, t = 1,2, · · ·

Then for any ε > 0 and for GARCH (1,1) model (3.3) the top Lyapunov exponent γ̃

given by An · · ·A1 = An
n−1
∏

t=1

(
β1 +α1ε2

n
)

E |Xt (X0)−Xt (Z)|ε ≤ E |At · · ·A1 (X0−Z)|ε

= E |A1 (X0−Z)|ε
(

E
∣∣β1 +α1ε

2
n
∣∣ε)t−1

≤ E ‖A1‖E |X0−Z|ε
(

E
∣∣β1 +α1ε

2
n
∣∣ε)t−1

(6.7)

If E |ε|2ε < ∞, E |X0|ε < ∞ and E |Z|ε < ∞, then the right hand side is also finite. In

addition given the stationary conditions previously stated then E | β1 +α1ε2
n |ε< 1 for

some sufficiently small ε . Thus the left hand side of (6.7) decays to zero as t → ∞.

Thus we conclude that (Xt)t∈N is stationary irrespective of the distribution of the initial

values X0.

Consider the change-point process Dk
n to be a point process. Theorems outlined in Sec-

tion 3.5 are used to determine the limiting behaviour of Dk
n. Begin by considering the

sample autocorrelation function as defined in (3.67), then it follows that the following

statements hold,

76



n−h

∑
t=1

X2
t X2

t+h =
k

∑
t=1

X2
t X2

t+h +
n−h

∑
t=k+1

X2
t X2

t+h (6.8)

n−h

∑
t=1

X4
t =

k

∑
t=1

X4
t +

n−h

∑
t=k+1

X4
t (6.9)

From (6.8) and (6.9) it can be asserted that there exists constants ck,X2 (h) and cn−k,X2 (h)

such that the autocorrelation functions ρk,X2 (h) and ρn−k,X2 (h) can be expressed in

terms of the autocorrelation function ρn,X2 (h)as follows:

ρk,X2 (h) =

k−h
∑

t=1
X2

t X2
t+h

k
∑

t=1
X4

t

∝ ρn,X (h) =

n−h
∑

t=1
X2

t X2
t+h

n
∑

t=1
X4

t

ρk,X2 (h) = ck,X (h)ρn,X2 (h) (6.10)

and

ρn−k,X2 (h) =

n−k−h
∑

t=k+1
X2

t X2
t+h

n−k
∑

t=k+1
X4

t

∝ ρn,X (h) =

n−h
∑

t=1
X2

t X2
t+h

n
∑

t=1
X4

t

ρn−k,X2 (h) = cn−k,X2 (h)ρn,X2 (h) (6.11)

The change-point process (4.15) as in terms of (6.10) and (6.11) as

Dk
n (h) = ρk,X2 (h)−ρn−k,X2 (h)

= ck,X2 (h)ρn,X2 (h)− cn−k,X2 (h)ρn,X2 (h) (6.12)

=
(
ck,X2 (h)− cn−k,X2 (h)

)(
ρn,X2 (h)

)
The weak limits of the process Dk

n (h) is characterized in terms of the limiting point
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processes for the sample autocovariance and autocorrelation functions through the ap-

plication of the Continuous Mapping Theorem 24. To complete the prove we indepen-

dently prove the convergence of ck,X2 (h)−cn−k,X2 (h) and ρn,X2 (h) and apply Theorem

24.

Let δ > 0, Xt =
(

x(0)t,X ,x
(0)
t,σ , · · · ,x

(n),
t,X x(n)x,σ

)
∈ R̄n+1 \ {0}. In order to proof the results,

we define several mappings

Th,δ ,X : M→ R̄ (6.13)

as follows

T0,δ ,X (Nn) =
∞

∑
t=1

nt

(
x(0)t,X

)
I{∣∣∣x(0)t,X

∣∣∣>δ

} (6.14)

T1,δ ,X (Nn) =
∞

∑
t=1

nt

(
x(1)t,X

)
I{∣∣∣x(0)t,X

∣∣∣>δ

} (6.15)

Th,δ ,X (Nn) =
∞

∑
t=1

nt

(
x(0)t,X

)(
x(h−1)

t,X

)
I{∣∣∣x(0)t,X

∣∣∣>δ

} h ∈ [2,n] (6.16)

The set
{

Xt ∈ R̄n+1 \{0}|
∣∣∣x(h)∣∣∣> δ

}
is bounded for any h≥ 0 and thus the mappings

are continous with respect to the limit point processes N. Consequently by Continuous

Mapping Theorem 24 we have that

T (Nn)
d→ T (N) (6.17)

where

T (N) =
∞

∑
i=1

∞

∑
j=1

P2
i Q(0)

i j Q(h)
i j I{∣∣∣PiQ

(0)
i j

∣∣∣>δ

}
The prove of the convergence of of ρn,X2 (h) is examined for κ ∈ (0,2)and κ ∈ (2,4).

For the case of κ ∈ (0,2), the point process results of Theorem 17 holds and a direct

application of Theorem 17 yields:
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(
na−4

n γn,X2 (h)
)

h=0,··· ,m

d

→
(Vh)h=0,··· ,m (6.18)

(
ρn,X2 (h)

)
h=1,··· ,m

d

→

(
Vh

V0

)
h=1,··· ,m

(6.19)

Lemma 1. Assuming that the regular variation condition holds, E
(
ε4

t
)
< ∞ and that

the convergence of point processes as given in (6.17) is satisfied, then,

Var

[
α

2
1 a−4

n

n

∑
t=1

[
σ

4
t
(
ε

2
t+1−1

)2
]

I{σt≤anδ}

]
≤ a−8

n

n

∑
t=1

E
((

σ
4
t
)2

I{σt≤anδ}

)
E
((

ε
2
t+1−1

)2
)

∼ const δ
8−κ as n→ ∞ (6.20)

→ 0 as δ → 0

For κ ∈ (2,4) we commence with the
{

σ2
t
}

sequence and establish the convergence of

γn,σ2 (0). We rewrite γn,σ2 (0) using the recurrence structure of the SDE (3.3) so that

ε2
t = α

−1
1
((

α1ε2
t +β1

)
−β1

)
= α

−1
1 (At+1−β1) and σ2

t = α0 +Atσ
2
t−1 ≈ Atσ

2
t−1 =(

α1
(
ε2

t −1
)
+(α1 +β1)

)
σ2

t−1. Now using this representation yields:
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na−4
n
(
γn,σ2 (0)− γσ2 (0)

)
= a−4

n

n

∑
t=1

[
σ

4
t −E

(
σ

4)]
= a−4

n

n

∑
t=1

[{(
α1
(
ε

2
t −1

)
+(α1 +β1)

)
σ

2
t−1
}2−E

(
σ

4)]
= a−4

n

n

∑
t=1

σ
4
t−1
(
ε

2
t −1

)2
α

2
1 +2α1 (α1 +β1)

(
ε

2
t −1

)
σ

2
t−1 +

+(α1 +β1)
2

σ
4
t−1− (α1 +β1)

2 E
(
σ

4)+(α1 +β1)
2 E
(
σ

4)−E
(
σ

4) (6.21)

= α
2
1 a−4

n

n

∑
t=1

[
σ

4
t−1
(
ε

2
t −1

)2
]
+(α1 +β1)

2 a−4
n

n

∑
t=1

[
σ

4
t−1−E

(
σ

4)]+nE
(
σ

4)[(α1 +β1)
2−1

]
= α

2
1 a−4

n

n

∑
t=1

[
σ

4
t−1
(
ε

2
t −1

)2
]
+(α1 +β1)

2 a−4
n

n

∑
t=1

[
σ

4
t−1−E

(
σ

4)]+Op(1)

Grouping like terms in 6.21 yields

=
[
1− (α1 +β1)

2
]

na−4
n
(
γn,σ2 (0)− γσ2 (0)

)
= α

2
1 a−4

n

n

∑
t=1

[
σ

4
t−1
(
ε

2
t −1

)2
]
+Op(1)

= α2
1 a−4

n ∑
n
t=1

[
σ4

t (ε2
t −1)

2
]
I{σt>anδ}+α1a−4

n ∑
n
t=1

[
σ4

t (ε2
t −1)

2
]
I{σt≤anδ}+Op(1)

(6.22)

By application of Lemma 1 we have

na−4
n
(
γn,σ2 (0)− γσ2 (0)

)
= a−4

n

n

∑
t=1

σ
4
t+1I{σt>anδ}− (α1 +β1)

2 a−4
n

n

∑
t=1

σ
4
t I{σt>anδ}+Op(1)(6.23)

Lemma 2. Assuming that the regular variation condition holds, E
(
ε4

t
)
< ∞ and that

the convergence of point processes as given in (6.17) is satisfied, then convergence of

(6.23) is established such that:
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na−4
n
(
γn,σ2 (0)− γσ2 (0)

)
= a−4

n

n

∑
t=1

σ
4
t+1I{σt>anδ}− (α1 +β1)

2 a−4
n

n

∑
t=1

σ
4
t I{σt>anδ}+Op(1)

= T1,δ ,σ

(
N(2)

n

)
− (α1 +β1)

2 T0,δ ,σ

(
N(2)

n

)
d→ T1,δ ,σ

(
N(2)

)
− (α1 +β1)

2 T0,δ ,σ

(
N(2)

)
(6.24)

' S (δ ,∞)
d→V ∗0

We utilize the argument given in Theorem 27 where S (δ ,∞)
d→V ∗0 as δ→ 0. Therefore,

we finally obtain that:

na−4
n
(
γn,σ2 (0)− γσ2 (0)

) d→ 1
1− ((α1 +β1))

V ∗0 'V0 (6.25)

Analogously following the same steps, it can be shown that the convergence of γn−k,σ (0)

is given by

(n− k)a−2
n−k

(
γn−k,σ (0)− γσ (0)

) d→ 1
1− ((α1 +β1))

V k∗
0 'V k

0 (6.26)

In the presence of a change-point k as hypothesized (3.20) it is evident that E (At) 6=

α1 +β1 for all t but rather

E (At) =


α1 +β1 f or 1 < t ≤ k

E (A) f or k < t < n
(6.27)

Thus the convergence of γk,σ2 (0) and γn−k,σ2 (0) are respectively given by

ka−4
k

(
γk,σ2 (0)− γσ2 (0)

) d→ 1
1− ((α1 +β1))

V k∗
0 'V k

0 (6.28)

(n− k)a−4
n−k

(
γn−k,σ2 (0)− γσ2 (0)

) d→ 1
1−E (A)

V (n−k)∗
0 'V n−k

0 (6.29)
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Following (6.27) , (6.28) and (6.29) it is concluded that V k
0 6=V n−k

0 .

Convergence of γn,σ2 (1) is determined in a similar manner where by application of

Lemma 1 we have that:

= na−4
n
(
γn,σ2 (1)− γσ2 (1)

)
= a−4

n

n

∑
t=1

[
σ

2
t σ

2
t+1−E

(
σ

4)]
= a−4

n

n

∑
t=1

[
σ

2
t σ

2
t+1−σ

4
t EA

]
I{σt>anδ} (6.30)

Lemma 3. Assuming that the regular variation condition holds, E
(
ε4

t
)
< ∞ and that

the convergence of point processes as given in (6.17) is satisfied, then convergence of

(6.30) is established such that:

na−4
n
(
γn,σ2 (1)− γσ2 (1)

)
= T2,δ ,σ

(
N(2)

n

)
−EA T1,δ ,σ

(
N(2)

n

)
d→ V1

Consequently for arbitrary lags we have

na−4
n
(
γn,σ2 (h)− γσ2 (h)

) d→Vh (6.31)

(n− k)a−4
n−k

(
γn−k,σ2 (h)− γσ2 (h)

) d→V k
h (6.32)

In the presence of a change-point k the convergence of γk,σ2 (1) and γn−k,σ2 (1) are

respectively given by

ka−4
k

(
γk,σ2 (1)− γσ2 (1)

) d→V k
1 (6.33)
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(n− k)a−4
n−k

(
γn−k,σ2 (1)− γσ2 (1)

) d→V n−k
1 (6.34)

Now we consider the {Xt} sequence and establish the the convergence of γn,X (0) by

direct application of Lemma 1 and Lemma 2 as follows:

na−4
n
(
γn,X2 (0)− γX2 (0)

)
= a−4

n

n

∑
t=1

[
X4

t −E
(
X4

0
)]

= 2a−4
n

n

∑
t=1

[
σ

4
t
(
ε

2
t −1

)2
]

I{σt>anδ}

d→ T1,δ ,σ

(
N(2)

)
− (α1 +β1)

2 T0,δ ,σ

(
N(2)

)
d→ V0 (6.35)

Thus we have that

na−4
n
(
γn,X2 (0)− γX2 (0)

) d→V0 (6.36)

Similarly it can be shown that the convergence of γk,X2 (0) and γn−k,X2 (0) are respec-

tively given by

ka−4
k

(
γk,X2 (0)− γX2 (0)

) d→V k
0 (6.37)

(n− k)a−4
n−k

(
γn−k,X2 (0)− γX2 (0)

) d→V n−k
0 (6.38)

Next we consider the
{

X2
t
}

sequence and establish the the convergence of γn,X2 (1) by

direct application of Lemmas 1 and 3 as follows:
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na−4
n
(
γn,X2 (1)− γX2 (1)

)
= a−4

n

n

∑
t=1

[
X2

t X2
t+1−E

(
X2

0 X2
1
)]

= a−4
n

n

∑
t=1

[
X2

t σ
2
t+1
(
ε

2
t+1−E (ε)

)]
= a−4

n

n

∑
t=1

[
X2

t σ
2
t (At+1−EA)

]
I{σt>anδ}

= a−4
n

n

∑
t=1

[
σ

2
t σ

2
t+1I{σt>anδ}

]
−EA a−4

n

n

∑
t=1

[
σ

4
t I{σt>anδ}

]
= T2,δ ,σ

(
N(2)

n

)
−EA T1,δ ,σ

(
N(2)

n

)
d→ T2,δ ,σ

(
N(2)

)
−EA T1,δ ,σ

(
N(2)

)
d→ V1 (6.39)

Thus we have that

na−4
n
(
γn,X2 (1)− γX2 (1)

) d→V1 (6.40)

By extending to arbitrary lags h = 0, · · ·n the convergence of γn,X2 (h) is given by

na−4
n
(
γn,X2 (h)− γX2 (h)

) d→Vh (6.41)

Consequently the convergence of ρn,X2 (h) is given by

na−4
n
(
ρn,X2 (h)−ρX2 (h)

) d→ γ
−1
X2 (0)(Vh−ρX2 (h)V0) (6.42)

We have been able to examine the limiting behaviour of ρn,X2 (h) for two cases. In the

first case, when κ ∈ (0,2), the variance of Xn is infinite and thus ρn,X2 (h) has a random

limit without any normalization. When κ ∈ (2,4), the process has a finite variance but

infinite fourth moment and na−4
n
(
ρn,X2 (h)

)
converges to an κ

2 − stable distribution.

By Theorem 26 convergence of ρn,X2 (h) implies that the sequence is bounded with
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|ρn,X2 (h) | ≤ 1.

We now examine the convergence of ck,X2 (h)− cn−k,X2 (h). Consider equation (6.12),

we can express ck,X2 (h)− cn−k,X2 (h) as follows:

ck,X2 (h)− cn−k,X2 (h) =
ρk,X2 (h)−ρn−k,X2 (h)

ρn,X2 (h)
(6.43)

By the Bolzano-Weierstrass Theorem 21, a bounded sequence has always a conver-

gent subsequence. This is further confirmed through the invariance property of sub-

sequences in Theorem 22 which states that if ρn,X2 (h) converges, then every subse-

quence say, ρk,X2 (h)and ρn−k,X2 (h) converges. By linearity rule of sequences as pre-

scribed in Theorem 23, ρk,X2 (h)− ρn−k,X2 (h) converges. This further implies that

ρk,X2 (h) and ρn−k,X2 (h) are bounded since every convergent sequence is bounded.

The subsequences ρk,X2 (h) and ρn−k,X2 (h)are also bounded with |ρk,X2 (h) | ≤ 1 and

|ρn−k,X2 (h) | ≤ 1, thus their absolute difference is also bounded as |ρk,X2 (h)−ρn−k,X2 (h) | ≤

2. Further assume that we are considering only significant sample autocorrelation co-

efficients where |ρn,X2 (h) | ≥ 0.05, then ck,X2 (h)−cn−k,X2 (h) is also bounded. Apply-

ing the quotient property of subsequences in Theorem 23, then ck,X2 (h)− cn−k,X2 (h)

is also convergent.

Consider the change-point process Dk
n (h) as defined in (4.15), then we can derive the

limit of Cn as follows:
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(6.44)

=
(

Dk
n (h)

)
h=1,··· ,m

= ρk,X2 (h)−ρn−k,X2 (h)

=
γk,X2 (h)
γk,X2 (0)

−
γn−k,X2 (h)
γn−k,X2 (0)

=
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∑
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t X2
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−
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t X2
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n
∑
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X4

t

(
n
∑

t=1
X4

t −
n
∑
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X4

t

) (6.45)

Thus applying Theorem 17 and Theorem 25 we have

(
Dk

n (h)
)

h=1,··· ,m

d

→
V k

0 Vh−V k
h V0

V k
0
(
V0−V k

0
)

=
V0

Vh

(
V k

0 Vh−V k
h V0

V k
0
(
V0−V k

0
))Vh

V0
(6.46)

From (6.46) above, then the sequence Cn converges in distribution to Ch as follows
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Cn

d

→
V0

Vh

(
V k

0 Vh−V k
h V0

V k
0
(
V0−V k

0
))=Ch (6.47)

By application of Continous Mapping Theorem 24, we have the limiting behaviour of

the change-point process Dk
n (h) for the two cases κ ∈ (0,2) and κ ∈ (2,4) as follows.

for κ ∈ (0,2) and by application of Theorem 16 (i) :

(
Dk

n (h)
)

h=1,··· ,m
=

(
Cn (h)ρn,X2 (h)

)
h=1,··· ,m

d→ Ch

(
Vh

V0

)
h=1.··· ,m

(6.48)

for κ ∈ (2,4) and by application of Theorem 16 (ii):

(
na−4

n

(
Dk

n (h)−Dk∗ (h)
))

h=1,··· ,m
= na−4

n
(
Cnρn,X2 (h)−ρX2 (h)

)
h=1,··· ,n

d→ γ
−1
X (0)(ChVh−ρX2 (h)C0V0)h=1,··· ,m(6.49)

which completes proof.
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Chapter 7

NUMERICAL RESULTS

7.1 Comparison of the Autocorrelation Structure

In this chapter simulations studies are carried out to confirm theoretical results ob-

tained in chapters 4 to 6 with models generated according to Appendix B. We begin by

examining the autocorrelation structure of the different simulated series.

(a) (b)

Figure 7.1: Comparison of ACF for simulated GARCH (1,1) and GARCH (1,2)

In Figure 7.1 we examine graphically the effect in change of the autocorrelation struc-
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ture when the change occurs in model order q. Specifically, Figure 7.1 (a) and (b) com-

pare the autocorrelation of simulated series for GARCH (1,1) and GARCH (1,2) re-

spectively. From the plot, it is clear that the autocorrelation structure of GARCH (1,1)

and that of GARCH (1,2) are not similar.

(a) (b)

Figure 7.2: Comparison of ACF for simulated GARCH (1,1) and GARCH (2,1)

In Figure 7.2 we examine graphically the effect in change of the autocorrelation struc-

ture when the change occurs in model order p. Specifically, Figure 7.2 (a) and (b) com-

pare the autocorrelation of simulated series for GARCH (1,1) and GARCH (2,1) re-

spectively. From the plot, it is clear that the autocorrelation structure of GARCH (1,1)

and that of GARCH (2,1) are not similar.

89



(a) (b)

Figure 7.3: Comparison of ACF for simulated GARCH (1,1) and GARCH (3,3)

In Figure 7.3 we examine graphically the effect in change of the autocorrelation struc-

ture the change occurs in both model order p and q. Specifically, Figure 7.3 (a) and (b)

compare the autocorrelation of simulated series for GARCH (1,1) and GARCH (3,3)

respectively. From the plot, it is clear that the autocorrelation structure of GARCH (1,1)

and that of GARCH (3,3) are not similar.

(a) (b)

Figure 7.4: Comparison of ACF for simulated GARCH (1,1) and GARCH (4,4)
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In Figure 7.4 we examine graphically the effect in change of the autocorrelation struc-

ture when the change occurs in both model order in p and q and the size of change is

increased to three. Specifically, Figure 7.4 (a) and (b) compare the autocorrelation of

simulated series for GARCH (1,1) and GARCH (4,4) respectively. From the plot, it is

clear that the autocorrelation structure of GARCH (1,1) and that of GARCH (4,4) are

not similar even when the size of change is increased.

The Tables 7.1, 7.2 and 7.3 below reinforce the results in Figures 7.1-7.4 by comparing

the autocorrelation coefficients across different lags.

Table 7.1: Comparison of ACF across different lags for change in (p)
Lag GARCH(1,1) GARCH(2,1) GARCH(4,1) GARCH(1,1)− (2,1) GARCH(1,1)− (4,1)

0 1.00 1.00 1.00 0.00 0.00
1 0.34 0.24 0.16 0.10 0.18
2 0.24 0.33 0.06 0.09 0.18
3 0.18 0.26 0.04 0.08 0.14
4 0.23 0.17 0.19 0.06 0.04
5 0.19 0.15 -0.04 0.04 0.23

In Table 7.1 the autocorrelation coefficients for GARCH(2,1) and GARCH(4,1) are

compared to the autocorrelation for GARCH(1,1) for the first lag. It should be noted

that the autocorrelation coefficients for GARCH(1,1) , GARCH(2,1) and GARCH(4,1)

are largest at lags 1, 2 and 4 respectively. This is as expected since the model order p

of a GARCH (p,q) model is determined from the autocorrelation function at the point

at which the function cuts off. This means that comparing the autocorrelation coeffi-

cients for the different models at specific lags is likely, in most cases, to result into a

non-zero absolute difference as shown in column 5 and 6 of Table 7.1.

Table 7.2: Comparison of ACF across different lags for chage in (q)
Lag GARCH(1,1) GARCH(1,2) GARCH(1,4) GARCH(1,1)− (1,2) GARCH(1,1)− (1,4)

0 1.00 1.00 1.00 0.00 0.00
1 0.34 0.28 0.20 0.06 0.14
2 0.24 0.21 0.13 0.03 0.11
3 0.18 0.28 0.08 0.10 0.10
4 0.23 0.25 0.16 0.02 0.07
5 0.19 0.16 0.14 0.03 0.05
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In Table 7.2 the autocorrelation coefficients for GARCH(1,2) and GARCH(1,4) are

compared to the autocorrelation for GARCH(1,1) for the first lag. It should be noted

that the autocorrelation coefficients for GARCH(1,1) , GARCH(1,2) and GARCH(1,4)

are all largest at lags 1. This is as expected since the model order p of a GARCH (p,q)

model is determined from the autocorrelation function at the point at which the func-

tion cuts off, whereas the model order q of a GARCH (p,q) model is determined from

the partial autocorrelation function at the point at which the function cuts off. How-

ever, from the results in Table 7.2 it is observed that the autocorrelation coefficients of

the various models at specific lags is different. This implies that comparing the auto-

correlation coefficients for the different models at specific lags is likely to result into a

non-zero absolute difference as shown in column 5 and 6 of Table 7.2.

Table 7.3: Comparison of ACF across different lags for chage in (p,q)
Lag GARCH(1,1) GARCH(3,3) GARCH(4,4) GARCH(1,1)− (3,3) GARCH(1,1)− (4,4)

0 1.00 1.00 1.00 0.00 0.00
1 0.34 0.23 0.18 0.11 0.16
2 0.24 0.26 0.11 0.02 0.13
3 0.18 0.30 0.19 0.12 0.01
4 0.23 0.25 0.08 0.02 0.15
5 0.19 0.10 0.05 0.09 0.14

In Table 7.3 the autocorrelation coefficients for GARCH(3,3) and GARCH(4,4) are

compared to the autocorrelation for GARCH(1,1) for the first lag. It should be noted

that the autocorrelation coefficients for GARCH(1,1) , GARCH(3,3) and GARCH(4,4)

are largest at lags 1, 3 and 4 respectively. This is as expected since the model order p

of a GARCH (p,q) model is determined from the autocorrelation function at the point

at which the function cuts off. This means that comparing the autocorrelation coeffi-

cients for the different models at specific lags is likely, in most cases, to result into a

non-zero absolute difference as shown in column 5 and 6 of Table 7.3.

Following the results in Figures 7.1-7.4 and Tables 7.1-7.3 the change-point estima-

tor k̂ as defined in (4.16) can be applied to the simulated series such that the true
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change-point k∗ is fixed at n
2 for n = 500, n = 1000 and n = 2000. Assume that {Xt}

is a stationary GARCH (p,q) process where p,q ∈ N\{0} such that we are examin-

ing change-point hypothesis (3.26) in Section 3.2. The performance of the proposed

change-point estimator k̂ as given in (4.16) is examined by considering the effects of

the location of change points and the size of change in the model order specification.

7.2 Performance of the Change-Point Estimator

The Adjusted Rand Indices are utilized to compare the segmentation created by the

proposed change-point estimator k̂ under H1 against the null hypothesis of no change-

point under H0. The effect of the sample size and size of change to the estimator is

examined by specifying different sample sizes and different model orders (p,q) in the

alternative hypothesis. The performance of the proposed test is compared to that of

reviewed method, E-Divisive. The results of the simulations are provided in Tables

7.4, 7.5 and 7.6. Tables 7.4 and 7.5 provide the results for simulations with changes

in order p and q respectively while Table 7.6 provides the results for the changes in

both order p and q. In these tables, average Adjusted Rand Index is reported for 1000

simulations.

Table 7.4: Fowlkes and Mallows ARI given changes in order p
Under H0 Under H1

n 4q Proposed Estimator k̂ E-Divisive Proposed Estimator k̂ E-Divisive
500 1 1.00 1.00 0.9895613 0.9887145

2 1.00 1.00 0.9944756 0.9966374
3 1.00 1.00 0.9944756 0.9993042

1000 1 1.00 1.00 0.9914832 0.9979477
2 1.00 1.00 0.9885897 0.9987957
3 1.00 1.00 0.9115919 0.9989981

2000 1 1.00 1.00 0.9971880 0.9758699
2 1.00 1.00 0.9957313 0.9767283
3 1.00 1.00 0.9869408 0.9798594

The results of the perfomance analysis in Table 7.4 show that the Fowlkes and Mallows
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ARI yields a value of 1 under the null hypothesis H0 of no change-point as specified in

(3.26) for all sample sizes and size of change, implying that there is a perfect similar-

ity. On the other hand, under the alternative hypothesis H1 as specified in (3.26) with

change occuring in model order p, it is observed that as the sample size increases, the

similarity index given by Fowlkes and Mallows ARI generally increases for the pro-

posed change-point estimator. However, the index based on the E-Divisive test seems

to yield higher ARI values when the sample is 1000 but this value reduces when the

sample is increased to 2000. This is indicates that testing for change in order p of the

GARCH (p,q) model using the proposed estimator is most suitable for long horizons

whereas the edivisive method is suitable for shorter horizons . In addition, the ARI

increases as the size of change in order p increases across the different sample sizes.

Thus we can conclude that the proposed test performs better when the size of change

is greater.

Table 7.5: Fowlkes and Mallows ARI given changes in order q
Under H0 Under H1

n 4p Proposed Estimator k̂ E-Divisive Proposed Estimator k̂ E-Divisive
500 1 1.00 1.00 0.9944461 0.9974525

2 1.00 1.00 0.9944461 0.9988279
3 1.00 1.00 0.9945336 0.999690

1000 1 1.00 1.00 0.9882955 0.9918479
2 1.00 1.00 0.9884021 0.9929368
3 1.00 1.00 0.9937106 0.9953233

2000 1 1.00 1.00 0.9885593 0.970108
2 1.00 1.00 0.9938778 0.9747159
3 1.00 1.00 0.9963049 0.9765529

The results of the perfomance analysis in Table 7.5 show that the Fowlkes and Mallows

ARI yields a value of 1 under the null hypothesis H0 of no change-point as specified

in (3.26) for all sample sizes and size of change, implying that there is a perfect sim-

ilarity. On the other hand, under the alternative hypothesis H1 as specified in (3.26)

with change occuring in model order q, it is observed that as the sample size increases,

the similarity index given by Fowlkes and Mallows ARI generally decreases for both
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the proposed change-point estimatorand the E-Divisive method. This is indicates that

testing for change in order q of the GARCH (p,q) model is most suitable for shorter

horizons. In addition, the ARI increases as the size of change in order q increases

across the different sample sizes. Thus the proposed test performs better when the size

of change is greater.

Table 7.6: Fowlkes and Mallows ARI given changes in order p,q
Under H0 Under H1

n 4(p,q) Proposed Estimator k̂ E-Divisive Proposed Estimator k̂ E-Divisive
500 1 1.00 1.00 0.9944163 0.972161

2 1.00 1.00 0.9731032 0.9944163
3 1.00 1.00 0.9945047 0.9983192

1000 1 1.00 1.00 0.9562616 0.9940223
2 1.00 1.00 0.9937779 0.9941439
3 1.00 1.00 0.9941203 0.9950048

2000 1 1.00 1.00 0.9942376 0.9607149
2 1.00 1.00 0.9913397 0.9726061
3 1.00 1.00 0.9996214 0.9785945

The results of the perfomance analysis in Table 7.6 show that the Fowlkes and Mallows

ARI yields a value of 1 under the null hypothesis H0 of no change-point as specified in

(3.26) for all sample sizes and size of change, implying that there is a perfect similar-

ity. On the other hand, under the alternative hypothesis H1 as specified in (3.26) with

change occuring in both model orders p and q, it is observed that as the sample size

increases, the similarity index given by Fowlkes and Mallows ARI generally increases

for the proposed change-point estimator. However, the index based on the E-Divisive

test seems to yield higher ARI values when the sample is 1000 but this value reduces

when the sample is increased to 2000. This is indicates that testing for change in order

p and q of the GARCH (p,q) model using the proposed estimator is most suitable for

long horizons whereas the edivisive method is suitable for shorter horizons . In addi-

tion, the ARI increases as the size of change in order p increases across the different

sample sizes. Thus we can conclude that the proposed test performs better when the

size of change is greater.
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It is therefore concluded that the proposed change-point estimator is able to perform

nonparametric change point analysis of a financial returns series. The test is able to

determine the location of the change-point without prior specification of the number

of change-points. The only necessary assumption made is that financial returns data

follow stationary GARCH (p,q) series with different orders.

7.3 Single Change-Point Estimation

The Figure below displays the plots for the simulated series with a superimposed lo-

cation of change-point estimator k̂ and the corresponding change-point process Dk
n as

defined in (4.15) and change-point location for various sample sizes.

(a) (b)

Figure 7.5: Single Change-Point for Stationary Series GARCH Xt

Figure 7.5 displays results of simulated series comprised of GARCH (1,1)for time t ∈

[1,250] and GARCH (1,2)for time t ∈ [251,500] with a sample size n = 500 where the

true change-point k∗ is positioned at time t = 250. The estimator k̂ is able to locate the

change-point at k = 256 as shown in Figure 7.5(a) with 99.44% similarity compared to

a threshold of 100% similarity index as displayed in the ARI Table 7.5. The resultant
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change-point process Dk
n is as plotted in Figure 7.5(b) which seems to be random in

nature.

(a) (b)

Figure 7.6: Single Change-Point for Stationary Series GARCH Xt

Figure 7.6 displays results of simulated series comprised of GARCH (1,1)for time t ∈

[1,500] and GARCH (1,2)for time t ∈ [501,1000] with a sample size n = 1000 where

the true change-point k∗ is positioned at time t = 500. The estimator k̂ is able to

locate the change-point at k = 580 as shown in Figure 7.6(a) with 98.83% similarity

compared to a threshold of 100% similarity index as displayed in the ARI Table 7.5.

The resultant change-point process Dk
n is as plotted in Figure 7.5(b) which seems to be

random in nature.
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(a) (b)

Figure 7.7: Single Change-Point for Stationary Series GARCH Xt

Figure 7.7 displays results of simulated series comprised of GARCH (1,1)for time t ∈

[1,1000] and GARCH (1,2)for time t ∈ [1001,2000] with a sample size n= 2000 where

the true change-point k∗ is positioned at time t = 1000. The estimator k̂ is able to

locate the change-point at k = 1016 as shown in Figure 7.7(a) with 98.86% similarity

compared to a threshold of 100% similarity index as displayed in the ARI Table 7.5.

The resultant change-point process Dk
n is as plotted in Figure 7.5(b) which seems to be

random in nature.

We now examine the change-point estimator k̂ as defined in (4.16) when the true

change-point k∗ is no longer positioned at the middle of the sample size but is rather

fixed at n
4 and 3n

4 for n = 500, n = 1000 and n = 2000.
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(a) (b)

Figure 7.8: Single Change-Point for Stationary Series GARCH Xt

Figure 7.8 (a) displays results of simulated series comprised of GARCH (1,1)for time

t ∈ [1,125] and GARCH (1,2)for time t ∈ [126,500] whereas Figure 7.8 (b) displays re-

sults of simulated series comprised of GARCH (1,1)for time t ∈ [1,375] and GARCH (1,2)for

time t ∈ [376,500] each with a sample size n = 500. The true change-point k∗ is posi-

tioned at time t = 125 and t = 125 for Figure 7.8 (a) and Figure 7.8 (b) respectively.

The estimator k̂ is able to locate the change-point at k = 155 as shown in Figure 7.8(a)

and at k = 402 as shown in Figure 7.8(b) with 92.99% and 98.98% similarity index

respectively compared to a threshold of 100% similarity index. For the sample size

n = 500, the estimator k̂ seems not to accurately estimate the true change-point due to

the large deviation from k∗.
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(a) (b)

Figure 7.9: Single Change-Point for Stationary Series GARCH Xt

Figure 7.9 (a) displays results of simulated series comprised of GARCH (1,1)for time

t ∈ [1,250] and GARCH (1,2)for time t ∈ [251,1000] whereas Figure 7.9 (b) dis-

plays results of simulated series comprised of GARCH (1,1)for time t ∈ [1,750] and

GARCH (1,2)for time t ∈ [751,1000] each with a sample size n = 1000. The true

change-point k∗ is positioned at time t = 250 and t = 125 for Figure 7.9 (a) and Fig-

ure 7.9 (b) respectively. The estimator k̂ is able to locate the change-point at k = 288

as shown in Figure 7.9(a) and at k = 739 as shown in Figure 7.9(b) with 93.57% and

99.16% similarity index respectively compared to a threshold of 100% similarity in-

dex. For the sample size n = 1000, the estimator k̂ performance seems to have slightly

improved compared to the results obtained when n = 500 from the smaller deviation

from k∗.
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(a) (b)

Figure 7.10: Single Change-Point for Stationary Series GARCH Xt

Figure 7.10 (a) displays results of simulated series comprised of GARCH (1,1)for time

t ∈ [1,500] and GARCH (1,2)for time t ∈ [501,2000] whereas Figure 7.10 (b) dis-

plays results of simulated series comprised of GARCH (1,1)for time t ∈ [1,1500] and

GARCH (1,2)for time t ∈ [1501,2000] each with a sample size n = 2000. The true

change-point k∗ is positioned at time t = 500 and t = 1500 for Figure 7.10 (a) and Fig-

ure 7.10 (b) respectively. The estimator k̂ is able to locate the change-point at k = 504

as shown in Figure 7.10(a) and at k = 1507 as shown in Figure 7.10(b) with 99.20%

and 99.29% similarity index respectively compared to a threshold of 100% similar-

ity index. For the sample size n = 2000, the estimator k̂ performance seems to have

slightly improved compared to the results obtained when n = 500 and n = 1000 from

the smaller deviation from k∗. This could be attributed to adequate data available in

the resultant segments created.
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7.4 Multiple Change-Point Estimation

We now consider the multiple change-points testing problem where the change-points

k1 and k2 are fixed at intervals of n
3 for n= 1500 and n= 3000 and (p,q) 6=(p∗,q∗). The

figure below displays the plots for change-point location as estimated by the change-

point estimator k̂ as defined in (4.16) with application of the hierarchical/binary seg-

mentation procedure for the various sample sizes as outlined of the literature review.

H0 : Xt ∼ GARCH (1,1) f or t = 1, · · · ,n

against

H1:Xt ∼ GARCH (p,q) f or t = 1, · · · ,k1

Xt ∼ GARCH (1,1) f or t = k1 +1, · · · ,k2

Xt ∼ GARCH (p∗,q∗) f or t = k2 +1, · · · ,n

(7.1)

(a) (b)

Figure 7.11: Multiple Changepoints for Stationary GARCH series Xt

Figure 7.11 (a) displays results of simulated series comprised of GARCH (2,1) for

time t ∈ [1,500], GARCH (1,1)for time t ∈ [501,1000] and GARCH (1,2)for time t ∈

[1001,1500] whereas Figure 7.11 (b) displays results of simulated series comprised
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of GARCH (2,1) for time t ∈ [1,1000], GARCH (1,1)for time t ∈ [1001,2000] and

GARCH (1,2)for time t ∈ [2001,3000] with a sample size of n = 1500 and n = 3000

respectively. The true change-points k∗ are positioned at time t = (500,100) and t =

(1000,2000) for Figure 7.11 (a) and Figure 7.11 (b) respectively. The estimator k̂

is able to locate the change-point at k = (501,1024) as shown in Figure 7.11(a) and

at k = (1002,2013) as shown in Figure 7.11(b). It can therefore be asserted that the

estimator k̂ works well for both identification of single change-points and multiple

change-points as long we are considering change of a series from GARCH (1,1) to any

other GARCH (p,q) model.

7.5 Distribution of Change-Point Estimator

We discuss the sampling distribution of the change-point estimator k̂ . Histograms are

used to illustrate the inherent properties. Each histogram in Figures 7.12-7.14 describes

the sample distribution of 1000 replications of k̂ for several GARCH(p,q) models with

change-points as given in (3.26). Each of the estimated series has a sample size of

n = 1000.

(a) (b)

Figure 7.12: Sampling Distribution of k̂ for k∗ = 250
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Figure 7.12 displays results for the sampling distribution of the change-point estimator

k̂ when the true change-point is positioned at k∗ = 250. Figure 7.12 (a) depends on

the simulated series with a single change-point where it follows a GARCH (1,1) for

t ∈ [1 : 250] and GARCH (2,2) for t ∈ [251 : 1000] whereas Figure 7.12 (b) depends

on the simulated series with a single change-point where it follows a GARCH (1,1) for

t ∈ [1 : 250] and GARCH (4,4) for t ∈ [251 : 1000]. This represents a size of change

of 1 and 3 im model orders (p,q) respectively. Figure 7.12 shows that the distribution

is positively skewed as depicted by the longer tail to the right. However, comparing

Figure 7.12 (a) and (b), it seems that the degree of skewness reduces as the size of

model order change increases.

(a) (b)

Figure 7.13: Sampling Distribution of k̂ for k∗ = 750

Figure 7.13 displays results for the sampling distribution of the change-point estimator

k̂ when the true change-point is positioned at k∗ = 750. Figure 7.12 (a) depends on

the simulated series with a single change-point where it follows a GARCH (1,1) for

t ∈ [1 : 750] and GARCH (2,2) for t ∈ [751 : 1000] whereas Figure 7.13 (b) depends

on the simulated series with a single change-point where it follows a GARCH (1,1) for

t ∈ [1 : 750] and GARCH (4,4) for t ∈ [751 : 1000]. This represents a size of change
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of 1 and 3 im model order (p,q) respectively. Figure 7.12 shows that the distribution

is negatively skewed as depicted by the longer tail to the left. However, comparing

Figure 7.13 (a) and (b), it seems that the degree of skewness reduces as the size of

model order change increases.

(a) (b)

Figure 7.14: Sampling Distribution of k̂ for k∗ = 500 (a)4p = 1 (b)4q = 1

Figure 7.14 displays results for the sampling distribution of the change-point estimator

k̂ when the true change-point is positioned at k∗ = 500. Figure 7.14 (a) depends on

the simulated series with a single change-point where it follows a GARCH (1,1) for

t ∈ [1 : 500] and GARCH (2,1) for t ∈ [501 : 1000] whereas Figure 7.14 (b) depends

on the simulated series with a single change-point where it follows a GARCH (1,1)

for t ∈ [1 : 500] and GARCH (1,2) for t ∈ [501 : 1000]. Figure 7.14 shows that the

distribution is approximately Normal as depicted by the equal distribution of tails to

the left and to the right.
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Chapter 8

APPLICATION OF THE

CHANGE-POINT ESTIMATOR

A key principle in option pricing is the absence of arbitrage opportunity. To ensure

that this holds we utilize the locally risk-neutral valuation relationship to determine

the risk-neutral pricing measure Q. Duan. (1995) proposed the following conditional,

lognormally distributed stock price process, with stochastic volatility, under the P mea-

sure.

St = St−1exp
(

r× (T − t)− 1
2

σ
2
t +λσt +σtεt

)
(8.1)

where εt |Ft−1
P∼ N(0,1) is the conditional error process λ is the unit risk premium,

Ft−1 is the σ −algebra of information up to time t, r = rd− r f is the yearly risk-free

rate of return with rd and r f being the domestic and foreign risk-free rate respectively

and σ2
t is the conditional variance GARCH(p,q) process defined as

σ
2
t = α0 +

p

∑
i=1

αiε
2
t−i +

q

∑
j=1

β jσ
2
t− j (8.2)

A probability measure Q is said to be a local risk-neutral probability measure if
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1. Q is equivalent to measure P

2. EQ
[
ln
(

St
St−1

)
|Ft−1

]
= r

3. VarQ
[
ln
(

St
St−1

)
|Ft−1

]
=VarP

[
ln
(

St
St−1

)
|Ft−1

]
Following this definition, the probability measure Q is determined from equation (8.1)

as follows:

St

St−1
= eνt+σtξt

EQ
[(

St

St−1

)
|Ft−1

]
= EQ

[
eνt+σtξt |Ft−1

]
= eνt EQ

[
eσtξt |Ft−1

]
= e

νt+
1
2VarQ

[
ln
(

St
St−1

)
|Ft−1

]
EQ [1|Ft−1]

sinceVarQ
[

ln
(

St

St−1

)
|Ft−1

]
=VarP

[
ln
(

St

St−1

)
|Ft−1

]
= eνt+

1
2 σt

= er

where νt +
1
2

σt = r

νt = r− 1
2

σt (8.3)

The log-returns process with GARCH(p,q) volatility under the P measure is given by

ln
(

St

St−1

)
= r+λσt−

1
2

σ
2
t +σtε t (8.4)

and the process implied by derivation from equation (8.3) above under measure Q is

ln
(

St

St−1

)
= r− 1

2
σ

2
t +σtξ t (8.5)

using VarQ
[
ln
(

St
St−1

)
|Ft−1

]
=VarP

[
ln
(

St
St−1

)
|Ft−1

]
it can be seen that
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r+λσt−
1
2

σ
2
t +σtε t = r− 1

2
σ

2
t +σtξ t (8.6)

⇒ εt = ξt−λ (8.7)

Substituting the result in equation (8.7) into equation (8.4) yields

ln
(

St

St−1

)
= r− 1

2
σ

2
t +σtξt (8.8)

Substituting the result in equation (8.7) into the GARCH(p,q) process deined in equa-

tion (8.2) yields

σ
2
t = α0 +

p

∑
i=1

αiσ
2
t−i (ξt−i−λ )2 +

q

∑
j=1

β jσ
2
t− j (8.9)

Thus, under the Q−measure, implied by the Locally Risk Neutral Valuation Relation-

ship, the dynamics the log-returns processes is modelled by

Rt = ln
(

St

St−1

)
= r− 1

2
σ

2
t +σtξt (8.10)

where ξt |Ft−1
Q∼ N(0,1) and σ2

t = α0 +∑
p
i=1 αiσ

2
t−i (ξt−i−λ )2 +∑

q
j=1 β jσ

2
t− j which

is a NGARCH(p,q) process.

The price of a call stock option can thus be determined using the formula

Ct = EQ

[
exp

(
−

T

∑
i=t

rt

)
(ST −K)+ |Ft−1

]
= EQ [exp(−r (T − t))max(ST −K,0) |Ft−1] (8.11)

Simulations are used to recursively apply the dynamics in (8.11) in order to generate

values for ST since there is no closed form solution. The option price formula obtained
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by simulations is given by

Ct = exp(−r (T − t))
1
N

N

∑
i=t

[max(ST,i−K,0)]

where

ST,i = S0exp

(
T−t

∑
j=1

Ri, j

)
f or i = 1,2, · · · ,100,000 simulations (8.12)

More specifically, following the identified change-point k using the proposed estimator

the log returns process Rt is modelled as a piecewise function as

Rt =


r− 1

2(σ
11
t )2 +σ11

t ξt

r− 1
2(σ

12
t )2 +σ12

t ξt

f or t ∈ [1,k]

f or t ∈ [k+1,T − t]

where(
σ

11
t
)2

= α0 +α1
(
σ

11
t−1
)2
(ξt−1−λ )2 +β1

(
σ

11
t−1
)2

(
σ

12
t
)2

= α
∗
0 +α

∗
1
(
σ

12
t−1
)2 (

ξ
∗
t−1−λ

∗)2
+β

∗
1
(
σ

12
t−1
)2

+β
∗
2
(
σ

12
t−2
)2

(8.13)

The change-point estimator is applied to geometric returns of KES/USD Exchange rate

data. The series is found to have multiple change-points where two change-points are

estimated at k̂ = 400 and k̂ = 754 through binary segmentation as shown in the Figure

8.1 below.
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Figure 8.1: Change-Point Detection on Geometric Returns Data

To facilitate the simulation of option prices according to model (8.12) various GARCH

models are fitted to the geometric returns data displayed in Figure 8.1 with the incor-

poration of estimated change-points so as to determine the best model fits for (8.13).
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Figure 8.2: Plot of Superimposed Geometric Returns Data

Following the identified change-points, GARCH(1,2) and GARCH(1,1) provided for

the best fit for t = [1,400] and t = [401,754] respectively. Figure 8.2 displays a plot

of the geometric returns of KES/USD Exchange rate data similar to 8.1 with a su-

perimposed plot of the fitted GARCH(1,2) and GARCH(1,1). The ARI established a

similarity index of 96.46% and 98.71% for t = [1,400] and t = [401,754] respectively

when the fitted GARCH model and the KES/USD exchange rate return data were com-

pared.

In line with the risk neutral probabilities, NGARCH models with these model spec-

ifications were fitted. The table below shows the values of estimated parameters af-

ter fitting NGARCH(1,2) model for t ∈ [1,400] and NGARCH(1,1) model for for
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t ∈ [401,754].

Parameters NGARCH(1,2) Std Error p-value NGARCH(1,1) Std Error p-value
α0 2.337×10−9 3.655×10−7 4.579×10−2 1.106×10−7 4.786×10−7 2.08×10−2

α1 4.938×10−6 1.396×10−1 6.930×10−4 5.636×10−6 7.635×10−2 6.59×10−6

β1 4.127×10−1 7.393×10−2 9.590×10−6 7.844×10−1 1.401×10−1 2.16×10−7

β2 3.077×10−1 5.978×10−2 2.69×10−7 -
λ -4.190×101 1.051×10−4 4.38753×10−2 -1.544×10−1 1.017×10−4 3.092×10−1

Table 8.1: Parameter Estimates for NGARCH(1,2)∼ NGARCH(1,1)

The table below shows the values of estimated parameters after fitting HN−GARCH(1,1)

model for t ∈ [1,754].

Parameters Heston-Nandi
α0 7.296×10−13

α1 3.553×10−6

β1 7.694×10−1

λ -2.705×101

Log-Likelihood 183.57

Table 8.2: Parameter Estimates for Heston and Nandi model

The option prices obtained using equations (8.12) and (8.13) are compared with those

obtained from Black-Scholes, Heston and Nandi GARCH and the NGARCH(1,1)

models. Here we are considering an American option with an expiration date at

T = 754 but with a possible early excersise considered to be T = 400. Under Black-

Scholes, the pricing follows model described in model (3.78) with constant volatility

for t ∈ [1,754] as outlined in section 3.6. The Heston and Nandi GARCH pricing

models follow model (3.85) where volatility follows equation (3.84) for t ∈ [1,754]

as outlined in section 3.6. The NGARCH(1,2) NGARCH(1,1) model incorporates

the estimated change-points and utilizes the pricing model (8.12) and (8.13) so that

the volatility is modelled using NGARCH(1,2) for t ∈ [1,400] and NGARCH(1,1) for

t ∈ [401,754].
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S0 Black-Scholes Heston-Nandi NGARCH(1,2)~NGARCH(1,1)
90 0.32580 0.348465 0.53555
95 1.022495 1.50228 1.88978
100 4.14853 4.20374 4.5999
105 8.334915 8.96734 9.0012
110 13.03975 13.2435 13.4325

Table 8.3: Comparison of Call Option Prices for T = 400

From the Table 8.3 it is evident that time variation in volatility is important, and that

GARCH models out- perform the Black-Scholes model since the latter seems to under-

price. This is because the Black-Scholes model is homoscedastic which does not reflect

the true dynamics of the financial time series. On the other hand, though the Heston-

Nandi GARCH and NGARCH(1,1) model are able to capture heteroscedaticity these

models may not exhibit sufficient volatility dynamics as it is unlikely that one variance

function is sufficient to explain the variation in option prices across time. Thus we pro-

pose the use of a piecewise variance function following identified change-points which

in this case resulted to NGARCH(1,2)∼NGARCH(1,1) under the locally risk-neutral

probability measure Q.
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Figure 8.3: Plot of Option Prices against Moneyness

Figure 8.3 shows a plot of the the option prices against moneyness for a early excerise

date at time t = 400. The black solid line, blue dotted line and red solid line represent

the option prices following the Black-Scholes model, Heston-Nandi GARCH model

and the NGARCH(1,2) ∼ NGARCH(1,1) model repectively. This follows parameter

estimates given in Tables 8.1 and 8.2 which yielded the prices in Table 8.3. From the

plot we see that the pricing models seem to converge when the option is in-the-money.

However, when the option is out-of-the-money, the NGARCH(1,2)∼ NGARCH(1,1)

model gives higher prices compared to the Black-Scholes and Heston-Nandi GARCH

models. This is attributed to the high volatility experienced in during the period

t ∈ [1 : 400] where under the NGARCH(1,2) ∼ NGARCH(1,1) pricing model, the
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NGARCH(1,2) model is used to model the returns process. In contrast the volatility

is assumed to be constant under the Black-Scholes and assuming one heteroscedastic

GARCH model under Heston-Nandi GARCH model fot t ∈ [1,754] yet the volatility

is high during t ∈ [1 : 400] and low during t ∈ [401 : 754] .

S0 Black-Scholes NGARCH(1,2)~NGARCH(1,1)
90 0.32034 0.43284
95 0.900067 1.38978

100 3.99578 4.00192
105 8.26304 8.55054
110 13.00850 13.1535

Table 8.4: Comparison of Call Option Prices for T = 754

Figure 8.3 shows a plot of the the option prices against moneyness for an early excerise

date at time t = 400. The black solid line, blue dotted line and red solid line represent

the option prices following the Black-Scholes model, Heston-Nandi GARCH model

and the NGARCH(1,2) ∼ NGARCH(1,1) model repectively. This follows parameter

estimates given in Tables 8.1 and 8.2 which yielded the prices in Table 8.3. From the

plot we see that the pricing models seem to converge when the option is in-the-money.

However, when the option is out-of-the-money, the NGARCH(1,2)∼ NGARCH(1,1)

model gives higher prices compared to the Black-Scholes and Heston-Nandi GARCH

models. This is attributed to the high volatility experienced in during the period

t ∈ [1 : 400] where under the NGARCH(1,2) ∼ NGARCH(1,1) pricing model, the

NGARCH(1,2) model is used to model the returns process. In contrast the volatility

is assumed to be constant under the Black-Scholes and assuming one heteroscedastic

GARCH model under Heston-Nandi GARCH model fot t ∈ [1,754] yet the volatility

is high during t ∈ [1 : 400] and low during t ∈ [401 : 754] .
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Figure 8.4: Plot of Option Prices against Moneyness for T = 400

Figure 8.4 shows a plot of the the option prices against moneyness for an early excerise

date at time t = 400. The black solid line and red solid line represent the option prices

following the Black-Scholes model and the NGARCH(1,2) ∼ NGARCH(1,1) model

repectively.
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Figure 8.5: Plot of Option Prices against Moneyness for T = 754

Figure 8.5 shows a plot of the the option prices against moneyness for an option ex-

cerised at the expiration date at time t = 754. The black solid line and red solid line rep-

resent the option prices following the Black-Scholes model and the NGARCH(1,2)∼

NGARCH(1,1) model repectively. From the plot we see that the pricing models are

equal at two points as the option approaches the at-the-money position. This is in con-

trast to the results obtained in Figure 8.4 where the NGARCH(1,2)∼ NGARCH(1,1)

model gives higher prices compared to the Black-Scholes when the option is out-of-

the-money and at-the-money. This is attributed to the lower volatility experienced

during the period t ∈ [401,754] where under the former model, volatility is modeled

using NGARCH(1,1) during that period. This in effect reduces the option pricess.
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However, when the option is out-of-the-money, the NGARCH(1,2)∼ NGARCH(1,1)

model gives higher prices compared to the Black-Scholes as was the case in Figure

8.4.

Suppose an investor instructs a broker to buy an KES/USD currency American call

option contract with a strike of Kes. 100 and an expiration date at T = 754. The broker

will release these instructions to a trader at the Securities Exchange. This trader will

find another trader who wants to sell a call option contract on the KES/USD currency

option with a strike price of Kes. 100 and a price will be agreed. For purposes of this

illustration, we ignore the bid-offer spread and assume that the prices are at 4.14853

or 4.59999 assuming the Black-Scholes and NGARCH(1,2)∼NGARCH(1,1) models

respectively as given in Table 8.3. These are the prices for an option to buy one unit. In

most markets however, an option contract is a contact to buy or sell 100 shares. There-

fore the investor who assumes a long position must arrange for 414.853 or 459.999

to be remmited to the exchange through the broker. The exchange will then arrange

for this amount to be passed on to the party on the other side of the transaction who

assumes the short position. As a result, the investor has obtained at a cost of 414.853

or 459.999 the right to but 100 units of the KES/USD currency American call option

for Kes. 100 each. The party on the other side of the transaction has received 414.853

or 459.999 and has agreed to sell 100 units of the KES/USD currency American call

option for Kes. 100 each if the investor chooses to exercise the option.

The investor wishes to exercise the option at time t = 400. If the KES/USD ex-

change rate has not risen above Kes. 100, the option is not exercised and the investor

ends up losing 414.853 or 459.999 under the Black-Scholes and NGARCH(1,2) ∼

NGARCH(1,1) pricing models repectively. However, if the KES/USD exchange rate

has risen above Kes. 100 to say Kes. 105, the investor is able to buy 100 units at

Kes. 100 each when they are worth Kes. 105. This results into a gain of 85.147 or

40.001 under the Black-Scholes and NGARCH(1,2) ∼ NGARCH(1,1) pricing mod-

els repectively. This indicates that the investor is likely to make more profit under
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the Black-Scholes pricing model as opposed to the NGARCH(1,2)∼ NGARCH(1,1)

model. However, the Black-Scholes model is homoscedastic and does not reflect the

true dynamics of volatility as displayed in Figure 8.1. In reality, the heteroscedas-

tic model NGARCH(1,2) ∼ NGARCH(1,1) model is more adequate to capture the

volatility dynamics inherent.

Suppose the same investor goes for a long position at a price of 414.853 in contract A

and a short position at a price 459.999 in contract B. Therefore, they will pay 414.853

for contract A and receive 459.999 for contract B. The investor wishes to exercise the

option at time t = 400. If the KES/USD exchange rate has not risen above Kes. 100,

the investor and the counter party will not excersise the options for contract A and

B respectively. This woul mean that the investor would lose 414.853 from contact A

but will retain 459.999 from contact B. As a result, the investor will make a profit of

45.146. On the other hand, if the KES/USD exchange rate has risen above Kes. 100

to say Kes. 105, the investor and the counter party would both exercise their options.

The investor would gain 85.147 from excersing contact A. However, they would lose

40.001 from contract B. Consequently, the investor would make a profit of 45.146.

Therefore by taking a long position on a call option assuming lower volatilty and a

short position assuming higher volatility results into the same profit whether the option

is in-the-money or out-of-the-money as demonstrated by the illustration above.

This is in contrast to assuming a long and a short position at the same price, say

459.999. If the KES/USD exchange rate does not rise above Kes. 100, the investor

will lose 459.999 assuming the long position and receive 459.999 assuming the short

position. This would result into zero profit. If the KES/USD exchange rate rises to

Kes. 105, the investor would make a profit of 40.001 assuming a long position and

a loss of 40.001 assuming a short position. This would result into zero profit. Thus,

the volatility dymanics will affect the profits realized. It is therefore important for a

investor trading in American options to consider change-points within the volatility

structure of a financial returns series when choosing an early exercise date.
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Chapter 9

CONCLUSION AND

RECOMMENDATIONS

9.1 Conclusion

In this thesis, a change-point estimator for estimating change attributed to change in

GARCH model order specification has been proposed. Given that plausible values for

the model orders p and q can be arrived at through inspection of sample autocorre-

lations and sample partial autocorrelations of a squared returns series it is hypothe-

sized that a change-point in a series occurs when the autocorrelation structure changes.

By the Holders Inequality it is shown that the autocorrelation function belongs to the

L1space and thus the Manhattan distance of sample autocorrelation is proposed as a

suitable divergence measure. Procedures are based on the sample autocorrelation func-

tion of squared series. Two sequences of autocorrelations with the same dimension are

obtained by sequentially dividing the series. A change-point process is generated by

assuming a lower bound of a weighted Manhattan distance of the two sequences. The

change-point estimator is the first point at which there is maximal sample evidence

for a break in the sample autocorrelation function given by the change-point process.

To facilitate the detection of multiple change-points, binary segmentation technique is
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applied to extend the single change-point detection algorithm.

Data is generated through Monte Carlo simulations under different GARCH modes

specifications. Plots of the autocorrelation functions for the simulated series are exam-

ined. A comparison of the autocorrelation function for GARCH(1,1) and GARCH(2,1)

reveals that the autocorrelation structure is different whether there is a change in model

order p. On comparing autocorrelation function for GARCH(1,1) and GARCH(1,2)

it is also revealed that the autocorrelation structure is different whether there is a

change in model order q. On further comparison of the autocorrelation function for

GARCH(1,1) and GARCH(3,3) it is revealed that the autocorrelation structure is dif-

ferent whether there is a change in both model orders p and q. These graphical results

are further reinforced by comparing the autocorrelation coefficients for different mod-

els across different lags.

The proposed estimator is also observed to correctly identify the change-points when

the true change-point is located in the middle of series and when the sample is large. To

affirm the performance of the estimator, the similarity index given by Adjusted Rand

Indices are utilized to compare the segmentation created by the proposed change-point

estimator and the true change-point where an index of one implies a perfect match

between segments. It is established that ARI increases and tends to one as the size

of change increases irrespective of the sample size and of the source of change. It is

observed that as the sample size increases, the ARI generally reduces for the proposed

estimator which indicates that testing for change in order p is most suitable for short-

term time horizon. It is however not clear of the trend in ARI as the sample size

increases when the change occurs in model order q, though the similarity index are

close to one as in the former case. When the change is attributed to both model order

p and q, it is seen that the estimator is more suitable for short-term time horizons and

for greater sizes of change.

It is however established that the change-point process generating the estimator is ran-

dom in nature does not conform to a known distribution. Histograms are utilized to
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assess the sampling distribution of the change-point estimator. It is observed that the

distribution is approximately Normal when the change-point is positioned at the middle

due to the equal distribution of tails to the left and to the right of the true change-point

irrespective of the source of change. However, when the change-point is positioned

quarter-way in the data, the distribution seems to be positively skewed as depicted by

the longer tail to the right of the true change-point. Conversely, the distribution is neg-

atively skewed when the changepoint is positioned three-quarters through the data as

shown by the longer tail to the left of the true change-point. In general, however, it

seen that the degree of skewness reduces as the size of model order change increases.

The asymptotic consistency of the estimator is prooven theoretically based on some

properties specific to sequence of stationary random variables with finite second and

fourth moments. A condition is established under the probability of observing values

outside this true change-point will tend to zero as the sample size increases. By the

consistency of the proposed estimator, it means that the estimates converge to the true

change-point parameter.

The limit theory of the process generating the estimator is also established. The general

theory of the sample autocovariance and sample autocorrelation functions of a station-

ary GARCH process forms the basis. Specifically the point processes theory is utilized

to obtain their weak convergence limit at different lags. This is further extended to the

change-point process. The limits are found to be generally random as a result of the

infinite variance.

The research culminates with the application of the change-point estimator in pric-

ing American options. The estimator is applied to geometric returns of KES/USD

exchange rate data where the series is found to have multiple change-points with

two change-points being estimated. Suitable GARCH models are fitted following

the estimated change-points and consequently used to model volatility when pricing

the American options with the identified change-points as the possible early exercise

dates. Comparison is made between the performance of the fitted GARCH models and
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Black-Scholes model by examining plots of the option prices against moneyness. It

is observed that the two pricing models are equal at as the option is at at-the-money

position. The fitted piecewise GARCH model gives higher prices compared to the

Black-Scholes when the option is out-of-the-money. The prices are very close when-

the option is in-the-money which could be attributed to volatility change in the series.

Thus, the volatility dymanics affect the prices of options. It is therefore important for

a investor trading in American options to consider changepoints within the volatility

structure of a financial returns series when choosing an early exercise date.

In conclusion the estimator is deemed to correctly estimate the change-point when the

source of change is in the model order p. This could be linked to the fact that the

sample autocorrelation function is used in determining the model order p and not q.

In addition the estimator works best when the change-point is located at the middle

of a sample probably because there is ample data for estimation before and after the

change-point. Although the estimator yield ARI close to one irrespective of the sample

size, it is seen that the estimator is more suitable for short-term time horizons.

9.2 Recommendation

It should be noted that the proposed estimator only looks at estimation of the change-

point when the series is departing from GARCH(1,1) to any other GARCH(p,q) mod-

els. Future research should look into generalizing this work so as to examine de-

parture from other model order specification other that GARCH(1,1) such as from

GARCH(p,q) to GARCH(p∗,q∗) where (p,q) 6= (1,1) and (p∗,q∗) 6= (1,1).

The estimator has been applied to historical data only. We recommend the applica-

tion of the estimator to forecasted non-stationary series to enable estimation of future

change-points. The foreseen challenge here in would be that with the relaxation of the

stationarity assumption as specified in (3.7) would result into generation of different

non-stationary series. It would be therefore of interest to establish if the the estimator

123



converges to some point given the non-stationary series with increased simulations.

It was also established that the estimator works best when the source of change is in

model order p. This is attibuted to the fact that the estimator is based on the Manhattan

distance of the sample autocorrelation function yet the sample autocorrelation is used

in determining the model order p. Given that the model order q is drawn from the

sample partial autocorrelation function, we recommend that proposed estimator should

be extended to also incorporate the partial autocorrelation function.

From the assessment of the histograms it was established that the sampling distribu-

tion of the change-point estimator is approximately normal when the change-point is

located at the middle of the series but skewed as the change-point moves away from

the middle. Further studies can be carried out to look into the sampling distribution of

the change-point estimator k∗.

The asymptotic behavior of the change-point process is established on the basis of

examining the asymptotic behavior of the sample autocovariance and sample autocor-

relation functions. The limits of the sample autocovariance and sample autocorrelation

functions are expressed in terms of the limiting point processes. The limit distribu-

tions are the difference of ratios of the infinite variance stable vectors or functions of

such vectors. As a result, determination of the quantiles from the limit distributions is

difficult. The limits are also generally random as a result of the infinite variance. Fu-

ture work will be aimed at identifying the limit distributions so as to make the results

directly applicable for hypothesis testing purposes.
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Appendix A

APPENDIX OF THEOREMS

In addition to the previously stated Theorems 15 to 16 on point processes, the following

additional Theorems are utilized in the proof of the Proposition 2.

Theorem 21. (Bolzano-Weierstrass)

Let {An}n∈N be a sequence of real numbers that is bounded. Then there exists a sub-

sequence {Ank}nk∈N that converges.

Proof. For proof os this Theorem, see Oman (2017).

Theorem 22. (Invariance property of subsequences)

If {An}n∈N is a convergent sequence, then every subsequence of that sequence con-

verges to the same limit.

Proof. For proof os this Theorem, see Ponnusamy (2012).

Theorem 23. (Algebra on Sequences)

If the sequences {An}n∈N converges to L and {Bn}n∈N converges to M then the follow-

ing hold:

(i) lim
n→∞

(An +Bn) = lim
n→∞

An+ lim
n→∞

Bn = L+M
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(ii) lim
n→∞

(An ·Bn) = lim
n→∞

An lim
n→∞

Bn = L ·M

if Bn 6= 0, ∀n ∈ N and M 6= 0 then

(iii) lim
n→∞

An
Bn

=
lim

n→∞
An

lim
n→∞

Bn
= L

M

Proof. For proof os this Theorem, see Shinazi (2012).

Theorem 24. (Continuous Mapping)

Let a function g : Rk→Rm be continous in every point of a set C such that P(X ∈C) =

1. Then if Xn→ X then g(Xn)→ g(X).

Theorem 25. (Algebra on Series)

Let ∑An and ∑Bn be two absolutely convergent series. Then:

(i) the sum of the two series is again absolutely convergent. Its limit is the sum of

the limit of the two series.

(ii) the difference of the two series is again absolutely convergent. Its limit is the

difference of the limit of the two series.

product of the two series is again absolutely convergent. Its limit is the product

of the limit of the two series.

Proof. For proof os this Theorem, see Ponnusamy (2012).

Theorem 26. (Convergent sequences are bounded)

Let {An}n∈N be a convergent sequence. Then the sequence is bounded and the limit is

unique.

Theorem 27. Let {Xt}t∈N be a strictly stationary sequence. Define the partial sums of

the sequence by Sn = ∑
n
t=1 Xt .
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(i) if κ ∈ (0,2) then

a−1
n Sn

d→ S (A.1)

where S = ∑
∞
i=1 ∑

∞
j=1 PiQi j has a stable distribution

κ ∈ (2,4) and for all ε > 0, lim
ε→0

lim
n→∞

sup P [|Sn(0,δ ]−ESn(0,δ ]|> ε] = 0 then

a−1
n Sn−ESn(0,1]

d→ S (A.2)

where S is the distributional limit of

∞

∑
i=1

∞

∑
j=1

PiQi jI{|PiQi j|>anδ}−}δ<|x|≤1xµ (dx) (A.3)

as δ → 0, µ is the measure in section 2.1 which has a stable distribution.

For every δ > 0, the mapping from M in section 2.1 into R is defined by

T :
∞

∑
t=1

εxt →
∞

∑
t=1

xtI{|xt |>δ}

and is almost surely continous with respect to the point process N. Thus by con-

tinous mapping theorem 24

Sn (δ ,∞) = T (Nn)
d→ T (N) = S (δ ,∞) (A.4)

As δ → 0, S (δ ,∞)→ S (0,∞) = ∑
∞
i=1 ∑

∞
j=1 PiQi j
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Appendix B

APPENDIX OF ALGORITHMS

LIST OF ALGORITHMS B.1 Simulating Stationary GARCH (3,3) Model with no
change-point
#———————-Simulating GARCH(3,3)with no change point ———————-#
RR=1000
#mu=-8.135e-05
omega=6.015e-07
alpha1=2.3945e-01
alpha2=2.097e-01
alpha3=1.589e-01
beta1=1.011e-01
beta2=1.523e-01
beta3=1.034e-01
epsilon=rnorm(RR,mean=0,sd=1)
wwt=rep(0,RR)
sigma=rep(0,RR)
for(i in 4:RR) {
sigma[i]=omega+(alpha1*(wwt[i-1]^2))+(alpha2*(wwt[i-2]^2))+(alpha3*(wwt[i-
3]^2)) +(beta1*sigma[i-1])+(beta2*sigma[i-2])+(beta3*sigma[i-3])
wwt[i]=(epsilon[i]*sqrt(sigma[i])) }
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LIST OF ALGORITHMS B.2 Simulating Stationary GARCH(4,4) Models with no
change-point
#———————-Simulating GARCH(4,4)with no change point ———————-#
RRR=1000
#mu=-8.135e-05
omega=6.015e-07
alpha1=2.689e-01
alpha2=1.078e-01
alpha3=1.536e-01
alpha4=1.240e-01
beta1=5.985e-02
beta2=1.598e-01
beta3=1.013e-01
beta4=5.679e-02
epsilon=rnorm(RRR,mean=0,sd=1)
wwttw=rep(0,RRR)
sigma=rep(0,RRR)
for(i in 5:RRR) {
sigma[i]=omega+(alpha1*(wwttw[i-1]^2))+(alpha2*(wwttw[i-
2]^2))+(alpha3*(wwttw[i-3]^2))
+(alpha4*(wwttw[i-4]^2))+(beta1*sigma[i-1])+(beta2*sigma[i-2])+(beta3*sigma[i-
3]) +(beta4*sigma[i-4]) wwttw[i]=(epsilon[i]*sqrt(sigma[i])) }
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LIST OF ALGORITHMS B.3 Simulating Stationary GARCH Models with single
change-point
#Simulating GARCH(1,1)with one change point with respect to change of order
N=1000
omega=6.004e-07
alpha1=3.414e-01
beta1=7.287e-01
beta2=3.075e-01
epsilon1=rnorm(500)
epsilon2=rnorm(500)
series=rep(0,1000)
xt=rep(0,500)
yt=rep(0,500)
sigma1=rep(0,500)
sigma2=rep(0,500)
for(k in 1:1000){
for(i in 2:(500)) {
sigma1[i]=omega+(alpha1*(xt[i-1]^2))+(beta1*sigma1[i-1])
xt[i]=epsilon1[i]*sqrt(sigma1[i]) }
for(j in 503:1000) {
sigma2[j]=omega+(alpha1*(yt[j-1]^2))+(beta1*sigma2[j-1])+(beta2*sigma2[j-2])
yt[j]=epsilon2[j]*sqrt(sigma2[j]) }
series[k]=c(xt[i],y[j])}
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LIST OF ALGORITHMS B.4 Autocorrelation and Partial Autocorrelation for model
order change (p,q)
#———————-Change in ACF for model order change (p,q)———————-#

rhoo11=acf((xxt^2),lag.max=10)
rhoo22=acf((wwt^2),lag.max=10)
rhoo33=acf((wwtt^2),lag.max=10)
rhoo44=acf((wwttww^2),lag.max=10)
Lagg=round(rhoo11$lag,2)
ACF11=round(rhoo11$acf,2)
ACF22=round(rhoo22$acf,2)
ACF33=round(rhoo33$acf,2)
ACF44=round(rhoo44$acf,2)
diff22=ACF11-ACF22
diff33=ACF11-ACF33
diff44=ACF11-ACF44
data.frame(Lagg,ACF11,ACF22,ACF33,ACF44,diff22,diff33,diff44)
#———————-Change in PACF for model order change (p,q)———————-#
prhoo11=pacf((xxt^2),lag.max=10)
prhoo22=pacf((wwt^2),lag.max=10)
prhoo33=pacf((wwtt^2),lag.max=10)
prhoo44=pacf((wwttww^2),lag.max=10)
Lagg=round(prhoo11$lag,2)
PACF11=round(prhoo11$acf,2)
PACF22=round(prhoo22$acf,2)
PACF33=round(prhoo33$acf,2)
PACF44=round(prhoo44$acf,2)
pdiff22=PACF11-PACF22
pdiff33=PACF11-PACF33
pdiff44=PACF11-PACF44
data.frame(Lagg,PACF11,PACF22,PACF33,PACF44,pdiff22,pdiff33,pdiff44)
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LIST OF ALGORITHMS B.5 Autocorrelation and Partial Autocorrelation for model
order change p and q

#———————-Change in ACF for model order change (p)———————-#
rhoo11=acf((xxt^2),lag.max=10)
rhoo21=acf((zzt^2),lag.max=10)
rhoo31=acf((zztt^2),lag.max=10)
rhoo41=acf((zzttz^2),lag.max=10)
Lagg=round(rhoo11$lag,2)
ACF11=round(rhoo11$acf,2)
ACF21=round(rhoo21$acf,2)
ACF31=round(rhoo31$acf,2)
ACF41=round(rhoo41$acf,2)
diff21=ACF11-ACF21
diff31=ACF11-ACF31
diff41=ACF11-ACF41
data.frame(Lagg,ACF11,ACF21,ACF31,ACF41,diff21,diff31,diff41)

#———————-Change in ACF for model order change (q)———————-#
## change in ACF for model order change (q)
rhoo11=acf((xxt^2),lag.max=10)
rhoo12=acf((zzt^2),lag.max=10)
rhoo13=acf((zztt^2),lag.max=10)
rhoo14=acf((zzttz^2),lag.max=10)
Lagg=round(rhoo11$lag,2)
ACF11=round(rhoo11$acf,2)
ACF12=round(rhoo12$acf,2)
ACF13=round(rhoo13$acf,2)
ACF14=round(rhoo14$acf,2)
diff12=ACF11-ACF12
diff13=ACF11-ACF13
diff14=ACF11-ACF14
data.frame(Lagg,ACF11,ACF12,ACF13,ACF14,diff12,diff13,diff14)
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LIST OF ALGORITHMS B.6 Change-Point Detection Dependent functions
#———————-Creating an acf function for lag 1———————-#

ACFFF=function(x) {
mu=mean(x)
num<-c(0)
denom<-c(0)
n=length(x)-1
for(i in 1:n) {
num[i]=((x[i+1]-mu)*(x[i]-mu))
denom[i]=((x[i]-mu)^2)
numerator=sum(num)
denominator=sum(denom) }
return(numerator/denominator) }
ACFFF(x)

#———————-Trimmer for stabilizing process———————-#
trimmed<-function(Dk,tr){
n<-length(Dk)
trim<-c()
for(i in 1:n) {
if(i>(tr*n)&(i<=((1-tr)*n))) {
trim[i]<-Dk[i] }else{"NA"} }
return(trim) }
#trimmed(Dk,tr=0)

#———————-Change-Point Position———————-#
ChangePoint<-function(DkReal,Dn) {
postn<-c(0)
for(j in 1:length(DkReal)) {
if(DkReal[j]!=Dn)
next print(paste("The change point is",j))
postn<-j }
return(postn) }
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LIST OF ALGORITHMS B.7 Change-Point Detection
#———————-Change-Point Detection———————-#

library(KernSmooth) library(timeDate) library(timeSeries)
change<-function(x) {
n=length(x)-1
Dk<-c(0)
DkReal<-c()
for(i in (1+1):n) {
Dk[i]<-(abs(ACFFF(x[1:i])-ACFFF(x[(i+1):n])))
DkReal<-substituteNA(Dk,type="mean",interp=linear)
DkTrim<-trimmed(Dk,tr=0.10)
}
position<-ChangePoint(DkReal,Dn)
#return(plot(density(trimmed(Dk,tr=0.20),bw=band,kernel="cosine",na.rm =
TRUE),type="l"))
#return(plot(trimmed(Dk,tr=0.20),type="l",xlab="Time",
#ylab="Dk",main="Absolute Difference of ACF"))
return(Dn, position)
}
x<-xxt^2
change(x)
plot(series,type="l",panel.first = grid(10, lty = 5, lwd = 2),
xlab="Time",ylab="Xt",main="GARCH(1,1) and GARCH(1,2)")
abline(v=c(400,754),col=’blue’) # change-points detected

141



LIST OF ALGORITHMS B.8 Edivisive Change-point Detection
library(Rcpp) library(ecp)
#method:e.divisive
series1<-matrix(c(xxt[1:1000],yyt[1:1000]),ncol=1)
series2<-matrix(c(xxt[1:1000],yytt[1:1000]),ncol=1)
series3<-matrix(c(xxt[1:1000],yytty[1:1000]),ncol=1)
series4<-matrix(c(xxt[1:1000],zzt[1:1000]),ncol=1)
series5<-matrix(c(xxt[1:1000],zztt[1:1000]),ncol=1)
series6<-matrix(c(xxt[1:1000],zzttz[1:1000]),ncol=1)
series7<-matrix(c(xxt[1:1000],wwt[1:1000]),ncol=1)
series8<-matrix(c(xxt[1:1000],wwtt[1:1000]),ncol=1)
series9<-matrix(c(xxt[1:1000],wwttww[1:1000]),ncol=1)
output1 <- e.divisive(series1, R = 100, alpha = 2)
output2 <- e.divisive(series2, R = 100, alpha = 2)
output3 <- e.divisive(series3, R = 100, alpha = 2)
output4 <- e.divisive(series4, R = 100, alpha = 2)
output5 <- e.divisive(series5, R = 100, alpha = 2)
output6 <- e.divisive(series6, R = 100, alpha = 2)
output7 <- e.divisive(series7, R = 100, alpha = 2)
output8 <- e.divisive(series8, R = 100, alpha = 2)
output9 <- e.divisive(series9, R = 100, alpha = 2)
output1$estimates
output2$estimates
output1$k.hat
output1$order.found
output1$considered.last
output1$p.values
ts.plot(series,ylab=’Value’,main=’Change in a Stationary GARCH Sequence’)
#alpha:The moment index used for determining the distance #between and within seg-
ments.
# change-points detected for alpha=2 abline(v=c(1016,1754),col=’blue’)
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LIST OF ALGORITHMS B.9 Adjusted Rand Index for eDivisive Method
#N=2000 ##output given for series
series1<-c(xxt,yyt)##changepoints:1003
series2<-c(xxt,yytt)##changepoints:1008
series3<-c(xxt,yytty)##changepoints:1006
series4<-c(xxt,zzt)##changepoints:1003
series5<-c(xxt,zztt)##changepoints:1005
series6<-c(xxt,zzttz)##changepoints:1005
series7<-c(xxt,wwt)##changepoints:1004
series8<-c(xxt,wwtt)##changepoints:1004
series9<-c(xxt,wwttww)##changepoints:1006
xt<-xxt
U11<-xt[1:1003]
U22<-xt[1:1008]
U33<-xt[1:1006]
U44<-xt[1:1003]
U55<-xt[1:1005]
U66<-xt[1:1005]
U77<-xt[1:1004]
U88<-xt[1:1004]
U99<-xt[1:1006]
V11<-series1[1:1003]
V22<-series2[1:1008]
V33<-series3[1:1006]
V44<-series4[1:1003]
V55<-series5[1:1005]
V66<-series6[1:1005]
V77<-series7[1:1004]
V88<-series8[1:1006]
V99<-series9[1:266]
RAND11 <- adjustedRand(U11,V11)
RAND22 <- adjustedRand(U22,V22)
RAND33 <- adjustedRand(U33,V33)
RAND44 <- adjustedRand(U44,V44)
RAND55 <- adjustedRand(U55,V55)
RAND66 <- adjustedRand(U66,V66)
RAND77 <- adjustedRand(U77,V77)
RAND88 <- adjustedRand(U88,V88)
RAND99 <- adjustedRand(U99,V99)
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LIST OF ALGORITHMS B.10 Adjusted Rand Index for eDivisive Method
#N=2000 ##output given for series
series1<-c(xxt,yyt)##changepoints:1003
series2<-c(xxt,yytt)##changepoints:1008
series3<-c(xxt,yytty)##changepoints:1006
series4<-c(xxt,zzt)##changepoints:1003
series5<-c(xxt,zztt)##changepoints:1005
series6<-c(xxt,zzttz)##changepoints:1005
series7<-c(xxt,wwt)##changepoints:1004
series8<-c(xxt,wwtt)##changepoints:1004
series9<-c(xxt,wwttww)##changepoints:1006
xt<-xxt
U11<-xt[1:1003]
U22<-xt[1:1008]
U33<-xt[1:1006]
U44<-xt[1:1003]
U55<-xt[1:1005]
U66<-xt[1:1005]
U77<-xt[1:1004]
U88<-xt[1:1004]
U99<-xt[1:1006]
V11<-series1[1:1003]
V22<-series2[1:1008]
V33<-series3[1:1006]
V44<-series4[1:1003]
V55<-series5[1:1005]
V66<-series6[1:1005]
V77<-series7[1:1004]
V88<-series8[1:1006]
V99<-series9[1:266]
RAND11 <- adjustedRand(U11,V11)
RAND22 <- adjustedRand(U22,V22)
RAND33 <- adjustedRand(U33,V33)
RAND44 <- adjustedRand(U44,V44)
RAND55 <- adjustedRand(U55,V55)
RAND66 <- adjustedRand(U66,V66)
RAND77 <- adjustedRand(U77,V77)
RAND88 <- adjustedRand(U88,V88)
RAND99 <- adjustedRand(U99,V99)
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LIST OF ALGORITHMS B.11 Histograms
data=read.csv("D:\\PhD_PAU\\HISTOGRAM.csv",header=TRUE)
k500=data$K500 k750=data$k750 k250=data$k250
hist(k250, breaks = 10, plot = TRUE, xlim=c(0,1000), xlab="change-point
k",main="Histogram for k=250")
hist(k500, breaks = 10, plot = TRUE,xlim=c(0,1000), xlab="change-point
k",main="Histogram for k=500")
hist(k750, breaks = 10, plot = TRUE,xlim=c(0,1000), xlab="change-point
k",main="Histogram for k=750")
k250pq=data$k250pq k500pq=data$k500pq k750pq=data$k750pq
hist(k250pq, breaks = 10, plot = TRUE,xlim=c(0,1000), xlab="change-point
k",main="Histogram for k=250")
hist(k500pq, breaks = 10, plot = TRUE,xlim=c(0,1000), xlab="change-point
k",main="Histogram for k=500")
hist(k750pq, breaks = 10, plot = TRUE,ylim=c(0,400),xlim=c(0,1000), xlab="change-
point k",main="Histogram for k=750")
k500p=data$k500p k500q=data$k500q
hist(k500p, breaks = 10, plot = TRUE,xlim=c(0,1000), xlab="change-point
k",main="Histogram for change in p")
hist(k500q, breaks = 10, plot = TRUE,xlim=c(0,1000), xlab="change-point
k",main="Histogram for change in q")
library(tcltk) library(asbio)
skew(k250,method="unbiased") skew(k500,method="unbiased")
skew(k750,method="unbiased")
skew(k250pq,method="unbiased") skew(k500pq,method="unbiased")
skew(k750pq,method="unbiased")
skew(k500p,method="unbiased") skew(k500q,method="unbiased")
kurt(k250,method="unbiased") kurt(k500,method="unbiased")
kurt(k750,method="unbiased")
skew(k500p,method="unbiased") skew(k500q,method="unbiased")
skew(k500pq,method="unbiased")
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LIST OF ALGORITHMS B.12 Exchange-Rate Data
data=read.csv("D:\\PhD_PAU\\ExchangeRate.csv",header=TRUE)
xt=log(data[2:2000]/data[1:1999])
plot(xt,type="l",panel.first = grid(10, lty = 5, lwd = 2))

#——-Comparing the acf and pacf of (xt*xt) to determine model orders——-#
par(mfrow=c(2,2)) par(new=TRUE)
acf(xt*xt)
pacf(xt*xt)
rhoo=acf(xt^2,lag.max=10)
Lagg=round(rhoo$lag,2)
ACF=round(rhoo$acf,2)
data.frame(Lagg,ACF)
prhoo=pacf(xt^2,lag.max=10)
Lagg2=round(rhoo2$lag,2)
PACF=round(rhoo2$acf,2)
data.frame(Lagg2,PACF)

#——-Fitting a GARCH Model to Exchage Rate Time Series——-#
#load: fGarch, fBasics, timeDate, timeSeries
library(timeDate)
library(timeSeries)
library(fBasics)
library(fGarch)
output1<-garchFit(formula=~garch(1,1),data=xt,include.mean =
TRUE,cond.dist="QMLE")
output2<-garchFit(formula=~garch(1,2),data=xt,include.mean =
FALSE,cond.dist="QMLE")
output3<-garchFit(formula=~garch(2,1),data=xt,include.mean =
FALSE,cond.dist="QMLE")
output4<-garchFit(formula=~garch(2,2),data=xt,include.mean =
FALSE,cond.dist="QMLE")
output5<-garchFit(formula=~garch(4,1),data=xt,include.mean =
FALSE,cond.dist="QMLE")

#———————-Change-Point Detection———————-#
x<-xt^2
change(x)
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LIST OF ALGORITHMS B.13 Black-Scholes and Heston-Nandi GARCH Option
Pricing
modell = list(lambda = 4, omega = 8e-5, alpha = 6e-5, beta = 0.7, gamma = 0, rf = 0)
# HN-GARCH log likelihood Parameter Estimation:
mle = hngarchFit(model = modell, x = rtt, symmetric = TRUE)
summary.hngarch(mle)
## summary.hngarch - # HN-GARCH Diagnostic Analysis:
par(mfrow = c(3, 1), cex = 0.75)
summary(mle)
## hngarchStats - # HN-GARCH Moments:
hngarchStats(mle$model)
modelfit = list(lambda = -2.705e+01, omega = 7.296e-13, alpha = 3.553e-06, beta =
7.694e-01, gamma = 0.000e+00)
S = 90 X = 100 Time.inDays = 252 r.daily = 0.03/Time.inDays
sigma.daily = sqrt((modelfit$omega + modelfit$alpha) / (1 - modelfit$beta - mod-
elfit$alpha * modelfit$gamma^2))
data.frame(S, X, r.daily, sigma.daily)
library(timeDate) library(timeSeries) library(fBasics) library(fOptions) library(zoo) li-
brary(xts)
## HNGOption - # Compute HNG Call-Put and compare with GBS Call-Put:
HNG = GBS = Diff = NULL for (TypeFlag in c("c",))
{ HNG = c(HNG, HNGOption(TypeFlag, model = modelfit, S = S, X = X, Time.inDays
= Time.inDays, r.daily = r.daily)$price )
GBS = c(GBS, GBSOption(TypeFlag, S = S, X = X, Time = Time.inDays, r = r.daily,
b = r.daily, sigma = sigma.daily)$price) }
Options = cbind(HNG, GBS, Diff = round(100*(HNG-GBS)/GBS, digits=2))
row.names(Options) <- c("Call")
data.frame(Options)

#———————-Plots for Option Prices against Moneyness———————-#
option=read.csv("D:\\PhD_PAU\\OptionPrices.csv",header=TRUE)
plot(lowess(option$BS~option$moneyness,f=0.2),type="l",panel.first = grid(10, lty =
5, lwd = 2))
lines(lowess(option$NS~option$moneyness, f=0.2),type="l",col="red",lty=1,panel.first
= grid(10, lty = 5, lwd = 2))
lines(lowess(option$HN~option$moneyness,f=0.2),type="l",col="blue",lty=8,panel.first
= grid(10, lty = 5, lwd = 2))
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LIST OF ALGORITHMS B.14 Simulated GARCH Option Pricing
X0=100
K=100
T=252
r=0.05/T
Time.to.maturity=252
sims<-function() {
sim11<-c() sim12<-c() sum<-c()
for(i in 1:10000){
spec11 = garchSpec(model = list(omega = 0.000000067352, alpha = 0.1, beta
=0.58934))
sim11[i]<-as.numeric(garchSim(spec11, n = 10000))
spec12= garchSpec(model = list(omega=7.311741e-07,alpha = 0.1, beta =
c(3.282616e-01, 3.077644e-01)))
sim12[i]<-as.numeric(garchSim(spec12, n = 10000)) sum[i]<-
sum(c(sim12[i],sim11[i])) } return(X0*exp(sum)) }
sims()
Call_Price<-function(X0,K,r,T) {
X_T=sims()
for(i in 1:10000) {
payoff[i]<-max(X_T[i]-K,0)
} mu<-mean(payoff)
call.price<-(exp(-r*T))*mu return(call.price) }
Call_Price(X0,K,r,T)
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