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Abstract
The unsteady two-dimensional Jeffery-Hamel laminar flow of an incompressible non-Newtonian

fluid, with nonlinear viscosity, flowing through a divergent wedge-shaped in the presence of a

constant applied magnetic field in the direction perpendicular to the fluid motion has been studied.

The resulting nonlinear PDEs (partial differential equations) governing this flow are reduced to a

system of nonlinear ODEs (ordinary differential equations) by the similarity transformation

technique. The resulting boundary value problem is solved numerically using the collocation method

and simulated using MൺඍLൺൻ with the help of the bvp4c inbuilt function to obtain the profiles. The

effects of varying the Reynolds number, Hartmann number, Prandtl number, Eckert number, and the

unsteadiness parameter on the fluid velocity, fluid temperature, skin-friction coefficient, and rate of

heat transfer are presented in graphs and tables; and are discussed. The results obtained indicate that

there are significant effects of flow parameters on the flow variables. For instance, the effect of

increasing viscous dissipation parameter (Eckert number) increases the fluid temperature which is

significant in high-temperature processes such as polymer processing. This study provides useful

information for engineering, technological, and industrial applications such as in hydromagnetic

power generators.

xiv



Chapter 1

Introduction

A fluid refers to any substance that undergoes continuous deformation when subjected to a shearing

stress of any magnitude. The shearing stress (i.e., force per unit area) is created whenever a tangential

force acts on a surface. Fluid mechanics refers to the study of fluid motion and the forces that cause

the motion. This study is divided into two branches, i.e., fluid kinematics and fluid dynamics.

Fluid kinematics is a branch of fluid mechanics which studies the motion of the fluid. It deals with the

quantities involving space and time only (i.e., fluid velocity and acceleration) and their distribution in

space.

Fluid dynamics is a branch of fluid mechanics which studies the forces that cause the motion of the

fluid. These forces are classified as body forces, surface forces, and line forces. Body forces are

forces which act on the fluid particles from a distance without physical contact (e.g., gravitational

force, magnetic force, electrostatic force). Surface forces are the forces which are exerted on the area

element by the surrounding through direct contact. They are as a result of the interaction between

the fluid and its surrounding. Therefore, these forces act at the surface of the fluid element. They

are directly proportional to the extent of the area and are expressed per unit area. These forces can

be resolved into two components, one along the normal to an elemental area and the other along the

tangential plane of the elemental area (e.g., shear forces, pressure gradient). Line forces act along a

line (e.g., surface tension force).

Fluids are classified into two, incompressible and compressible fluids. A fluid is said to be

incompressible if its density does not change significantly with change in pressure or temperature

(i.e., the density is assumed to be constant). Otherwise, the fluid is said to be compressible.
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1.1 Background of the study

The study of fluid flow through a convergent or divergent wedge-shaped has been of much interest by

various researchers due to the wide range of applications in the field of engineering and technology.

Mathematical formulation of viscous fluid flow in a wedge-shaped passage was pioneered by Jeffery

(1915) and Hamel (1917). Therefore, this type of flow is referred to as the Jeffery-Hamel flow. Thus,

Jeffery-Hamel flow refers to a convergent or divergent flowwith a source or sink of fluid volume at the

point of intersection of two plane walls. Figure 1.1 shows the geometry of a divergent Jeffrey-Hamel

flow with a radial motion.

A non-Newtonian fluid is a fluid whose coefficient of viscosity is a variable. In practice, many fluid

materials exhibit non-Newtonian fluid behavior such as: salt solutions, toothpaste, starch suspensions,

paint, blood, and shampoo (Nguyen and Nguyen, 2012). It is important to note here that, many fluids

of industrial importance are non-Newtonian. In real industrial applications, non-Newtonian fluids

are more appropriate than Newtonian fluids due to their applications in petroleum drilling, polymer

processing, certain separation processes, manufacturing of foods and paper, and some other industrial

processes (Arthur et al., 2015).

The theory of magnetohydrodynamics (MHD) involves electromagnetic induction in a moving

electrically conducting fluid in the presence of an applied magnetic field. Such induction exerts a

force on ions of the electrically conducting fluid. The description is as follows: if an electrically

conducting fluid is placed in a constant magnetic field, the motion of the fluid induces currents

which create forces on the fluid. The production of these currents has led to their use in engineering

and industrial applications (Manyonge et al., 2012). The theoretical study of MHD flow has been a

subject of great interest due to its extensive applications in engineering processes such as in MHD

power generators for electricity production, accelerators, MHD pumps, MHD flow meters,

electrostatic filters, the design of cooling systems with liquid metals, and in geothermal power

stations (Mukhopadhyay, 2012; Rostami et al., 2014). Considerable efforts have been made to study

the MHD theory for technological application of fluid pumping system in which electrical energy

forces the working of electrically conducting fluid.

Hydromagnetic Jeffery-Hamel flow has gained considerable attention due to its applications in

2



industrial and biological sciences. Moreover, the heat and mass transfer analysis play a vital role in

the handling and processing of non-Newtonian fluids. The radiative effects have important

applications in Physics and engineering processes. The radiations due to heat transfer effects on

different flows are very important in space technology and high-temperature processes. Thermal

radiation effects may play an important role in controlling heat transfer in polymer processing

industry where the quality of the final product depends on the heat and mass controlling factors.

High-temperature plasmas, cooling of nuclear reactors, and power generation systems are some

important applications of radiative heat transfer (Pramanik, 2014). The consideration of MHD flow

in a conduit is quite significant in crystal growth, the design of medical diagnostic devices, control of

liquid metal flows, etc. Furthermore, several engineering processes such as fossil fuel combustion

energy, astrophysical flows, gas turbines, solar power technology and many propulsion devices for

aircraft, satellites, missiles, and space vehicle occur at high temperatures and hence thermal radiation

effect becomes important. In particular, thermal radiation has a central role in engineering processes

occurring at high temperature for the design of many advanced energy conversion systems and

pertinent equipment (Poor et al., 2014).

Figure 1.1: Geometry of the problem (Khan et al., 2013)

3



1.2 Definition of Terms

1.2.1 Wedge angle parameter

For the total angle 2ϖ of the wedge, 2ϖ = επ. The wedge angle parameter is given by

ε = 2m
m+ 1

, (1.2.1)

wherem is an arbitrary constant that is related to the wedge angle.

1.2.2 Power law model

This model is also known as Ostwald-de Waele model. Power-law fluid is a type of generalized

Newtonian fluid for which the shear stress, τ , is given by

τ = µ0

(
du

dy

)n−1
du

dy
, (1.2.2)

where
du

dy
is the shear rate (or velocity gradient) perpendicular to the plane of shear, µ0 is the fluid

consistency coefficient, and n is the flow behaviour index. Equation (1.2.2) is useful because of its

simplicity but only approximately describes the behaviour of a real non-Newtonian fluid.

The quantity

µ = µ0

(
du

dy

)n−1

(1.2.3)

represents an apparent viscosity as a function of the shear rate (SI unit Pa s). Power-law fluids can be

classified into either Newtonian or non-Newtonian based on the value of their flow behavior index,

n. If n = 1, then the fluid is said to be Newtonian since the viscosity is a constant. If otherwise, the

fluid is said to be non-Newtonian. Non-Newtonian fluids can further be classified into two categories:

pseudoplastic and dilatant. A fluid in which n < 1 is called pseudoplastic, i.e., the fluid exhibits shear-

thinning properties (e.g., blood, milk) while a fluid in which n > 1 is called dilatant, i.e., the fluid

shows shear-thickening behavior (e.g., sugar solution). The present study is devoted to a dilatant.

4



1.2.3 Laminar and Turbulent flow

Fluid flow is said to be laminar if the paths followed by the fluid particles as they move do not cross

one another (i.e., the particles move in layers). In turbulent flow, the particles moves in a zigzag way.

Laminar and turbulent flows are characterized by the value of the Reynolds number which is defined

as the ratio of inertia force to the viscous force.

1.2.4 Steady and Unsteady flow

Fluid flow is said to be unsteady if all the flow variables (e.g., velocity, pressure, temperature) depend

on time (i.e.,
∂Ξ
∂t

̸= 0). If the fluid properties at a point in the system do not change over time, the

flow is said to be steady (i.e.,
∂Ξ
∂t

= 0).

The present study considers an unsteady flow. A constant unsteadiness parameter, λ, is usually

introduced in the equations governing the unsteady flow of fluids in order to account for the time

factor. According to Rahman et al. (2016), this parameter is defined as follows:

λ = ρδm

µrm−1
dδ

dt
, (1.2.4)

where δ represents the time-dependent length scale, m is an arbitrary constant that is related to the

wedge semi-angle, and r is the radial distance. This parameter makes the governing equations locally

similar. It is noted that λ = 0 implies that the flow is steady.

1.2.5 Magnetohydrodynamics

The word magnetohydrodynamics (MHD) comprises of the words magneto- meaning magnetic,

hydro- meaning liquid, and dynamics- meaning the movement of an entity when subjected to some

forces. Thus MHD is a branch of science that deals with the study of the motion of fluid when a

magnetic field is applied. It is also referred to as hydromagnetics. The interaction between electric

and magnetic fields is referred to as electromagnetism.

If an electrically conducting fluid (e.g., plasma, liquid metals) flows in presence of a magnetic field,

there arises an interaction between the flow field and the magnetic field. The magnetic field exerts

5



a force (i.e., mechanical force) on the fluid due to the induced electric current. The induced electric

current, in turn, produces an induced magnetic field. Thus, the original magnetic field is changed.

There develops a component of an electric field in the direction perpendicular to both the flow field

and themagnetic field. The phenomenonwhich involves the production of a potential difference across

a moving electrically conducting fluid when a magnetic field is applied in a direction perpendicular

to the electric current is referred to as Hall effect.

1.2.6 Boundary layer

A boundary layer is a thin region in the fluid adjacent to the boundary where the effects of viscosity are

significant. In this layer, the viscous force dominates over the inertial force. A range of velocities exist

across the boundary layer from maximum to zero, provided the fluid is in contact with the boundary.

1.2.7 Viscous dissipation

Viscosity refers to a measure of fluid resistance to gradual deformation by shear stress. Viscosity in

liquids decreases with an increase in fluid temperature. This is because as the temperature increases,

the cohesive forces reduce and as a result, making the liquid to be less viscous. In a viscous fluid flow,

the viscosity of the fluid absorbs kinetic energy from the motion of the fluid and converts it into heat

(i.e., the internal energy of the fluid). This heats up the fluid. Therefore, this process is referred to as

viscous dissipation.

1.2.8 Heat transfer

Heat transfer is the study of kinetic energy transfer that takes place between bodies due to the

temperature difference. The temperature difference may be as a result of a fluid dissipating heat or

introduction of heat to the flow field. If there exists a temperature difference, then the study of heat

transfer is necessary. Heat transfer can take place either by conduction, radiation, or convection.

1.2.8.1 Conduction

Conduction is the mode of heat transfer that takes place when a temperature gradient exists in a

stationary medium, which may be a solid or fluid.
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1.2.8.2 Convection

Convection is the mode of heat transfer that takes place from one place to another by the movement of

fluids at different temperatures. The motion of the fluid is as a result of imbalance on the forces acting

on the fluid particles. Convective heat transfer may be categorized according to the nature of the flow

(i.e., free and forced convection). Free (or natural) convection is the mode of heat transfer in which

the flow is as a result of density gradient created by temperature variation. On the other hand, forced

convection occurs when the flow is caused by some external means. The present study considers free

convective heat transfer.

1.2.8.3 Radiation

Radiation is the mode of heat transfer in which there is a net heat transmission due to electromagnetic

wave propagation that takes place in a vacuum.

1.2.9 Some important parameters of engineering interest

They include the skin-friction coefficient and the wall heat transfer rate. These are discussed below

according to Rahman et al. (2016).

1.2.9.1 Nusselt number

Nusselt number, Nu, is a dimensionless number defined as the ratio of convective to conductive heat

transfer across (perpendicular to) the boundary (Batchelor, 2000). It can be expressed as follows:

Nu = convective heat transfer
conductive heat transfer

.

Convective heat transfer relationships are usually expressed in terms of Nusselt number as a function

of Reynolds Number and Prandtl Number. The Nusselt number is directly proportional to the negative

of the temperature gradient.

The Nusselt number can be negative since it is defined as the dimensionless temperature gradient at

the wall. The slope may be negative or positive, depending on the direction of heat flux.
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1.2.9.2 Skin-friction coefficient

Skin-friction refers to a drag (or resistance to motion) created by the fluid particles rubbing against

the wall. The boundary layer formed produces a drag which is exerted on the wall of the wedge due

to the viscous stresses which are developed at the wall. The skin-friction coefficient is very important

for engineers since it enables them to determine the material (or coating) to use in order to construct

materials which preserve energy. The skin-friction coefficient is directly proportional to the velocity

gradient (Batchelor, 2000).

1.3 Problem statement

Fluid flow is usually unsteady and takes place in the presence of both surface forces (e.g., shear forces)

and body forces (e.g., gravity, electromagnetic force). These forces may either accelerate or retard the

motion of the fluid. The previous studies on Jeffery-Hamel flow have focused on steady flow in the

presence of body forces. Some existing studies, however, have investigated the unsteady Jeffery-

Hamel flow but neglected the effect of body forces. For instance, Nagler (2017) studied the steady

Jeffery-Hamel flow inside a convergent wedge but assumed that the body forces are negligible. The

study of steady flow may not provide adequate information for engineers since the steady flow is

independent of time. Furthermore, assuming that the body forces are negligible in fluid flow means

that some vital pieces of information of engineering interest are lacking. Therefore, the present study

aims to extend the work of Nagler (2017) by investigating the unsteady Jeffery-Hamel flow inside a

divergent wedge in the presence of a magnetic field which will act as the body force.

1.4 Justification of the study

This study is necessary because fluid flows are usually unsteady in nature and take place in the presence

of both surface forces (such as pressure gradient and viscous forces) and body forces (such as gravity

and electromagnetic forces). Many fluids of industrial importance are non-Newtonian due to their

wide range of applications in industrial processes. A constant magnetic field is introduced in the flow

field since MHD flow has various important applications across a multitude of fields. For instance,

MHD flow is useful in designing communication systems, MHD power generating systems, MHD

accelerators, etc., and in medicine such as Magnetic Drug Targeting in cancer therapy.
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1.5 Objectives of the study

The following are the objectives of this study:

1.5.1 General objective

To study the unsteady Jeffery-Hamel flow of an incompressible non-Newtonian fluid with nonlinear

viscosity in the presence of an applied magnetic field in the direction perpendicular to the fluid motion.

1.5.2 Specific objectives

1. To model the unsteady Jeffery-Hamel flow of an incompressible non-Newtonian fluid with

nonlinear viscosity in the presence of an applied magnetic field in the direction perpendicular

to the fluid motion.

2. To investigate the effects of the flow parameters on velocity, temperature, skin-friction, and rate

of heat transfer.

3. To compute the skin-friction coefficient and the rate of heat transfer.

1.6 Significance of the Study

This study provides useful information for engineers, i.e., the data on the skin-friction coefficient and

the rate of heat transfer. Such information is vital for engineering and industrial applications such as in

the design of MHD power generating systems, communication and radar systems, MHD accelerators,

electrostatic filters, heat exchangers, medical diagnostic devices, in polymer processing, and in the

cooling of nuclear reactors.

1.7 Scope of the study

This study is limited to the unsteady, two-dimensional, laminar flow of an incompressible electrically

conducting non-Newtonian fluid with viscous dissipation. The fluid is confined inside a divergent

wedge-shaped subjected to a constant applied magnetic field in the direction perpendicular to the

fluid motion. The study assumes a symmetrical flow that is purely radial (i.e., the motion is such that
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there is no change in the flow variable along the z-direction) and that the perpendicular and tangential

velocities are negligible.

The rest of the thesis is organized as follows: Chapter 2 presents the literature related to and necessary

for the present study, Chapter 3 presents the model formulation and mathematical analysis, Chapter

4 presents the numerical simulations of the corresponding model, Chapter 5 presents the results of

the study, Chapter 6 presents the conclusion of the study and recommendations for future studies, and

section A.1 presents the publication of this study.
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Chapter 2

Literature Review

2.1 Overview

This chapter reassesses some studies that are relevant to the present study. Thus, this chapter is

primarily devoted to a brief literature review of the recent investigations made on the MHD

Jeffery-Hamel flow.

2.2 Literature Review

Hydromagnetic Jeffery-Hamel flow of non-Newtonian fluids has been studied and discussed

extensively by many authors. Domairry et al. (2009) found analytically that velocity distributions

are very different for convergent and divergent wedge-shaped in the case of a steady

two-dimensional flow of an incompressible conducting viscous fluid from a source (or a sink) at the

intersection between two rigid plane walls. The study assumed that the velocity is along the radial

direction and dependent on r and θ only. Moreover, the study found that in the convergent

wedge-shaped, for large Reynolds number, the velocity is almost constant for a large section in the

center and only close to the walls it drops off sharply to zero.

In the study of the unsteady two-dimensional flow of a MHD non-Newtonian Maxwell fluid over a

stretching surface with a prescribed surface temperature in the presence of a heat source or sink,

Imani et al. (2012) found numerically that fluid velocity initially decreases with the increasing

unsteadiness parameter, and temperature decreases significantly due to unsteadiness. Further, the

study found numerically that the fluid velocity decreases with the increasing magnetic parameter.

Increasing the Maxwell parameter values has the effect of suppressing the velocity field and

increasing the temperature. In the study, the study assumed that the magnetic Reynolds number is

very small and that the electric field due to the polarization of charges is negligible. Mukhopadhyay

(2012) studied the effects of magnetic field and nanoparticle on the Jeffery-Hamel flow of fluid

through a divergent wedge-shaped. He analytically found that the rate of transport is considerably
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reduced with an increase in Hartmann number. This clearly indicates that the transverse magnetic

field opposes the transport phenomena.

Hasanpour et al. (2011) carried out a study of the momentum, free convection heat and mass transfer

of a MHD flow over a movable permeable plumb surface. The study considered the case of a steady,

incompressible, two-dimensional MHD flow with free convection on a movable leaky vertical surface

and found that the momentum, heat and mass transfer phenomena depend on the magnetic parameter,

Prandtl number, Schmidt number, buoyancy ratio and suction or blowing parameter. The external

magnetic field reduces the velocity value and consequently the flow rate and also the wall heat transfer.

An increase in the value of the Hartman number and buoyancy ratio results in a decrease in the velocity

profile. The temperature value is decreased when the magnitude of the suction parameter and blowing

parameter increase. Also, the concentration magnitude decreases when the Schmidt number increases.

Mukhopadhyay et al. (2013) studied the unsteady two-dimensional flow of Casson fluid over a

stretching surface having a prescribed surface temperature and found numerically that fluid velocity

initially decreases with increasing unsteadiness parameter and temperature decreases significantly

due to unsteadiness. The effect of increasing values of the Casson parameter suppresses the velocity

field but the temperature is enhanced with increasing Casson parameter. Domairry et al. (2009)

studied Jeffery-Hamel flow and concluded that the velocity increases with an increase in the wedge

opening semi-angle for the case of diverging wedge-shaped; the influence of Reynolds number Re

and the wedge opening semi-angle is same for diverging wedge-shaped; there is an increase in the

velocity for converging wedge-shaped with an increase in wedge opening semi-angle; For

converging wedge-shaped, Reynolds number Re results in an increase in the velocity which is

opposite to that for diverging wedge-shaped.

Pramanik (2014) studied the Casson fluid flow and heat transfer past an exponentially porous

stretching surface in presence of thermal radiation and numerically found that the effect of suction

parameter on a viscous incompressible fluid suppresses the velocity field which in turn causes the

enhancement of skin-friction coefficient; skin-friction coefficient is higher for suction than that of

blowing; thermal radiation enhances the effective thermal diffusivity and the temperature increases

with increasing values of the radiation parameter. Poor et al. (2014) studied the effects of thermal

radiation in a two-dimensional and magnetohydrodynamic (MHD) flow of an incompressible
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non-Newtonian fluid in a convergent/divergent wedge-shaped and observed that the temperature is a

decreasing function of thermal radiation.

Arthur et al. (2015) studied the casson fluid flow over a vertical porous surface with chemical reaction

in the presence of a transverse magnetic field and found that the combined effect of magnetic field,

Casson parameter, Schmidt number, reaction rate parameter and suction parameter increase the local

skin friction; whereas that of the buoyancy force decreases the local skin friction at the surface of the

plate. The study found further that the combined effect of magnetic parameter and suction parameter

is to decrease the velocity of the fluid. This is due to the fact that the transverse magnetic field induces

a Lorentz force which tends to provide resistance to the fluid flow.

In the study of MHD Jeffery–Hamel Nanofluid Flow in Non-Parallel Walls, Sheikholeslami et al.

(2015) found semi-analytically that the velocity boundary layer thickness decreases with increasing

Reynolds number and nanoparticle volume fraction and increases with increasing Hartmann number.

The study found further that an increase in Reynolds number leads to an increase in the magnitude

of the skin-friction coefficient. Generally, when the magnetic field is imposed on the wedge, the

velocity field is suppressed owing to the retarding effect of the Lorenz force. Thus, the presence of

the magnetic field increases the momentum boundary layer thickness. The study found that the skin-

friction coefficient is an increasing function of Reynolds number, opening angle and nanoparticle

volume friction but a decreasing function of Hartmann number.

Ananthaswamy and Yogeswari (2016) studied the MHD Jeffery-Hamel flow in nanofluids using new

homotopy analysis method and found that an increase in Hartmann number increases the fluid

velocity while an increase in Reynolds number decreases the fluid velocity for both viscous and

nanofluid. Mohyud-Din et al. (2016) studied magnetohydrodynamic flow and heat transfer of

copper–water nanofluid in a wedge-shaped with non-parallel walls considering different shapes of

nanoparticles and found numerically that an increase in wedge opening and the Reynolds number

results in backflow for diverging wedge-shaped case. This backflow can be reduced by employing a

strong magnetic field. Moreover, the magnetic number increases the velocity of the fluid. Khan et al.

(2016) studied the Jeffery-Hamel flow of a non-Newtonian fluid and found that for a diverging

wedge-shaped, an increase in wedge opening semi-angle and Reynolds number results to a decrease

in the fluid velocity. For all these parameters, the maximum velocity is observed near the center of
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the wedge-shaped channel.

Nagler (2017) studied the Jeffery-Hamel flow of non-Newtonian fluid with nonlinear viscosity and

wall friction and found that: the Newtonian normalized velocity gradually decreases with the

tangential direction progress, an increase in the friction coefficient leads to a decrease in the

normalized Newtonian velocity profile values, and an increase in the Reynolds number results to an

increase in the normalized velocity function values.

From the cited studies above, unsteady Jeffery-Hamel flow of a dissipative non-Newtonian fluid with

nonlinear viscosity has received little attention. A lot of emphasis should be laid on the unsteadiness,

variable viscosity, and effects of body forces for a model to adequately describe fluid flow and provide

vital pieces of information of engineering interest. Therefore, the present study aims to extend the

previous work of Nagler (2017) by investigating the unsteady two-dimensional Jeffery-Hamel flow

of an incompressible non-Newtonian fluid with nonlinear viscosity inside a divergent wedge-shaped

in the presence of an applied magnetic field.

The next chapter presents the mathematical modeling of the problem in the present study.
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Chapter 3

Governing Equations and Mathematical Modeling

3.1 Overview

This chapter describes the mathematical model for the physical problem. However, many physical

phenomena provide challenges when developing the corresponding mathematical models. So, it is

intuitive to make some meaningful assumptions to reduce the problem into a solvable one. First, the

general physical equations are developed, the equations are reduced bymaking some assumptions, and

finally a similarity transformation technique is adopted to trim down the complexity of the formulation.

The final set of the model equations for the current problem are then set up.

3.2 Problem formulation

This study considers a viscous fluid flow in a divergent wedge-shaped as shown in Figure 1.1. The

fluid is electrically conducting and the effect of pressure on the fluid density is negligible. The partial

derivatives with respect to z vanish since the flow field is infinite in extent in the z-direction (i.e.,

the flow is unbounded in the z-direction or that the z-direction is too long). A coordinate system is

chosen with the origin at the center of the wedge as shown in Figure 1.1. The z-direction is taken

to be the length of the wedge and r-direction is taken to be the coordinate axis perpendicular to the

wall. In order to reduce complexity and achieve the outlined objectives in chapter 1, the following

assumptions are made.

3.3 Assumptions

When developing a mathematical model for natural phenomena, some meaningful assumptions can

be made to reduce the complexity of the problem. The following assumptions are considered in the

model formulation.

1. The fluid is incompressible and electrically conducting.
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2. The fluid is dissipative (i.e., the source of energy is from viscous dissipation).

3. The flow is two-dimensional and laminar.

4. The flow is unbounded in the z-direction and both the tangential and perpendicular velocities

are negligible.

5. There is no chemical reaction taking place in the fluid.

6. The thermal conductivity k is a constant.

7. The induced magnetic field is negligible in the flow field in comparison with the applied

magnetic field.

8. There is no external electric field applied, so the effect of polarization of the fluid is negligible.

9. The flow is non-relativistic.

3.4 Governing equations

The fundamental equations of fluid dynamics are based on the following universal laws of

conservation: conservation of mass, conservation of momentum, and conservation of energy. The

following are the equations governing the fluid flow in the present study.

3.4.1 Equation of continuity

This is derived from the principle of conservation of mass. The general form of continuity equation,

in vector notation, for a compressible fluid flow is given by

∂ρ

∂t
+ ∇⃗ · (ρV⃗ ) = 0. (3.4.1)

Equation (3.4.1) is based on two fundamental principles. The first principle states that under normal

conditions, the fluid mass is neither created nor destroyed (i.e., the mass is conserved). The second

principle states that there are no empty spaces between particles that are in contact and that the fluid

volume is not affected by an increase in pressure (i.e., the flow is continuous). This is also referred to

as the continuum hypothesis.
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The present study considers cylindrical coordinates (r, θ, z) where r is measured from the axis of the

wedge, θ from some convenient meridian plane, and z along the axis of the wedge. Therefore, writing

equation (3.4.1) in cylindrical coordinates yields

∂ρ

∂t
+
(1
r

∂(r)
∂r

r̂ + 1
r

∂

∂θ
θ̂ + ∂

∂z
k̂
)

· (urr̂ + uθθ̂ + uzk̂)ρ = 0, r ̸= 0. (3.4.2)

Since an incompressible fluid is considered, it means that the density of the fluid is assumed to be a

constant. Thus, there is no change in the fluid density. Therefore,
∂ρ

∂t
= 0.

Thus, equation (3.4.2) reduces to

(1
r

∂(r)
∂r

r̂ + 1
r

∂

∂θ
θ̂ + ∂

∂z
k̂
)

· (urr̂ + uθθ̂ + uzk̂) = 0, r ̸= 0

⇒ 1
r

∂(rur)
∂r

+ 1
r

∂uθ

∂θ
+ ∂uz

∂z
= 0. (3.4.3)

Since both the tangential and perpendicular velocities are negligible, equation (3.4.3) reduces to

∂

∂r
(rur) = 0. (3.4.4)

Equation (3.4.4) represents the continuity equation in cylindrical coordinates for an unsteady two-

dimensional laminar flow of an incompressible fluid whose motion is assumed to be symmetrical and

purely radial.

3.4.2 Equations of electromagnetism

The electromagnetic equations for formulating the MHD phenomenon are Maxwell's equation and

Ohm's law. The following is a brief discussion of these equations.

3.4.2.1 Maxwell's equations

To analyze and describe the action of charged particles on each other, the concept of a point charge is

useful. The physical conservation laws of electric charge and equations of electrical current density
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are required in describing MHD phenomenon mathematically. The Maxwell's equations of

electromagnetism relate the electric field E⃗, magnetic field B⃗, electric current density J⃗ , and the

electric charge density q independently on the properties of the matter (Mutua, 2013). The

Maxwell’s equations for time-dependent electromagnetic fields are expressed as

∇⃗ × E⃗ = −∂B⃗

∂t
, (3.4.5)

∇⃗ × B⃗ = ξ

J⃗ + ϵ0
∂E⃗

∂t

 , (3.4.6)

∇⃗ · B⃗ = 0, (3.4.7)

and

∇⃗ · E⃗ = q

ϵ0
. (3.4.8)

Equations (3.4.5), (3.4.6), and (3.4.8) are referred to as Faraday's law, Ampere's law, and Gauss's law,

respectively. The Faraday's law expresses the postulate for electromagnetic induction which asserts

that the electric field intensity in a region of time-dependent magnetic flux density is non-conservative

and cannot be expressed as a gradient or scalar potential.

This study is limited to an electrically conducting fluid in the presence of an applied magnetic field

in the direction perpendicular to the fluid motion. Furthermore, it is assumed that there is no

electromagnetic induction and that the field strength is constant. According to Manyonge et al.

(2012), the MHD phenomenon can be described as follows: consider an electrically conducting fluid

moving with velocity V⃗ . The magnetic field is applied in the direction perpendicular to the fluid

motion. The magnitude of the magnetic field is represented by the vector B⃗.
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3.4.2.2 Equation of electrical current density (Ohm's law)

Ohm's law is a characteristic feature of the ability of the fluid to transport electric charge under the

influence of an applied magnetic field. A conductive fluid moving with the velocity V⃗ in the presence

of a magnetic field of strength B⃗ is considered. The relative motion induces an electric current which

exerts an electric force on the charged particles giving rise to an electric current density J⃗ . Current

density is a measure of the density of an electric current. It is defined as a vector whose magnitude is

the electric current per unit cross-sectional area. The current and current density are related by

I =
∫
J⃗ · dA⃗,

where dA⃗ is the differential cross-sectional area vector.

The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical

conductor, transverse to an electric current in the conductor and to an applied magnetic field

perpendicular to the current (Shah et al., 2017). The Hall effect is due to the nature of the current in

an electric conductor. Current consists of the movement of many small charge carriers, typically

electrons, holes, and ions. When a magnetic field is present, these charges experience a force, called

the Lorentz force. When such a magnetic field is absent, the charges follow approximately straight,

'line of sight' paths between collisions with impurities, phonons, etc. However, when a magnetic

field with a perpendicular component is applied, their paths between collisions are curved, thus

moving charges accumulate on one face of the material. This leaves equal and opposite charges

exposed on the other face, where there is a scarcity of mobile charges. The result is an asymmetric

distribution of charge density across the Hall element, arising from a force that is perpendicular to

both the 'line of sight' path and the applied magnetic field. The separation of charge establishes an

electric field that opposes the migration of further charge, so a steady electric potential is established

for as long as the charge is flowing.

Therefore, if an electric current flows through a conductor in a magnetic field, the magnetic field exerts

a transverse force on the moving charge carriers which tends to push them to one side of the conductor.

A buildup of charge at the sides of the conductors will balance this magnetic influence, producing a

measurable voltage between the two sides of the conductor. The presence of this measurable transverse
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voltage is called the Hall effect as shown in Figure 3.1. The Hall effect can be used to measure

magnetic fields with a Hall probe.

Figure 3.1: Hall effect (Yang, 2008)

Without considering the Hall effect, then by Ohm's law the electric current density induced in the

conductive fluid is given by

J⃗ = σ
(
E⃗ + V⃗ × B⃗

)
. (3.4.9)

Since there is no external electric field (i.e., E⃗ = 0), equation (3.4.9) reduces to

J⃗ = σ
(
V⃗ × B⃗

)
. (3.4.10)

Equation (3.4.10) represents the equation of electrical current density for a conductive fluid moving

at velocity V⃗ in presence of an applied magnetic field of magnitude B⃗.

In addition to the induced electric current, there is the Lorentz force F⃗ (i.e., total electromagnetic force)

given by F⃗ = 1
ρ

(
ρeE⃗ + J⃗ × B⃗

)
. In the current problem, the electrostatic force ρeE⃗ is negligibly

small as compared to the electromagnetic force J⃗ × B⃗ since there is no externally applied electric

current. Hence,

F⃗ = 1
ρ

(
J⃗ × B⃗

)
= σ

ρ

(
(V⃗ × B⃗) × B⃗

)
. (3.4.11)

This Lorentz force occurs because as an electric generator, the conducting fluid cuts the lines of the

magnetic field.
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The unsteady flow of an electrically conducting, viscous, incompressible fluid through a divergent

wedge-shaped in the presence of an applied magnetic field, whose strength is constant, in the direction

perpendicular to the fluid motion is considered. From vector analysis, the product of any three vectors

A⃗, B⃗, and C⃗ is given by

(B⃗ × C⃗) × A⃗ = −A⃗× (B⃗ × C⃗) = −
[
(A⃗ · C⃗)B⃗ − (A⃗ · B⃗)C⃗

]
. (3.4.12)

Thus, equation (3.4.11) becomes:

F⃗ = σ

ρ

(
(V⃗ × B⃗) × B⃗

)
= −σ

ρ

(
B⃗ × (V⃗ × B⃗)

)
= −σ

ρ

[
[B⃗ · B⃗]V⃗ − [B⃗ · V⃗ ]B⃗

]
. (3.4.13)

Since the magnetic field is applied in a direction perpendicular to the fluid motion, B⃗ · V⃗ = 0.

Furthermore, it is assumed that B⃗ = (B0, 0, 0) and V⃗ = (ur, 0, 0). Thus, the body force F⃗ becomes:

F⃗ = −σ

ρ

[
[B⃗ · B⃗]V⃗

]
= −σ

ρ
B2

0urr̂. (3.4.14)

3.4.3 Equation of conservation of momentum

This is derived from the principle of conservation of momentum. It is derived from Newton's second

law of motion which states that the rate of change of momentum of a body is equal to the resultant

force acting on the body. The momentum of a body is defined as the product of its mass and velocity.

Thus, when a force is applied to an incompressible fluid of any given mass its velocity changes. The

general equation of motion, in vector notation, for an incompressible fluid flow is given by:

ρ
DV⃗

Dt
= −∇⃗p− ∇⃗ · τ⃗ + ρF⃗ , (3.4.15)

where the stress vector τ⃗ represents six shear stresses (i.e., stresses acting in the direction of flow) and

three normal stresses (i.e., compressive or tensile stresses perpendicular to the direction of the flow).
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Generally, if both the gravity and magnetic force affect the flow, the net body force is given by

ρF⃗ = ρg⃗ + J⃗ × B⃗. (3.4.16)

Since the gravitational force is negligible (i.e., ρg⃗ = 0), equation (3.4.16) becomes:

ρF⃗ = J⃗ × B⃗. (3.4.17)

Thus, equation (3.4.17) is the expression for the body force. The expression for equation (3.4.17) is

as shown in equation (3.4.14). The operator
D

Dt
is known as the material derivative. It is defined by

D

Dt
= ∂

∂t
+ V⃗ · ∇⃗.

Therefore, equation (3.4.15) becomes:

ρ
(
∂V⃗

∂t
+ V⃗ · ∇⃗V⃗

)
= −∇⃗p− ∇⃗ · τ⃗ + ρF⃗ . (3.4.18)

The stress form of equation (3.4.18) in cylindrical coordinates is given by Salih (2011) as follows:

r̂-component: ρ
(
∂ur

∂t
+ ur

∂ur

∂r
+ uθ

r

∂ur

∂θ
+ uz

∂ur

∂z
− u2

θ

r

)
= −∂p

∂r

+1
r

∂

∂r
(rτrr) + 1

r

∂τrθ

∂θ
+ ∂τrz

∂z
− τθθ

r
+ ρFr

θ̂-component: ρ
(
∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uz

∂uθ

∂z
+ uruθ

r

)
= −1

r

∂p

∂θ

+ 1
r2

∂

∂r
(r2τθr) + 1

r

∂τθθ

∂θ
+ ∂τθz

∂z
+ ρFθ

k̂-component: ρ
(
∂uz

∂t
+ ur

∂uz

∂r
+ uθ

r

∂uz

∂θ
+ uz

∂uz

∂z

)
= −∂p

∂z
+ 1
r

∂

∂r
(rτzr) + 1

r

∂τzθ

∂θ
+ ∂τzz

∂z
+ ρFz.

(3.4.19)

Fr, Fθ and Fz are the components of the body force per unit mass of the fluid in the r, θ and z direction,

respectively. Since the flow is unbounded in the z-direction and both the tangential and perpendicular

velocities are negligible so equations (3.4.19) reduce to

r̂-component: ρ
(
∂ur

∂t
+ ur

∂ur

∂r

)
= −∂p

∂r
+ 1
r

∂

∂r
(rτrr) + 1

r

∂τrθ

∂θ
− τθθ

r
+ ρFr

θ̂-component: 0 = −1
r

∂p

∂θ
+ 1
r2

∂

∂r
(r2τθr) + 1

r

∂τθθ

∂θ
+ ρFθ.

(3.4.20)
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According to Salih (2011) and Nagler (2017), the following stress matrix gives the expressions for the

shear stress components and the normal stress components in cylindrical coordinates:


τrr τrθ τrz

τθr τθθ τθz

τzr τzθ τzz

 = µ


2∂ur

∂r
− 2

3
∇⃗ · V⃗

1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

∂uz

∂r
+ ∂ur

∂z
1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r
2
(1

r

∂uθ

∂θ
+ ur

r

)
− 2

3
∇⃗ · V⃗

∂uθ

∂z
+ 1

r

∂uz

∂θ
∂uz

∂r
+ ∂ur

∂z

∂uθ

∂z
+ 1

r

∂uz

∂θ
2∂uz

∂z
− 2

3
∇⃗ · V⃗

 (3.4.21)

Since the fluid is incompressible, ∇⃗ · V⃗ = 0. Thus, the matrix (3.4.21) reduces to


τrr τrθ τrz

τθr τθθ τθz

τzr τzθ τzz

 = µ


2∂ur

∂r

1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

∂uz

∂r
+ ∂ur

∂z
1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r
2
(1
r

∂uθ

∂θ
+ ur

r

)
∂uθ

∂z
+ 1
r

∂uz

∂θ
∂uz

∂r
+ ∂ur

∂z

∂uθ

∂z
+ 1
r

∂uz

∂θ
2∂uz

∂z

 (3.4.22)

Since the flow is unbounded in the z-direction and both the tangential and perpendicular velocities are

negligible, the matrix (3.4.22) reduces to


τrr τrθ τrz

τθr τθθ τθz

τzr τzθ τzz

 = µ


2∂ur

∂r

1
r

∂ur

∂θ
0

1
r

∂ur

∂θ
2ur

r
0

0 0 0

 . (3.4.23)

Substituting the stress components of the matrix (3.4.23) into equation (3.4.20) yields

r̂-component: ρ
(∂ur

∂t
+ ur

∂ur

∂r

)
= −∂p

∂r
+ 1

r

∂

∂r

(
2µr

∂ur

∂r

)
+ 1

r

∂

∂θ

(
µ

r

∂ur

∂θ

)
− 2µ

ur

r2 + ρFr (3.4.24)

and

θ̂-component: 0 = −1
r

∂p

∂θ
+ 1
r2

∂

∂r

(
µr
∂ur

∂θ

)
+ 1
r

∂

∂θ

(
2µur

r

)
+ ρFθ. (3.4.25)
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Expanding equation (3.4.24) yields

ρ
(
∂ur

∂t
+ ur

∂ur

∂r

)
= −∂p

∂r
+ 1
r

∂

∂r

(
2µr∂ur

∂r

)
+ 1
r

∂

∂θ

(
µ

r

∂ur

∂θ

)
− 2µur

r2 + ρFr

= −∂p

∂r
+ 2
r

(
∂µ

∂r
r
∂ur

∂r
+ µ

∂ur

∂r
+ µr

∂2ur

∂r2

)
+ 1
r

(
∂µ

∂θ

1
r

∂ur

∂θ
+ µ

r

∂2ur

∂θ2

)

−2µur

r2 + ρFr

= −∂p

∂r
+ 2∂µ

∂r

∂ur

∂r
+ 2µ

r

∂ur

∂r
+ 2µ∂

2ur

∂r2 + 1
r2
∂µ

∂θ

∂ur

∂θ
+ µ

r2
∂2ur

∂θ2

−2µur

r2 + ρFr

⇒ ρ
∂ur

∂t
= −∂p

∂r
+ 2∂µ

∂r

∂ur

∂r
+ 1
r2
∂µ

∂θ

∂ur

∂θ
+ µ

(
1
r2
∂2ur

∂θ2 + 2∂
2ur

∂r2 + 2
r

∂ur

∂r
− 2ur

r2

)

−ρur
∂ur

∂r
+ ρFr (3.4.26)

Expanding equation (3.4.25) yields

0 = −1
r

∂p

∂θ
+ 1
r2

∂

∂r

(
µr
∂ur

∂θ

)
+ 1
r

∂

∂θ

(
2µur

r

)
+ ρFθ

= −1
r

∂p

∂θ
+ 1
r2

(
∂µ

∂r
r
∂ur

∂θ
+ µ

∂ur

∂θ
+ µr

∂2ur

∂r∂θ

)
+ 2
r

(
∂µ

∂θ

ur

r
+ µ

r

∂ur

∂θ

)
+ ρFθ

= −1
r

∂p

∂θ
+ 1
r

∂µ

∂r

∂ur

∂θ
+ µ

r2
∂ur

∂θ
+ µ

r

∂2ur

∂r∂θ
+ 2ur

r2
∂µ

∂θ
+ 2 µ

r2
∂ur

∂θ
+ ρFθ

= −1
r

∂p

∂θ
+ 1
r

∂µ

∂r

∂ur

∂θ
+ 3 µ

r2
∂ur

∂θ
+ µ

r

∂2ur

∂r∂θ
+ 2ur

r2
∂µ

∂θ
+ ρFθ

⇒ −1
r

∂p

∂θ
+ 1

r

∂µ

∂r

∂ur

∂θ
+ µ

(
3
r2
∂ur

∂θ
+ 1
r

∂2ur

∂r∂θ

)
+ 2ur

r2
∂µ

∂θ
+ ρFθ = 0. (3.4.27)

Equations (3.4.26) and (3.4.27) represent the equation of motion in cylindrical coordinates for an

unsteady two-dimensional laminar flow of an incompressible fluid whose motion is assumed to be

symmetrical and purely radial.

Now, equations (3.4.4), (3.4.14), (3.4.26), and (3.4.27) are combined into one equation as follows:

Differentiating equation (3.4.4) partially with respect to r yields

∂

∂r

(
∂ur

∂r
+ ur

r

)
= ∂

∂r
(0) ⇒ ∂2ur

∂r2 + 1
r

∂ur

∂r
− ur

r2 = 0. (3.4.28)
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Substituting equation (3.4.28) into equation (3.4.26) yields

ρ
∂ur

∂t
= −∂p

∂r
+ 2∂µ

∂r

∂ur

∂r
+ 1
r2
∂µ

∂θ

∂ur

∂θ
+ µ

r2
∂2ur

∂θ2 − ρur
∂ur

∂r
+ ρFr. (3.4.29)

Differentiating equation (3.4.4) partially with respect to θ yields

∂

∂θ

(
∂ur

∂r
+ ur

r

)
= ∂

∂θ
(0) ⇒ ∂2ur

∂r∂θ
+ 1
r

∂ur

∂θ
= 0. (3.4.30)

Substituting equation (3.4.30) into equation (3.4.27) yields

−1
r

∂p

∂θ
+ 1
r

∂µ

∂r

∂ur

∂θ
+ 2 µ

r2
∂ur

∂θ
+ 2ur

r2
∂µ

∂θ
+ ρFθ = 0. (3.4.31)

Multiplying both sides of equation (3.4.31) by r yields

−∂p

∂θ
+ ∂µ

∂r

∂ur

∂θ
+ 2µ

r

∂ur

∂θ
+ 2ur

r

∂µ

∂θ
+ rρFθ = 0. (3.4.32)

Substituting equation (3.4.14) into equation (3.4.29) yields

∂ur

∂t
= −1

ρ

∂p

∂r
+ 21

ρ

∂µ

∂r

∂ur

∂r
+ 1
ρr2

∂µ

∂θ

∂ur

∂θ
+ µ

ρr2
∂2ur

∂θ2 − ur
∂ur

∂r
− σB2

0ur

ρ
(3.4.33)

Substituting equation (3.4.14) into equation (3.4.32) yields

−∂p

∂θ
+ ∂µ

∂r

∂ur

∂θ
+ 2µ

r

∂ur

∂θ
+ 2ur

r

∂µ

∂θ
− σB2

0ruθ = 0 (3.4.34)

Since both the tangential and perpendicular velocities are negligible, equations (3.4.33) and (3.4.34)

reduce to

∂ur

∂t
= −1

ρ

∂p

∂r
+ 21

ρ

∂µ

∂r

∂ur

∂r
+ 1
ρr2

∂µ

∂θ

∂ur

∂θ
+ µ

ρr2
∂2ur

∂θ2 − ur
∂ur

∂r
− σB2

0ur

ρ
(3.4.35)
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and

−∂p

∂θ
+ ∂µ

∂r

∂ur

∂θ
+ 2µ

r

∂ur

∂θ
+ 2ur

r

∂µ

∂θ
= 0, (3.4.36)

respectively.

Differentiating equation (3.4.35) partially with respect to θ yields

∂

∂θ

(
ρ
∂ur

∂t

)
= ∂

∂θ

(
−∂p

∂r
+ 2∂µ

∂r

∂ur

∂r
+ 1
r2
∂µ

∂θ

∂ur

∂θ
+ µ

r2
∂2ur

∂θ2 − ρur
∂ur

∂r
− σB2

0ur

)

⇒ ρ
∂2ur

∂θ∂t
= − ∂2p

∂r∂θ
+ 2 ∂

2µ

∂r∂θ

∂ur

∂r
+ 2∂µ

∂r

∂2ur

∂r∂θ
+ 1
r2
∂2µ

∂θ2
∂ur

∂θ
+ 1
r2
∂µ

∂θ

∂2ur

∂θ2 + 1
r2
∂µ

∂θ

∂2ur

∂θ2

+ µ

r2
∂3ur

∂θ3 − ρ
∂ur

∂θ

∂ur

∂r
− ρur

∂2ur

∂r∂θ
− σB2

0
∂ur

∂θ

⇒ ∂2p

∂r∂θ
= −ρ∂

2ur

∂θ∂t
+ 2 ∂

2µ

∂r∂θ

∂ur

∂r
+ 2∂µ

∂r

∂2ur

∂r∂θ
+ 1
r2
∂2µ

∂θ2
∂ur

∂θ
+ 1
r2
∂µ

∂θ

∂2ur

∂θ2 + 1
r2
∂µ

∂θ

∂2ur

∂θ2

+ µ

r2
∂3ur

∂θ3 − ρ
∂ur

∂θ

∂ur

∂r
− ρur

∂2ur

∂r∂θ
− σB2

0
∂ur

∂θ
(3.4.37)

Differentiating equation (3.4.36) partially with respect to r yields

∂

∂r

(
−∂p

∂θ
+ ∂µ

∂r

∂ur

∂θ
+ 2µ

r

∂ur

∂θ
+ 2ur

r

∂µ

∂θ
− σB2

0ruθ

)
= ∂

∂r
(0)

⇒ − ∂2p

∂r∂θ
+ ∂2µ

∂r2
∂ur

∂θ
+ ∂µ

∂r

∂2ur

∂r∂θ
− 2 µ

r2
∂ur

∂θ
+ 2
r

∂µ

∂r

∂ur

∂θ
+ 2µ

r

∂2ur

∂r∂θ
− 2ur

r2
∂µ

∂θ
+ 2
r

∂ur

∂r

∂µ

∂θ

+2ur

r

∂2µ

∂r∂θ
− σB2

0r
∂uθ

∂r
− σB2

0uθ = 0

⇒ ∂2p

∂r∂θ
= ∂2µ

∂r2
∂ur

∂θ
+ ∂µ

∂r

∂2ur

∂r∂θ
− 2 µ

r2
∂ur

∂θ
+ 2
r

∂µ

∂r

∂ur

∂θ
+ 2µ

r

∂2ur

∂r∂θ
− 2ur

r2
∂µ

∂θ
+ 2
r

∂ur

∂r

∂µ

∂θ

+2ur

r

∂2µ

∂r∂θ
, since uθ = 0 (3.4.38)

Eliminating the term involving p between equations (3.4.37) and (3.4.38) yields the following
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nonlinear partial differential equation.

−ρ∂
2ur

∂θ∂t
+ 2 ∂

2µ

∂r∂θ

∂ur

∂r
+ 2∂µ

∂r

∂2ur

∂r∂θ
+ 1
r2
∂2µ

∂θ2
∂ur

∂θ
+ 1
r2
∂µ

∂θ

∂2ur

∂θ2 + 1
r2
∂µ

∂θ

∂2ur

∂θ2

+ µ

r2
∂3ur

∂θ3 − ρ
∂ur

∂θ

∂ur

∂r
− ρur

∂2ur

∂r∂θ
− σB2

0
∂ur

∂θ

= ∂2µ

∂r2
∂ur

∂θ
+ ∂µ

∂r

∂2ur

∂r∂θ
− 2 µ

r2
∂ur

∂θ
+ 2
r

∂µ

∂r

∂ur

∂θ
+ 2µ

r

∂2ur

∂r∂θ
− 2ur

r2
∂µ

∂θ
+ 2
r

∂ur

∂r

∂µ

∂θ

+2ur

r

∂2µ

∂r∂θ

⇒ ρ
∂2ur

∂θ∂t
= 2 ∂

2µ

∂r∂θ

∂ur

∂r
+ 2∂µ

∂r

∂2ur

∂r∂θ
+ 1
r2
∂2µ

∂θ2
∂ur

∂θ
+ 1
r2
∂µ

∂θ

∂2ur

∂θ2 + 1
r2
∂µ

∂θ

∂2ur

∂θ2

+ µ

r2
∂3ur

∂θ3 − ρ
∂ur

∂θ

∂ur

∂r
− ρur

∂2ur

∂r∂θ
− σB2

0
∂ur

∂θ

−∂2µ

∂r2
∂ur

∂θ
− ∂µ

∂r

∂2ur

∂r∂θ
+ 2 µ

r2
∂ur

∂θ
− 2
r

∂µ

∂r

∂ur

∂θ
− 2µ

r

∂2ur

∂r∂θ
+ 2ur

r2
∂µ

∂θ
− 2
r

∂ur

∂r

∂µ

∂θ

−2ur

r

∂2µ

∂r∂θ

⇒ ∂2ur

∂θ∂t
= 2

ρ

∂2µ

∂r∂θ

∂ur

∂r
+ 2
ρ

∂µ

∂r

∂2ur

∂r∂θ
+ 1
ρr2

∂2µ

∂θ2
∂ur

∂θ
+ ∂µ

∂θ

(
2
ρr2

∂2ur

∂θ2 + 2 ur

ρr2 − 2
ρr

∂ur

∂r

)

+µ
ρ

(
1
r2
∂3ur

∂θ3 + 2
r2
∂ur

∂θ
− 2
r

∂2ur

∂r∂θ

)
− ∂ur

∂θ

∂ur

∂r
− ur

∂2ur

∂r∂θ
− 1
ρ

∂2µ

∂r2
∂ur

∂θ

−1
ρ

∂µ

∂r

∂2ur

∂r∂θ
− 2
ρr

∂µ

∂r

∂ur

∂θ
− 2ur

ρr

∂2µ

∂r∂θ
− σB2

0
ρ

∂ur

∂θ
(3.4.39)

Equation (3.4.39) is the reduced form of the equation of motion in cylindrical coordinates for an

unsteady two-dimensional laminar flow of an incompressible fluid whose motion is symmetrical and

purely radial.

3.4.4 Equation of energy

This is derived from the principle of conservation of energy which states that the amount of heat added

to a system equals the change in internal energy and the work done. The general equation of energy,

in vector notation, for an incompressible fluid is given by Salih (2011) as follows:

ρCp
DT

Dt
= ρq̇g + ∇⃗ · (k∇⃗T ) + βT

Dρ

Dt
+ Φ, (3.4.40)
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where the viscous dissipation function Φ is given by

Φ =
(

− 2
3
µ∇⃗ · V⃗ ¯̄I + µ

[
∇⃗V⃗ +

(
∇⃗V⃗

)T
])

: ∇⃗V⃗ . (3.4.41)

According to Salih (2011), equation (3.4.40), in cylindrical coordinates, is given by

ρCp

(
∂T

∂t
+ ur

∂T

∂r
+ uθ

r

∂T

∂θ
+ uz

∂T

∂z

)
= ρq̇g + k

[
1
r

∂

∂r

(
r

∂T

∂r

)
+ 1

r2
∂2T

∂θ2 + ∂2T

∂z2

]
+ Φ. (3.4.42)

The viscous dissipation function Φ is given by the following expression:

Φ = 2µ

(∂ur

∂r

)2

+
(

1
r

∂uθ

∂θ
+ ur

r

)2

+
(
∂uz

∂z

)2


+µ

(1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

)2

+
(
∂uθ

∂z
+ 1
r

∂uz

∂θ

)2

+
(
∂uz

∂r
+ ∂ur

∂z

)2
 .

The dissipation function is non-negative since it only consists of squared terms. It represents a source

of internal energy due to deformation work on the fluid particles. Since the flow is unbounded in

the z-direction and both the tangential and perpendicular velocities are negligible, equation (3.4.42)

reduces to

ρCp

(
∂T

∂t
+ ur

∂T

∂r

)
= k

[
1
r

∂

∂r

(
r
∂T

∂r

)
+ 1
r2
∂2T

∂θ2

]
+ Φ (3.4.43)

and the viscous dissipation function becomes:

Φ = 2µ

(∂ur

∂r

)2

+
(
ur

r

)2
+ µ

(1
r

∂ur

∂θ

)2
 . (3.4.44)

Dividing equation (3.4.43) by ρCp and rearranging yields

∂T

∂t
= α

[
1
r

∂T

∂r
+ ∂2T

∂r2 + 1
r2

∂2T

∂θ2

]
− ur

∂T

∂r
+ µ

ρCp

[
2
(

∂ur

∂r

)2
+ 2

(
ur

r

)2
+
(1

r

∂ur

∂θ

)2
]

, (3.4.45)

where the thermal diffusivity, α, is given by α = k

ρCp

.

Equation (3.4.45) represents the equation of energy in cylindrical coordinates for an unsteady two-
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dimensional laminar flow of an incompressible fluid with a constant thermal conductivity.

3.5 Similarity transformation

In the present study, the resulting model is a system of two nonlinear partial differential equations

−i.e., equations (3.4.39) and (3.4.45)− with the following boundary conditions which are formulated

according to Mohyud-Din et al. (2016).

At the centerline: ur = U∞,
∂ur

∂θ
= 0, T = T∞,

∂T

∂θ
= 0 at θ = 0

On the walls:
∂ur

∂θ
= −γU(θ), T = Tw at θ = ϖ

, (3.5.1)

The boundary is said to be smooth if γ = 0 and perfectly rough if γ → ∞. The interval −|ϖ| < θ <

|ϖ| is the flow field domain. If it is require that the volumetric flow rate Q ≥ 0, the flow is diverging

from a source at θ = 0 for ϖ > 0.

Since the resulting model is a system of nonlinear partial differential equations, it is convenient to

simplify it by reducing the PDEs to ordinary differential equations since the solution of ODE is

usually simpler. The technique of reducing PDEs to ODEs is known as similarity transformation.

This technique is illustrated below.

From the continuity equation (3.4.4), define stream function Ψ(r, θ, t) such that equation (3.4.4) is

satisfied. This is only possible if

∂Ψ
∂θ

= rur and
∂Ψ
∂r

= 0. (3.5.2)

From equation (3.5.2), it means that the stream function Ψ is independent of r. Thus, equation (3.5.2)

can be written as

rur = f(θ, t) ⇒ ur = f(θ, t)
r

(3.5.3)
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From Rahman et al. (2016), potential function u(r, t) is taken as follows:

u = νrm

δm+1 . (3.5.4)

According to Nagler (2017), ur can be expressed as follows.

ur = −QF (θ)
r

. (3.5.5)

From equations (3.5.4) and (3.5.5), the following transformation is obtained.

ur = −Q

r

1
δm+1F (θ). (3.5.6)

Comparing equations (3.5.3) and (3.5.6), it can be deduced that f(θ, t) = −Q 1
δm+1F (θ). Therefore,

equation (3.5.6) is the desired transformation for the fluid velocity.

From the power-law model (1.2.3), letting the velocity gradient
du

dy
to be g(θ) yields the following

transformation for the apparent viscosity:

µ = µ0g
n−1(θ). (3.5.7)

The velocity gradient is a function of θ only since it was found from the continuity equation (3.4.4)

that the stream function Ψ is independent of r.

The similarity transformation for the temperature distribution is given by

ω(θ)
δm+1 = T − Tw

T∞ − Tw

. (3.5.8)
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Computing the respective partial derivatives yields

∂ur

∂r
= Q

r2
1

δm+1F (θ), ∂ur

∂θ
= −Q

r

1
δm+1

dF

dθ
∂2ur

∂θ∂t
= (m+ 1)Q

r

1
δm+2

dδ

dt

dF

dθ
∂2ur

∂r2 = −2Q
r3

1
δm+1F (θ), ∂2ur

∂r∂θ
= Q

r2
1

δm+1
dF

dθ
,

∂2ur

∂θ2 = −Q

r

1
δm+1

d2F

dθ2

∂3ur

∂θ3 = −Q

r

1
δm+1

d3F

dθ3

∂µ

∂r
= 0, ∂µ

∂θ
= µ0(n− 1)gn−2dg

dθ
∂2µ

∂r2 = 0, ∂2µ

∂r∂θ
= 0, ∂2µ

∂θ2 = µ0(n− 1)
[
(n− 2)gn−3dg

dθ

dg

dθ
+ gn−2d

2g

dθ2

]

∂T

∂t
= −(T∞ − Tw)(m+ 1)

δm+2
dδ

dt
ω,

∂T

∂r
= 0, ∂T

∂θ
= (T∞ − Tw) 1

δm+1
dω

dθ
∂2T

∂r2 = 0, ∂2T

∂θ2 = (T∞ − Tw) 1
δm+1

d2ω

dθ2

Substituting the above differentials into equation (3.4.39) yields

(m+ 1)Q
r

1
δm+2

dδ

dt

dF

dθ
= 1

ρr2µ0(n− 1)
[
(n− 2)gn−3dg

dθ

dg

dθ
+ gn−2d

2g

dθ2

] [
−Q

r

1
δm+1

dF

dθ

]

+µ0(n− 1)gn−2dg

dθ

(
− 2Q
ρr3

1
δm+1

d2F

dθ2 − 2Q
ρr3

1
δm+1F (θ) − 2Q

ρr3
1

δm+1F (θ)
)

+µ0g
n−1(θ)

(
− Q

ρr3
1

δm+1
d3F

dθ3 − 2Q
ρr3

1
δm+1

dF

dθ
− 2Q
ρr3

1
δm+1

dF

dθ

)

+Q
2

r3
1

δ2m+2F (θ)dF
dθ

+ Q2

r3
1

δ2m+2F (θ)dF
dθ

+ σB2
0

ρ

Q

r

1
δm+1

dF

dθ
. (3.5.9)

Multiplying equation (3.5.9) by δm+1 and then simplifying yields.

(m+ 1)Q
r

1
δ

dδ

dt
F ′ = − Q

ρr3µ0(n− 1)
[
(n− 2)gn−3g′2 + gn−2g′′

]
F ′

− Q

ρr3µ0(n− 1)gn−2g′ [2F ′′ + 4F ]

− Q

ρr3µ0g
n−1 [F ′′′ + 4F ′] + 2Q2

r3
1

δm+1FF
′ + σB2

0
ρ

Q

r
F ′. (3.5.10)
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Multiplying both sides of equation (3.5.10) by ρr3/µ0Q and rearranging yields

(n− 1)
[
(n− 2)gn−3g′2 + gn−2g′′

]
F ′ + (n− 1)gn−2g′ [2F ′′ + 4F ]

+gn−1 [F ′′′ + 4F ′] − 2Qρ
µ0

1
δm+1FF

′ − σB2
0r

2

µ0
F ′ + (m+ 1)ρr

2

µ0

1
δ

dδ

dt
F ′ = 0. (3.5.11)

In order to make the governing equations locally similar, define the unsteadiness parameter λ

according to Rahman et al. (2016) as follows:

λ = ρδm

µ0rm−1
dδ

dt
. (3.5.12)

This parameter will account for the time factor. equation (3.5.12) is sometimes called the locally

similar equation. Thus, equation (3.5.11) can be factorized in terms of the unsteadiness parameter as

follows:

(n− 1)
[
(n− 2)gn−3g′2 + gn−2g′′

]
F ′ + (n− 1)gn−2g′ [2F ′′ + 4F ]

+gn−1 [F ′′′ + 4F ′] − 2Qρ
µ0

1
δm+1FF

′ − σB2
0r

2

µ0
F ′

+(m+ 1)r
m+1

δm+1

(
ρδm

µ0rm−1
dδ

dt

)
F ′ = 0. (3.5.13)

Since the factors
Qρ

µ0
denotes the Reynolds number, B0r

(
σ

µ0

)1
2 denotes the Hartmann number, and

ρδm

µ0rm−1
dδ

dt
represents the unsteadiness parameter, equation (3.5.13) becomes:

(n− 1)
[
(n− 2)gn−3g′2 + gn−2g′′

]
F ′ + (n− 1)gn−2g′ [2F ′′ + 4F ]

+gn−1 [F ′′′ + 4F ′] − 2Re 1
δm+1FF

′ −Ha2F ′ + (m+ 1)r
m+1

δm+1λF
′ = 0. (3.5.14)
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Similarly, substituting the above differentials into equation (3.4.45) yields

−(T∞ − Tw)(m+ 1)
δm+2

dδ

dt
ω = α

[
1
r2 (T∞ − Tw) 1

δm+1
d2ω

dθ2

]

+ µ0

ρCp

gn−1(θ)
[
2
(
Q

r2
1

δm+1F (θ)
)2

+ 2
(

−Q

r2
1

δm+1F (θ)
)2]

+ µ0

ρCp

gn−1(θ)

(−1
r

Q

r

1
δm+1

dF

dθ

)2
 . (3.5.15)

Simplifying yields the following equation:

−(T∞ − Tw)(m + 1)
δm+2

dδ

dt
ω = (T∞ − Tw) α

r2
1

δm+1 ω′′ + µ0Q2/r4

ρCp

1
δ2m+2 gn−1

[
4F 2 + F ′2

]
.(3.5.16)

Multiplying both sides of equation (3.5.16) by
ρr2δm+1

µ0(T∞ − Tw)
and rearranging yields

αρ

µ0
ω′′ + (m+ 1)ρr

2

µ0δ

dδ

dt
ω + Q2/r2

Cp(T∞ − Tw)
1

δm+1 g
n−1

[
4F 2 + F ′2

]
= 0. (3.5.17)

Equation (3.5.17) can be factorized in terms of the unsteadiness parameter as follows:

αρ

µ0
ω′′ + (m+ 1)r

m+1

δm+1

(
ρδm

µ0rm−1
dδ

dt

)
ω + Q2/r2

Cp(T∞ − Tw)
1

δm+1 g
n−1

[
4F 2 + F ′2

]
= 0. (3.5.18)

Since the factors
µ0

ρα
denotes the Prandtl number,

Q2/r2

Cp(T∞ − Tw)
denotes the Eckert number, and

ρδm

µ0rm−1
dδ

dt
denotes the unsteadiness parameter, equation (3.5.18) becomes

1
Pr

ω′′ + (m+ 1)r
m+1

δm+1λω + Ec

δm+1 g
n−1

[
4F 2 + F ′2

]
= 0. (3.5.19)
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3.5.1 Final set of the governing equations in dimensionless form

The implementation of similarity transformation technique reduces the momentum equation (3.4.39)

to

(n− 1)
[
(n− 2)gn−3g′2 + gn−2g′′

]
F ′ + (n− 1)gn−2g′ [2F ′′ + 4F ]

+gn−1 [F ′′′ + 4F ′] − 2Re 1
δm+1FF

′ −Ha2F ′ + (m+ 1)r
m+1

δm+1λF
′ = 0, (3.5.20)

and the energy equation (3.4.45) to

1
Pr

ω′′ + (m+ 1)r
m+1

δm+1λω + Ec

δm+1 g
n−1

[
4F 2 + F ′2

]
= 0. (3.5.21)

In order to simplify the solution(s) of the model, the following expression for the velocity gradient g

is considered:

g = θc, c ≥ 2, (3.5.22)

where c is an arbitrary constant. Differentiating equation (3.5.22) with respect to θ yields

g′ = cθc−1 (3.5.23)

g′′ = c(c− 1)θc−2 (3.5.24)

Substituting equations (3.5.22), (3.5.23), and (3.5.24) into equation (3.5.20) yields

(n− 1)
[
(n− 2)θc(n−3)c2θ2c−2 + θc(n−2)c(c− 1)θc−2

]
F ′

+(n− 1)θc(n−2)cθc−1 [2F ′′ + 4F ] + θc(n−1) [F ′′′ + 4F ′]

−2Re 1
δm+1FF

′ −Ha2F ′ + (m+ 1)r
m+1

δm+1λF
′ = 0. (3.5.25)
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Simplifying equation (3.5.25) yields

c(n− 1)θc(n−1)−2 [c(n− 1) − 1]F ′ + c(n− 1)θc(n−1)−1 [2F ′′ + 4F ]

+θc(n−1) [F ′′′ + 4F ′] − 2Re 1
δm+1FF

′ −Ha2F ′ + (m+ 1)r
m+1

δm+1λF
′ = 0. (3.5.26)

Similarly, substituting equation (3.5.22) into equation (3.5.21) yields

1
Pr

ω′′ + (m+ 1)r
m+1

δm+1λω + Ec

δm+1 θ
c(n−1)

[
4F 2 + F ′2

]
= 0. (3.5.27)

Thus, equations (3.5.26) and (3.5.27) are the final set of the locally similar governing equations in

dimensionless form. These equations are subjected to the following boundary conditions:

3.5.2 Boundary conditions

The above similarity transformations are applied to the boundary conditions (3.5.1) as follows:

From equation (3.5.6) it is deduced that

ur = −Q

r

1
δm+1F (θ). (3.5.28)

Differentiating equation (3.5.28) partially with respect to θ yields

∂ur

∂θ
= −Q

r

1
δm+1F

′(θ) = −γQ
r

1
δm+1F (θ). (3.5.29)

Therefore,

F ′(θ) = −γF (θ) at θ = ϖ. (3.5.30)
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From equation (3.5.30), it is deduced that

F ′(0) = −γF (0) = 0 at θ = 0. (3.5.31)

Due to the flow symmetry assumption, the condition (3.5.30) is simply written as

F ′(ϖ) = −γF (ϖ). (3.5.32)

From equation (3.5.8), putting T = Tw yields

ω(θ)
δm+1 = Tw − Tw

T∞ − Tw

= 0 ⇒ ω(ϖ) = 0. (3.5.33)

Also from equation (3.5.8), putting T = T∞ yields

ω(θ)
δm+1 = T∞ − Tw

T∞ − Tw

= 1 ⇒ ω(0) = δm+1. (3.5.34)

Thus, the implementation of similarity transformation technique reduces the boundary conditions

(3.5.1) to the dimensionless form given by

At the centerline: F (0) = 1, F ′(0) = 0, ω(0) = δm+1 at θ = 0

On the walls: F ′(ϖ) = −γF (ϖ), ω(ϖ) = 0 at θ = ϖ
(3.5.35)

3.6 Flow parameters and their significance

The similarity transformation technique gave rise to the dimensionless numbers discussed below.
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3.6.1 Reynolds number

The Reynolds number (Re) is a dimensionless number defined as the ratio of inertial force to viscous

force (Batchelor, 2000). It is expressed as

Re = inertial force
viscous force

= Qρ

µ0
.

When Re of the system is very small (i.e., Re << 1), the viscous force is predominant and the flow

is said to be laminar (i.e., sheet-like flow). On the other hand, if Re is very large (i.e., Re >> 1),

the inertial force is predominant which produces chaotic eddies, vortices, and other flow instabilities.

Thus, turbulent flow occurs at high Reynolds numbers. If, for any flow, this number is less than one

then the inertia force is negligible. Otherwise, viscous force can be ignored and so the fluid can be

taken as inviscid.

3.6.2 Hartmann number

The Hartmann number (Ha) is a dimensionless number defined as the square root of the ratio of the

electromagnetic force to viscous force (Batchelor, 2000). It can be expressed as

Ha =
(electromagnetic force

viscous force

)1
2 = B0r

(
σ

µ0

)1
2 .

3.6.3 Prandtl number

The Prandtl number (Pr) is a dimensionless number defined as the ratio of momentum diffusivity

(kinematic viscosity) to thermal diffusivity (Batchelor, 2000). It can be expressed as

Pr = momentum diffusivity
thermal diffusivity

= µ0

ρα
.

The Prandtl number is often used in convective heat transfer. Small values of the Prandtl number,

Pr << 1, means that the thermal diffusivity dominates. Whereas with large values, Pr >> 1, the
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momentum diffusivity dominates.

3.6.4 Eckert number

The Eckert number (Ec) is a dimensionless number defined as the ratio of the advective mass transfer

to the heat dissipation potential (Batchelor, 2000). It is used to characterize heat dissipation in high-

speed flows for which viscous dissipation is significant. It can be expressed as

Ec = heat dissipation potential
advective mass transfer

= Q2/r2

Cp(T∞ − Tw)
,

where T∞ − Tw is the temperature gradient. For small Eckert number (Ec << 1) the terms in the

energy equation describing the effects of pressure changes, viscous dissipation, and body forces on

the energy balance can be neglected and the equation reduces to a balance between conduction and

convection.

The Eckert number, when multiplied by the Prandtl number, is also a key parameter in determining

the viscous dissipation of energy in a low-speed flow. The parameter Ec · Pr (sometimes called the

Brinkman number) is essentially the ratio of the kinetic energy dissipated in the flow to the thermal

energy conducted into or away from the fluid. When (Ec · Pr) << 1, the energy dissipation can

be neglected relative to heat conduction in the fluid. For large Ec · Pr, the energy dissipated is an

important parameter in the heat transfer process and the kinetic energy can play a significant role in

determining the temperature distribution in the flow and the overall heat transfer.

The next chapter presents the numerical method used to solve the model equations and the

corresponding simulation.
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Chapter 4

Method of Solution

4.1 Introduction

In most cases, differential equations governing scientific problems such as Jeffery-Hamel flow are

inherently nonlinear. Due to the nonlinearity of the resulting partial differential equations, an

analytical solution is not possible. These nonlinear equations are solved using approximation

methods (i.e., numerical techniques or semi-analytical methods) in order to obtain non-analytical

solutions. According to Domairry et al. (2009), the semi-analytical methods include homotopy

perturbation method (HPM), homotopy analysis method (HAM) and differential transform method

(DTM). However, most of these semi-analytical techniques are either very difficult to employ and

require a lot of computation or the level of accuracy has to be compromised; which not only affects

the results badly but (in some cases) they become completely unreliable (Khan et al., 2013).

Therefore, different numerical techniques for boundary value problems (BVP) are employed in

solving these nonlinear differential equations.

There are three important properties of a numerical technique that must be considered in choosing

the best method for solving a particular problem. They include convergence, consistency, and

stability. A very powerful and quite a general method for solving most BVPs is the collocation

method. Collocation method has been tested by Hale (2006) for convergence, consistency, and

stability. This study uses collocation method to solve the resulting model equations since it is a

successful method for solving two-point BVPs. This method is discussed below.

4.2 Collocation Method

This is a highly stable numerical technique that estimates the solution of a BVP using a polynomial

and makes use of solvers that take low computational memory. Hence, it is more advantageous to use

in boundary value problems than other numerical techniques. The advantage of collocation method

is that it provides a continuous approximation to the solution whereas many other numerical methods
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produce only a table of values of the approximate solution at discrete points.

4.2.1 Overview of Collocation Method

Suppose there is a differential operator D acting on a function y(θ) to produce another function p(θ)

(Petroudi et al., 2014):

D[y(θ)] = p(θ), (4.2.1)

where y(θ) is the exact solution of the BVP. The solution y(θ) is approximated over [θ0, θN ] by a

piecewise polynomial Y (θ) over each subinterval [θi, θi+1]. The function Y (θ), which is expressed as

a linear combination of basis functions chosen from a linearly independent set, will satisfy the ODE

at selected collocation points within each interval. The approximate solution is expressed as follows:

y ≈ Y = ψ0(θ) +
N∑

κ=1
cκψκ(θ), (4.2.2)

where the functions ψκ(θ) satisfy the given boundary conditions. Now, substituting equation (4.2.2)

into equation (4.2.1) yields D[Y (θ)] ≈ p(θ). Hence, a residual exists and is defined by

R(θ) = D[Y (θ)] − p(θ) ̸= 0. (4.2.3)

The residual tells us how much the approximate solution does not satisfy the governing equation. It

is not the same as error.

Since it is difficult tomake the residual identically equal to zero, it is minimized by setting the weighted

integral of the residual equal to zero. That is

θN∫
θ0

Wκ(θ)R(θ)dθ = 0, κ = 1, 2, · · · , N , (4.2.4)

where the number of weight functions Wκ are exactly equal the number of unknown constants cκ in

Y (θ). The result is a set of N algebraic equations for the unknown constants cκ.. For collocation

method, the weighting functions are taken from the family of Dirac δ functions in the domain. That
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is,Wκ = δ(θ − θκ). The Dirac δ function has the property that

δ(θ − θκ) =


1 if θ = θκ

0 otherwise.
(4.2.5)

Thus, the task is to solve the following system of algebraic equations

R(θκ, {cκ}) = 0 for κ = 1, 2, · · · , N (4.2.6)

and determine the interior collocation solutions c1, c2, · · · , cN .

The locally similar and nonlinear ordinary differential equations (3.5.12), (3.5.26) and (3.5.27)

together with the boundary conditions (3.5.35) are solved numerically by collocation method. The

model equations are first reduced to a system of first-order ODEs together with the corresponding

boundary conditions. The reduction of order technique is illustrated below.

4.3 Reduction of order

It is convenient when solving an ODE system numerically to describe the problem in terms of a system

of first-order equations. To reduce the model equations (3.5.26) and (3.5.27) to a system of first order

ordinary differential equations together with the corresponding boundary conditions (3.5.35), let

y1 = F, y2 = F ′, y3 = F ′′, y4 = ω, and y5 = ω′

Therefore,

y′
1 = y2

y′
2 = y3

y′
3 =

[
− c(n− 1)θc(n−1)−2 [c(n− 1) − 1] y2 − c(n− 1)θc(n−1)−1 [2y3 + 4y1]

−(m+ 1)r
m+1

δm+1λy2 + 2Re 1
δm+1y1y2 +Ha2y2

]
/θc(n−1) − 4y2

y′
4 = y5

y′
5 = −Pr

[
(m+ 1)r

m+1

δm+1λy4 + Ec

δm+1 θ
c(n−1)

[
4y2

1 + y2
2

]]
(4.3.1)
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The corresponding boundary conditions become:

At the centerline: y1(0) − 1 = 0, y2(0) = 0, y4(0) − δm+1 = 0 at θ = 0

On the walls: y2(ϖ) + γy1(ϖ) = 0, y4(ϖ) = 0 at θ = ϖ
(4.3.2)

Equations (4.3.1) and (4.3.2) will be helpful during simulation of the model equations. Thus,

adopting the collocation technique, a computer program has been set up for the solution of the

governing coupled nonlinear ordinary differential equations of the current problem with the aid of

the inbuilt MൺඍLൺൻ function known as bvp4c. The bvp4c algorithm is the most convenient since it is

able to give optimal solutions that are accurate. This algorithm is discussed below.

4.4 Bvp4c framework

Kierzenka and Shampine (2001) developed the software bvp4c to implement collocation method for

the solution of two-point BVPs of the form

y′ = f(θ, y, p), a ≤ θ ≤ b

subject to general nonlinear, two-point boundary conditions

g(y(a), y(b), p) = 0

Here p is a vector of unknown parameters.

The first step in solving a problem is defining it in a way the software can understand. Thus the

bvp4c algorithm requires that the model equations (3.5.26) and (3.5.27) be reduced to a system of

first-order ordinary differential equations as described in section 4.3. Similarly, the user then rewrites

the boundary conditions to correspond to this form of the problem. The bvp4c framework uses a

number of subfunctions which make it easier for the user to enter the ODE function, initial data and

parameters for a given problem.
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% first-order system of ODEs for the model equations.
function dydx = odeFunction(theta,y)

.

.

.
end

% Boundary conditions for the model equations.
function res = bcFunction(ya,yb)

.

.

.
end

The next step is to create an initial guess for the form of the solution using a specific MൺඍLൺൻ

subroutine called bvpinit. The user passes a vector x and an initial guess on this mesh in the form

bvpinit(x, Yinit),

which is then converted into a structure useable by bvp4c. The user would define

options = bvpset(’stats’,’on’,’reltol’,1e-4,’abstol’,1e-4);

solinit = bvpinit(linspace(0,1,5),[1 0],3.14);

and call the bvp4c routine with

sol = bvp4c(@odeFunction,@bcFunction,solinit,options);

Whereas the bvpinit function defines the initial properties of the problem, the bvpset function specifies

which options bvp4c should be use in solving it. The above essentially ends the user input in solving

the BVP system and the rest is left to bvp4c. The bvp4c framework has been expounded in Hale

(2006). Appendix A.2 shows the ආൺඍඅൺൻ code used to simulate equations (3.5.26) and (3.5.27) with

the help of bvp4c framework. The graphical solutions obtained are discussed in Chapter 5.
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4.5 Skin-friction coefficient and rate of heat transfer

The local skin-friction coefficient and wall heat transfer rate can be obtained from the following

expressions according to Rahman et al. (2016).

Skin-friction coefficient:

Cf = 2√
Re(2 − ϵ)

F ′(0)

Nusselt number:

Nu = −
√

Re

(2 − ϵ)
ω′(0)

Appendix A.2 shows the ආൺඍඅൺൻ code used to compute the skin-friction coefficient and rate of heat

transfer. The results obtained are shown in Table 5.1.

4.6 Validation

A comparison of the results obtained from this study with Pavithra and Gireesha (2014) is tabulated in

Table 4.1. From the table, it is clear that there is a close agreement between the results which verifies

the accuracy of the method used in the present study.

Table 4.1: Comparison of the results for the dimensionless temperature gradient −ω′(0) by varying
the Pr with Re = Ha = Ec = 0.
Pr Pavithra and Gireesha (2014) Present study
0.72 0.76762 0.76782
1.0 0.95474 0.95479
2.0 1.47144 1.47148
3.0 1.86904 1.86909
5.0 2.50012 2.50016

The next chapter presents the results of the present study and their significance to real life in terms of

application.
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Chapter 5

Results and Discussion

5.1 Overview

This chapter presents the velocity profiles, temperature profiles, skin-friction coefficient, and rate of

heat transfer forRe ∈ [3, 25],Ha ∈ [0.5, 5], Pr ∈ [0.5, 5],Ec ∈ [2, 10], and λ ∈ [1.5, 15]. The effects

of varying the flow parameters on the velocity profiles, temperature profiles, skin-friction coefficient,

and rate of heat transfer have been determined using simulation. The other parameters such as wedge

angle ϖ, flow behavior index n, friction coefficient factor γ, time-dependent length scale δ, and the

constants c andm are kept constant throughout. The results are presented in form of graphs and tables.

5.2 Effects of Varying Reynolds number on Velocity and

Temperature Profiles

Figure 5.1: Effects of Re on velocity profiles.
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Figure 5.2: Effects of Re on temperature profiles.

It is noted from Figure 5.1 that an increase in Reynolds number increases the fluid velocity. This is

because a small Reynolds number implies that the viscous force is predominant and as a result, there

will be a retardation of the flow due to the formation and extension of the boundary layer into the flow

region. Conversely, a large Reynolds number implies that the viscous force is less predominant and

as a result, there will be less retardation of the flow since the boundary layer formed does not really

extend into the flow region. Thus high Reynolds number indicates turbulent flow and erratic velocity

profiles.

It is noted from Figure 5.2 that an increase in Reynolds number increases the fluid temperature. This

is because an increase in the Reynolds number means that the viscous force becomes less predominant

and hence the fluid viscosity decreases. Since viscosity and temperature are inversely proportional

in liquids, a decrease in viscosity implies an increase in the fluid temperature. Thus the heat transfer

reduction range is enlarged.
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5.3 Effects of Varying Hartman number on Velocity and

Temperature Profiles

Figure 5.3: Effects of Ha on velocity profiles.

Figure 5.4: Effects of Ha on temperature profiles.
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It is noted from Figure 5.3 that an increase in Hartmann number increases the fluid velocity. This is

because the application of a magnetic field moving with the freestream has the tendency to induce an

electromagnetic force known as the Lorentz force which increases the hydrodynamic boundary layer

thickness. So, increasing the value of the Hartmann increases the Lorentz force which suppresses

the transport phenomenon. The Hartmann number gives a measure of the relative importance of drag

forces resulting from magnetic induction and viscous forces in Hartmann flow, and determines the

velocity profile for such flow.

It is noted from Figure 5.4 that an increase in Hartmann number increases the fluid temperature. This

is because application of magnetic field to an electrically conducting fluid gives rise to a magnetic

force called the Lorentz force. Increase in Hartmann number increases the Lorentz force which then

raises the temperature of the fluid. At high operating temperature, high Hartmann number is quite

significant in the heat transfer phenomenon.

5.4 Effects of Varying Prandtl number on Velocity and

Temperature Profiles

Figure 5.5: Effects of Pr on velocity profiles.
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Figure 5.6: Effects of Pr on temperature profiles.

It is noted from Figure 5.5 that an increase in Prandtl number does not result in a significant change

in the fluid velocity. This is due to the fact that the changes in Prandtl number are sufficiently small

to cause significant change in fluid velocity. It is noted from Figure 5.6 that an increase in Prandtl

number decreases the fluid temperature. This is because an increase in the Prandtl number means

that the thermal diffusivity is less predominant. The high thermal radiation consequently results in a

decrease in the fluid temperature.
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5.5 Effects of Varying Eckert number on Velocity and

Temperature Profiles

Figure 5.7: Effects of Ec on velocity profiles.

Figure 5.8: Effects of Ec on temperature profiles.
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It is noted from Figure 5.7 that an increase in Eckert number doesn't lead to a significant change in the

fluid velocity. This is due to the fact that the changes in Eckert number are sufficiently small to cause

significant change in fluid velocity. It is noted from Figure 5.8 that an increase in Eckert number

increases the fluid temperature. This is because increasing the Eckert number allows more energy

to be stored in the fluid region, causing the temperature within the fluid to greatly increase. This is

significant in high-temperature processes such as polymer processing.

5.6 Effects of Varying the Unsteadiness Parameter on Velocity

and Temperature Profiles

Figure 5.9: Effects of λ on velocity profiles.
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Figure 5.10: Effects of λ on temperature profiles.

It is noted from Figure 5.9 that an increase in the values of the unsteadiness parameter decreases the

fluid velocity. This is because an increase in the unsteadiness parameter implies that the boundary

tends to be nearer to the centerline. So, the presence of the frictional force increases the drag between

the boundary and the fluid particles and as a result, forming a boundary layer which extends into the

flow region. Hence, this retards the transport phenomenon.

It is noted from Figure 5.10 that an increase in the values of the unsteadiness parameter increases the

fluid temperature. This is due to the fact that there is viscous dissipation taking place in the fluid

as it flows (i.e., the fluid viscosity takes kinetic energy from the motion of the fluid and converts it

into heat). This heats up the fluid and so as time increases, the system acquires more heat and hence

increasing the fluid temperature.
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5.7 Effect of parameter variations on skin-friction coefficient and

rate of heat transfer

The quantities of practical interest in this study are the skin-friction coefficient and the rate of heat

transfer. The local skin-friction coefficient and the local Nusselt number which are respectively

proportional to −F ′(0) and −ω′(0) are computed and their numerical values tabulated below.

Table 5.1: Skin-friction coefficient and rate of heat transfer for various values of the parameters
Re,Ha, Pr, Ec, and λ
Re Ha Pr Ec λ Cf Nu

3 3 2 5 2.5 1.0745×10−8 0.8822
6 3 2 5 2.5 5.5941×10−9 1.2001
12 3 2 5 2.5 2.5897×10−9 1.5872
24 3 2 5 2.5 4.8740×10−9 2.0214
3 0.5 2 5 2.5 -79.9781 1.5626
3 1 2 5 2.5 -0.4556 1.3985
3 2 2 5 2.5 3.9206×10−7 1.0894
3 4 2 5 2.5 4.0219×10−9 0.7472
3 2 0.5 5 2.5 3.9196×10−7 1.9359
3 2 1 5 2.5 3.9196×10−7 1.6602
3 2 2 5 2.5 3.9196×10−7 1.0894
3 2 4 5 2.5 3.9196×10−7 -0.1360
3 2 1.5 2 2.5 8.2165×10−5 1.6165
3 2 1.5 3 2.5 8.2165×10−5 1.4303
3 2 1.5 4.5 2.5 8.2165×10−5 1.1512
3 2 1.5 6.75 2.5 8.2165×10−5 0.7324
3 2 2 5 1.5 2.9528×10−7 1.2175
3 2 2 5 3 4.5260×10−7 1.0244
3 2 2 5 6 1.0747×10−6 0.6200
3 2 2 5 12 -4.6420×10−8 -0.2733

The results of varying the Reynolds number, Hartmann number, Prandtl number, Eckert number, and

unsteadiness parameter on the local skin-friction coefficient and the local Nusselt number are shown

in Table 5.1. It is noted that the skin-friction coefficient increases with increasing values of the

unsteadiness parameter. This is due to the formation and extension of the boundary layer into the

flow region which retards the motion of the fluid. The skin-friction coefficient decreases with

increasing values of the Reynolds number and Hartmann number. This is due to the fact that skin

friction slows moving things down and needs a constant energy supply to be overcome. The more

friction, the more energy has to be supplied, and this energy is lost as heat. Further, large Reynolds
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number signifies lower viscosity −this means that a large Reynolds number always results in lower

friction. It is noted further that the skin-friction coefficient remains constant with increasing values

of the Prandtl number and Eckert number. This is due to the fact that the changes in both Prandtl

number and Eckert number are sufficiently small to cause significant change in skin-friction

coefficient.

Also, it is noted that the rate of heat transfer increases with increase in Reynolds number. This is

because Reynolds number is directly proportional to the Nusselt number thus an in crease in Reynolds

number enhances the rate of heat transfer. It is noted further that the rate of heat transfer decreases

with increase in Hartmann number, Prandtl number, Eckert number, and unsteadiness parameter. This

is because increase in Ha, Pr,Ec and λ lead to increase in the fluid temperature. Since the Nusselt

number is directly proportional to the negative of the temperature gradient, an in crease inHa, Pr,Ec

and λ consequently increase the rate of heat transfer.

The next chapter presents the conclusions of this study and recommendations for future studies which

aim to extend the present study.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The unsteady Jeffery-Hamel flow of an incompressible non-Newtonian fluid with nonlinear viscosity

and skin-friction in the presence of an applied magnetic field in the direction perpendicular to the fluid

motion has been studied. The corresponding model has been solved using the collocation method

and simulated using MൺඍLൺൻ with the help of the inbuilt function called bvp4c. The effect of flow

parameters on the flow variables for a conductive fluid inside a divergent wedge-shaped has been

determined. Further, the skin-friction coefficient and the rate of heat transfer have been computed.

From the results obtained, the following major conclusions have been drawn regarding the MHD

Jeffery-Hamel unsteady flow.

(i) The fluid velocity increases with an increase in Reynolds number. The velocity, however,

decreases with an increase in Hartmann number and unsteadiness parameter.

(ii) The fluid temperature increases with an increase in Reynolds number, Hartmann number, Eckert

number, and unsteadiness parameter. It, however, decreases with an increase in Prandtl number.

(iii) The skin-friction coefficient increases with an increase in the unsteadiness parameter. The skin-

friction coefficient, however, decreases with an increase in Reynolds number and Hartmann

number. The skin-friction coefficient is very important for engineers since it enables them to

determine the material (or coating) to use in order to construct materials which preserve energy.

(iv) The rate of heat transfer increases with an increase in Reynolds number. It, however,

decreases with an increase in Hartmann number, Prandtl number, Eckert number, and

unsteadiness parameter.

The results obtained from the present study can be used to complement and/or supplement the

ongoing magnetic drug targeting research which considers non-Newtonian fluid such as ferrofluid.
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In particular, the results of varying the viscous dissipation parameter (Eckert number) are useful in

high-temperature processes such as polymer processing.

6.2 Recommendations

The present study is a significant contribution to the study of the MHD Jeffry-Hamel unsteady flow of

an incompressible non-Newtonian fluid and heat transfer. The study of the effects of magnetic field

on fluid flow is very important especially in duct flow problems in which the Hartmann number is

of order greater than unity. However, there arise some related areas for further investigation. The

following are some of the recommendations for future researchers who aim to extend this work.

(i) An extension of this study to turbulent hydromagnetic Jeffry-Hamel flow of a compressible fluid

since most fluid flows of engineering interest are turbulent and compressible.

(ii) Flow involving variable magnetic field applied at an angle and variable thermal conductivity.

Consider a case of fluid flowing in a convergent wedge-shaped and incorporate both Hall effect

and Joule heating.
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APPENDICES

A.1 Publication

Part of this work has been published in the Global Journal of Pure andAppliedMathematics as follows:

[1] Ochieng, F. O., Kinyanjui, M. N., & Kimathi, M. E. (2018). Hydromagnetic Jeffery-Hamel

Unsteady Flow of a Dissipative Non-Newtonian Fluid with Nonlinear Viscosity and Skin Friction.

Global Journal of Pure and Applied Mathematics, 14(8), 1101-1119.

https://www.ripublication.com/gjpam18/gjpamv14n8_07.pdf
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A.2 MൺඍLൺൻ Codes
A.2.1 Code for varying the Reynolds number
%--------------------------------------------------------------------------
% This code generates the velocity and temperature profiles together with
% the skin-friction coefficient and rate of heat transfer when the Reynolds
% number is varied.
%--------------------------------------------------------------------------
% The model equations are first reduced to a system of first order ODEs
% as follows:
% Let y(1)=F, y(2)=F', y(3)=F'', y(4)=w, and y(5)=w'
% => dy(1)=y(2), dy(2)=y(3), dy(3)=F''', dy(4)=y(5), and dy(5)=w''
%
% The corresponding boundary conditions are
% ya(1) - Umax=0
% ya(5)=0
% ya(2)=0
% ya(4) - delta^(m+1)=0
% yb(2) + gamma*yb(1)=0
% yb(4)=0
%
% The solution is computed here for different values of Re by continuation,
% i.e., the solution for one value of Re is used as guess for Re = Re*2.
%
function thesisReynold()
clear all; clc;
global Re Ha Pr Ec varpi c n m lambda gamma delta r epsilon Cf Nu Umax
Ha=3; % Hartmann number [0,4]
Pr=2; % Prandtl number [1.5,12]
Ec=5; % Eckert number [2,250]
lambda=2.5; % unsteadiness parameter [0.5,10]
varpi=0.25; % wedge angle [0,pi/4]
c=2; % Arbitrary constant which is a natural number c>1
n=2; % Flow behaviour index n>1 (dilatant)
m=1; % Arbitrary constant that is related to the wedge angle
gamma=10^(6); % Friction coefficient factor
delta=2; % Time dependent length scale
r=.5; % radius of the conduit
epsilon=2*m/(m+1);
Umax=1; % center-line velocity
nIter=4; % number of iterations
multiplier=2; % common ratio
ReInit=3; % initial value for Re
Re = ReInit; % The solution is first sought for Re = 3.
options = bvpset('RelTol',1e-4); %=bvpset('stats','on'); % place holder
solinit= bvpinit(linspace(0,pi/4,10),@initialguess); %y = linspace(x1,x2,n)
% generates n points. The spacing between the points is (x2-x1)/(n-1).
sol = bvp4c(@odeFunction,@bcFunction,solinit,options);
lines = {'k-o','r-','b-+','m-*','y-','c-','g'};
vLegend = {strcat('Re = ' , num2str(Re))} ;
tLegend = {strcat('Re = ' , num2str(Re))} ;
%% Velocity and Temperature profiles
Cf=(2*sol.y(2,2))/(sqrt(Re*(2-epsilon))); % skin friction coefficient
Nu=-sqrt(Re/(2-epsilon))*sol.y(5,2); % heat transfer rate
fprintf('For Re = %3.0i, Cf = %4.4f, Nu = %4.4f\n',Re,Cf,Nu);
figure(1)
plot(sol.x,sol.y(4,:),lines{1},'LineWidth',2);
axis([0 pi/3.9 0 1.1]);
%{
% For velocity profiles
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title('GRAPH OF VELOCITY AGAINST THE WEDGE ANGLE');
xlabel('wedge angle, \theta');
ylabel('Velocity, F(\theta)');
%}
%{-
% For temperature profiles
title('GRAPH OF TEMPERATURE AGAINST THE WEDGE ANGLE');
xlabel('wedge angle, \theta');
ylabel('Temperature, \omega(\theta)');
%}
drawnow
hold on
for i=2:nIter

Re = Re*multiplier;
sol = bvp4c(@odeFunction,@bcFunction,sol,options);
Cf=(2*sol.y(2,2))/(sqrt(Re*(2-epsilon))); % skin friction coefficient
Nu=-sqrt(Re/(2-epsilon))*sol.y(5,2); % heat transfer rate
fprintf('For Re = %3.0i, Cf = %4.4f, Nu = %4.4f\n',Re,Cf,Nu);
plot(sol.x,sol.y(4,:),lines{i},'LineWidth',2);
vLegend = [vLegend , strcat('Re = ' , num2str(Re))];
drawnow

end
legend(vLegend{:});
%% first-order system of ODE for the model equations.
function dydx = odeFunction(theta,y)
velDenom=(theta^(c*(n-1)));
if(velDenom==0)

velDenom=10^(-6);
end
tempDenom=(delta^(m+1));
dydx = [ y(2)

y(3)
-(c*(n-1)*(theta^(c*(n-1)-2))*(c*(n-1)-1)*y(2)+c*(n-1)*...
(theta^(c*(n-1)-1))*(2*y(3)+4*y(1))-2*Re*(1/delta)^(m+1)*y(1)*...
y(2)-(Ha^2)*y(2)+(m+1)*(r/delta)^(m+1)*lambda*y(2))/velDenom-4*y(2)
y(5)
-Pr*((m+1)*(r^(m+1))*lambda*y(4)+(Ec)*(theta^(c*(n-1)))*...
(4*y(1)^2+y(2)^2))/tempDenom];

end
%% Boundary conditions for the model equations.
function res = bcFunction(ya,yb)
res = [ya(1) - Umax % - r*delta^(m+1) %

%ya(5)
ya(2)
ya(4) - 1%- delta^(m+1)
yb(2) + gamma*yb(1)
yb(4)];

end
%% Initial Guess
function guess = initialguess(theta)
guess = [ 1

1
1
1
theta];

end
end
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A.2.2 Code for varying the Hartmann number
%--------------------------------------------------------------------------
% This code generates the velocity and temperature profiles together with
% the skin-friction coefficient and rate of heat transfer when the Hartmann
% number is varied.
%--------------------------------------------------------------------------
% The model equations are first reduced to a system of first order ODEs
% as follows:
% Let y(1)=F, y(2)=F', y(3)=F'', y(4)=w, and y(5)=w'
% => dy(1)=y(2), dy(2)=y(3), dy(3)=F''', dy(4)=y(5), and dy(5)=w''
%
% The corresponding boundary conditions are
% ya(1) - Umax=0
% ya(5)=0
% ya(2)=0
% ya(4) - delta^(m+1)=0
% yb(2) + gamma*yb(1)=0
% yb(4)=0
%
% The solution is computed here for different values of Ha by continuation,
% i.e., the solution for one value of Ha is used as guess for Ha = Ha*2.
%
function thesisHartmann()
clear all; clc;
global Re Ha Pr Ec varpi c n m lambda gamma delta r epsilon Cf Nu Umax
Re=3; % Reynolds number [3,25]
Pr=2; % Prandtl number [1.5,12]
Ec=5; % Eckert number [2,250]
lambda=2.5; % unsteadiness parameter [0.5,10]
varpi=0.25; % wedge angle [0,pi/4]
c=2; % Arbitrary constant which is a natural number c>1
n=2; % Flow behaviour index n>1 (dilatant)
m=1; % Arbitrary constant that is related to the wedge angle
gamma=10^(6); % Friction coefficient factor
delta=2; % Time dependent length scale
r=.5; % radius of the conduit
epsilon=2*m/(m+1);
Umax=1; % center-line velocity
nIter=4;
multiplier=2;
HaInit=.5;
Ha = HaInit; % The solution is first sought for Ha = 0.5.
options = bvpset('RelTol',1e-4); %=bvpset('stats','on'); % place holder
solinit = bvpinit(linspace(0,pi/4,10),@initialguess); %y = linspace(x1,x2,n)
% generates n points. The spacing between the points is (x2-x1)/(n-1).
sol = bvp4c(@odeFunction,@bcFunction,solinit,options);
lines = {'k-o','r-','b-+','m-*','y-','c-','g'};
vLegend = {strcat('Ha = ' , num2str(Ha))} ;
tLegend = {strcat('Ha = ' , num2str(Ha))} ;
%% Velocity and Temperature profiles
Cf=(2*sol.y(2,2))/(sqrt(Re*(2-epsilon))) % skin friction coefficient
Nu=-sqrt(Re/(2-epsilon))*sol.y(5,2); % heat transfer rate
fprintf('For Ha = %3.0i, Cf = %4.4f, Nu = %4.4f\n',Ha,Cf,Nu);
figure
plot(sol.x,sol.y(1,:),lines{1},'LineWidth',2);
axis([0 pi/3.9 0 1.1]);
%{-
% For velocity profiles
title('GRAPH OF VELOCITY AGAINST THE WEDGE ANGLE');
xlabel('wedge angle, \theta');
ylabel('Velocity, F(\theta)');
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%}
%{
% For temperature profiles
title('GRAPH OF TEMPERATURE AGAINST THE WEDGE ANGLE');
xlabel('wedge angle, \theta');
ylabel('Temperature, \omega(\theta)');
%}
drawnow
hold on
for i=2:nIter

Ha = Ha*multiplier;
sol = bvp4c(@odeFunction,@bcFunction,sol,options);
Cf=(2*sol.y(2,2))/(sqrt(Re*(2-epsilon))) % skin friction coefficient
Nu=-sqrt(Re/(2-epsilon))*sol.y(5,2); % heat transfer rate
fprintf('For Ha = %3.0i, Cf = %4.4f, Nu = %4.4f\n',Ha,Cf,Nu);
plot(sol.x,sol.y(1,:),lines{i},'LineWidth',2);
vLegend = [vLegend , strcat('Ha = ' , num2str(Ha))];
drawnow

end
legend(vLegend{:});
hold off
% fprintf('Theta\t\t F(theta)\n')
% fprintf('%.2f\t\t%.6f\n',sol.x,sol.y(1,:))
%% first-order system of ODE for the model equations.

function dydx = odeFunction(theta,y)
velDenom=(theta^(c*(n-1)));
if(velDenom==0)

velDenom=10^(-6);
end
tempDenom=(delta^(m+1));
dydx = [ y(2)

y(3)
-(c*(n-1)*(theta^(c*(n-1)-2))*(c*(n-1)-1)*y(2)+c*(n-1)*...
(theta^(c*(n-1)-1))*(2*y(3)+4*y(1))-2*Re*(1/delta)^(m+1)*y(1)*...
y(2)-(Ha^2)*y(2)+(m+1)*(r/delta)^(m+1)*lambda*y(2))/velDenom-4*y(2)
y(5)
-Pr*((m+1)*(r^(m+1))*lambda*y(4)+(Ec)*(theta^(c*(n-1)))*...
(4*y(1)^2+y(2)^2))/tempDenom];

end
%% Boundary conditions for the model equations.
function res = bcFunction(ya,yb)
res = [ya(1) - Umax % - r*delta^(m+1) %

ya(2)
ya(4) - 1 % - delta^(m+1)
yb(2) + gamma*yb(1)
yb(4)];

end
%% Initial Guess
function guess = initialguess(theta)
guess = [ 1

1
1
1
theta];

end
end
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A.2.3 Code for varying the Prandtl number
%--------------------------------------------------------------------------
% This code generates the velocity and temperature profiles together with
% the skin-friction coefficient and rate of heat transfer when the Prandtl
% number is varied.
%--------------------------------------------------------------------------
% The model equations are first reduced to a system of first order ODEs
% as follows:
% Let y(1)=F, y(2)=F', y(3)=F'', y(4)=w, and y(5)=w'
% => dy(1)=y(2), dy(2)=y(3), dy(3)=F''', dy(4)=y(5), and dy(5)=w''
%
% The corresponding boundary conditions are
% ya(1) - Umax=0
% ya(5)=0
% ya(2)=0
% ya(4) - delta^(m+1)=0
% yb(2) + gamma*yb(1)=0
% yb(4)=0
%
% The solution is computed here for different values of Re by continuation,
% i.e., the solution for one value of Pr is used as guess for Pr = Pr*2.
%
function thesisPrandtl()
clear all; clc;
global Re Ha Pr Ec varpi c n m lambda gamma delta r epsilon Cf Nu Umax
Re=3; % Reynolds number [3,25]
Ha=2; % Hartmann number [0,4]
Ec=5; % Eckert number [2,250]
lambda=2.5; % unsteadiness parameter [0.5,10]
varpi=0.25; % wedge angle [0,pi/4]
c=2; % Arbitrary constant which is a natural number c>1
n=2; % Flow behaviour index n>1 (dilatant)
m=1; % Arbitrary constant that is related to the wedge angle
gamma=10^(6); % Friction coefficient factor
delta=2; % Time dependent length scale
r=.5; % radius of the conduit
epsilon=2*m/(m+1);
Umax=1; % center-line velocity
nIter=4;
multiplier=2;
PrInit=.2;
Pr = PrInit; % The solution is first sought for Pr = 0.2.
options = bvpset('RelTol',1e-4); %=bvpset('stats','on'); % place holder
solinit = bvpinit(linspace(0,pi/4,10),@initialguess); %y = linspace(x1,x2,n)
% generates n points. The spacing between the points is (x2-x1)/(n-1).
sol = bvp4c(@odeFunction,@bcFunction,solinit,options);
lines = {'k-o','r-','b-+','m-*','y-','c-','g'};
vLegend = {strcat('Pr = ' , num2str(Pr))} ;
tLegend = {strcat('Pr = ' , num2str(Pr))} ;
%% Velocity and Temperature profiles
Cf=(2*sol.y(2,2))/(sqrt(Re*(2-epsilon))); % skin friction coefficient
Nu=-sqrt(Re/(2-epsilon))*sol.y(5,2); % heat transfer
fprintf('For Pr = %3.0i, Cf = %4.4f, Nu = %4.4f\n',Pr,Cf,Nu);
figure
plot(sol.x,sol.y(1,:),lines{1},'LineWidth',2);
axis([0 pi/3.9 0 1.1]);
%{-
% For velocity profiles
title('GRAPH OF VELOCITY AGAINST THE WEDGE ANGLE');
xlabel('wedge angle, \theta');
ylabel('Velocity, F(\theta)');
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%}
%{
% For temperature profiles
title('GRAPH OF TEMPERATURE AGAINST THE WEDGE ANGLE');
xlabel('wedge angle, \theta');
ylabel('Temperature, \omega(\theta)');
%}
drawnow
hold on
for i=2:nIter

Pr = Pr*multiplier;
sol = bvp4c(@odeFunction,@bcFunction,sol,options);
Cf=(2*sol.y(2,2))/(sqrt(Re*(2-epsilon))); % skin friction coefficient
Nu=-sqrt(Re/(2-epsilon))*sol.y(5,2); % heat transfer
fprintf('For Pr = %3.0i, Cf = %4.4f, Nu = %4.4f\n',Pr,Cf,Nu);
plot(sol.x,sol.y(1,:),lines{i},'LineWidth',2);
vLegend = [vLegend , strcat('Pr = ' , num2str(Pr))];
drawnow

end
legend(vLegend{:});
hold off
% fprintf('Theta\t\t F(theta)\n')
% fprintf('%.2f\t\t%.6f\n',sol.x,sol.y(1,:))
%% first-order system of ODE for the model equations.
function dydx = odeFunction(theta,y)
velDenom=(theta^(c*(n-1)));
if(velDenom==0)

velDenom=10^(-6);
end
tempDenom=(delta^(m+1));
dydx = [ y(2)

y(3)
-(c*(n-1)*(theta^(c*(n-1)-2))*(c*(n-1)-1)*y(2)+c*(n-1)*...
(theta^(c*(n-1)-1))*(2*y(3)+4*y(1))-2*Re*(1/delta)^(m+1)*y(1)*...
y(2)-(Ha^2)*y(2)+(m+1)*(r/delta)^(m+1)*lambda*y(2))/velDenom-4*y(2)
y(5)
-Pr*((m+1)*(r^(m+1))*lambda*y(4)+(Ec)*(theta^(c*(n-1)))*...
(4*y(1)^2+y(2)^2))/tempDenom];

end
%% Boundary conditions for the model equations.
function res = bcFunction(ya,yb)
res = [ya(1) - Umax % - r*delta^(m+1) %

ya(2)
ya(4)- 1 %- delta^(m+1)
yb(2) + gamma*yb(1)
yb(4)];

end
%% Initial Guess
function guess = initialguess(theta)
guess = [ 1

1
1
1
1];

end
end
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A.2.4 Code for varying the Eckert number
%--------------------------------------------------------------------------
% This code generates the velocity and temperature profiles together with
% the skin-friction coefficient and rate of heat transfer when the Eckert
% number is varied.
%--------------------------------------------------------------------------
% The model equations are first reduced to a system of first order ODEs
% as follows:
% Let y(1)=F, y(2)=F', y(3)=F'', y(4)=w, and y(5)=w'
% => dy(1)=y(2), dy(2)=y(3), dy(3)=F''', dy(4)=y(5), and dy(5)=w''
%
% The corresponding boundary conditions are
% ya(1) - Umax=0
% ya(5)=0
% ya(2)=0
% ya(4) - delta^(m+1)=0
% yb(2) + gamma*yb(1)=0
% yb(4)=0
%
% The solution is computed here for different values of Re by continuation,
% i.e., the solution for one value of Ec is used as guess for Ec = Ec*2.
%
function thesisEckert()
clear all; clc;
global Re Ha Pr Ec varpi c n m lambda gamma delta r epsilon Cf Nu Umax
Re=3; % Reynolds number [3,25]
Ha=5; % Hartmann number [0,4]
Pr=1.5; % Prandtl number [1.5,12]
lambda=2.5; % unsteadiness parameter [0.5,10]
varpi=0.25; % wedge angle [0,pi/4]
c=2; % Arbitrary constant which is a natural number c>1
n=2; % Flow behaviour index n>1 (dilatant)
m=1; % Arbitrary constant that is related to the wedge angle
gamma=10^(6); % Friction coefficient factor
delta=2; % Time dependent length scale
r=.5; % radius of the conduit
epsilon=2*m/(m+1);
Umax=1; % center-line velocity
nIter=4;
multiplier=1.5;
EcInit=.5;
Ec = EcInit; % The solution is first sought for Ec =0.5 .
options = bvpset('RelTol',1e-4); %=bvpset('stats','on'); % place holder
solinit = bvpinit(linspace(0,pi/4,10),@initialguess); %y = linspace(x1,x2,n)
% generates n points. The spacing between the points is (x2-x1)/(n-1).
sol = bvp4c(@odeFunction,@bcFunction,solinit,options);
lines = {'k-o','r-','b-+','m-*','y-','c-','g'};
vLegend = {strcat('Ec = ' , num2str(Ec))} ;
tLegend = {strcat('Ec = ' , num2str(Ec))} ;
%% Velocity and Temperature profiles
Cf=(2*sol.y(2,2))/(sqrt(Re*(2-epsilon))) % skin friction coefficient
Nu=-sqrt(Re/(2-epsilon))*sol.y(5,2); % heat transfer
fprintf('For Ec= %3.0i, Cf = %4.4f, Nu = %4.4f\n',Ec,Cf,Nu);
figure
plot(sol.x,sol.y(4,:),lines{1},'LineWidth',2);
axis([0 pi/3.9 0 1.1]);
%{
% For velocity profiles
title('GRAPH OF VELOCITY AGAINST THE WEDGE ANGLE');
xlabel('wedge angle, \theta');
ylabel('Velocity, F(\theta)');
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%}
%{-
% For temperature profiles
title('GRAPH OF TEMPERATURE AGAINST THE WEDGE ANGLE');
xlabel('wedge angle, \theta');
ylabel('Temperature, \omega(\theta)');
%}
drawnow
hold on
for i=2:nIter

Ec = Ec*multiplier;
sol = bvp4c(@odeFunction,@bcFunction,sol,options);
Cf=(2*sol.y(2,2))/(sqrt(Re*(2-epsilon))) % skin friction coefficient
Nu=-sqrt(Re/(2-epsilon))*sol.y(5,2); % heat transfer
fprintf('For Ec = %3.0i, Cf = %4.4f, Nu = %4.4f\n',Ec,Cf,Nu);
plot(sol.x,sol.y(4,:),lines{i},'LineWidth',2);
vLegend = [vLegend , strcat('Ec = ' , num2str(Ec))];
drawnow

end
legend(vLegend{:});
hold off
%% first-order system of ODE for the model equations.
function dydx = odeFunction(theta,y)
velDenom=(theta^(c*(n-1)));
if(velDenom==0)

velDenom=10^(-6);
end
tempDenom=(delta^(m+1));
dydx = [ y(2)

y(3)
-(c*(n-1)*(theta^(c*(n-1)-2))*(c*(n-1)-1)*y(2)+c*(n-1)*...
(theta^(c*(n-1)-1))*(2*y(3)+4*y(1))-2*Re*(1/delta)^(m+1)*y(1)*...
y(2)-(Ha^2)*y(2)+(m+1)*(r/delta)^(m+1)*lambda*y(2))/velDenom-4*y(2)
y(5)
-Pr*((m+1)*(r^(m+1))*lambda*y(4)+(Ec)*(theta^(c*(n-1)))*...
(4*y(1)^2+y(2)^2))/tempDenom];

end
%% Boundary conditions for the model equations.
function res = bcFunction(ya,yb)
res = [ya(1) - Umax % - r*delta^(m+1) %

ya(2)
ya(4) - 1%- delta^(m+1)
yb(2) + gamma*yb(1)
yb(4)];

end
%% Initial Guess
function guess = initialguess(theta)
guess = [ 1

1
1
1
1];

end
end
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A.2.5 Code for varying the unsteadiness parameter
%--------------------------------------------------------------------------
% This code generates the velocity and temperature profiles together with
% the skin-friction coefficient and rate of heat transfer when the
% unsteadiness parameter is varied.
%--------------------------------------------------------------------------
% The model equations are first reduced to a system of first order ODEs
% as follows:
% Let y(1)=F, y(2)=F', y(3)=F'', y(4)=w, and y(5)=w'
% => dy(1)=y(2), dy(2)=y(3), dy(3)=F''', dy(4)=y(5), and dy(5)=w''
%
% The corresponding boundary conditions are
% ya(1) - Umax=0
% ya(5)=0
% ya(2)=0
% ya(4) - delta^(m+1)=0
% yb(2) + gamma*yb(1)=0
% yb(4)=0
%
% The solution is computed here for different values of lambda by
% continuation, i.e., the solution for one value of lambda is used as guess
% for lambda = lambda*2.
%
function thesisLambda()
clear all; clc;
global Re Ha Pr Ec varpi c n m lambda gamma delta r epsilon Cf Nu Umax
Re=3; % Reynolds number [3,100]
Ha=2; % Hartmann number [0,4]
Pr=2; % Prandtl number [0.5,10]
Ec=5; % Eckert number [0,10]
varpi=.25; % wedge angle [0,pi/4]
c=2; % Arbitrary constant which is a natural number c>1
n=2; % Flow behaviour index n>1 (dilatant)
m=1; % Arbitrary constant that is related to the wedge angle
gamma=10^(6); % Friction coefficient factor
delta=2; % Time dependent length scale
r=.5; % radius of the conduit
epsilon=2*m/(m+1);
Umax=1; % center-line velocity
nIter=4;
multiplier=2;
lambdaInit=1.5;
lambda= lambdaInit; % The solution is first sought for lambda =1.5
options = bvpset('RelTol',1e-4); %=bvpset('stats','on'); % place holder
solinit = bvpinit(linspace(0,pi/4,10),@initialguess); %y = linspace(x1,x2,n)
% generates n points. The spacing between the points is (x2-x1)/(n-1).
sol = bvp4c(@odeFunction,@bcFunction,solinit,options);
lines = {'k-o','r-','b-+','m-*','y-','c-','g'};
vLegend = {strcat('\lambda = ' , num2str(lambda))} ;
tLegend = {strcat('\lambda = ' , num2str(lambda))} ;
%% Velocity and Temperature profiles
Cf=(2*sol.y(2,2))/(sqrt(Re*(2-epsilon))) % skin friction coefficient
Nu=-sqrt(Re/(2-epsilon))*sol.y(5,2); % heat transfer
fprintf('For lambda= %3.0i, Cf = %4.4f, Nu = %4.4f\n',lambda,Cf,Nu);
figure
plot(sol.x,sol.y(1,:),lines{1},'LineWidth',2);
axis([0 pi/3.9 0 1.1]);
%{-
% For velocity profiles
title('GRAPH OF VELOCITY AGAINST THE WEDGE ANGLE');
xlabel('wedge angle, \theta');
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ylabel('Velocity, F(\theta)');
%}
%{
% For temperature profiles
title('GRAPH OF TEMPERATURE AGAINST THE WEDGE ANGLE');
xlabel('wedge angle, \theta');
ylabel('Temperature, \omega(\theta)');
%}
drawnow
hold on
for i=2:nIter

lambda = lambda*multiplier;
sol = bvp4c(@odeFunction,@bcFunction,sol,options);
Cf=(2*sol.y(2,2))/(sqrt(Re*(2-epsilon))) % skin friction coefficient
Nu=-sqrt(Re/(2-epsilon))*sol.y(5,2); % heat transfer
fprintf('For lambda = %3.0i, Cf = %4.4f, Nu = %4.4f\n',lambda,Cf,Nu);
plot(sol.x,sol.y(1,:),lines{i},'LineWidth',2);
vLegend = [vLegend , strcat('\lambda = ' , num2str(lambda))];
drawnow

end
legend(vLegend{:});
hold off
%% first-order system of ODE for the model equations.
function dydx = odeFunction(theta,y)
velDenom=(theta^(c*(n-1)));
if(velDenom==0)

velDenom=10^(-6);
end
tempDenom=(delta^(m+1));
dydx = [ y(2)

y(3)
-(c*(n-1)*(theta^(c*(n-1)-2))*(c*(n-1)-1)*y(2)+c*(n-1)*...
(theta^(c*(n-1)-1))*(2*y(3)+4*y(1))-2*Re*(1/delta)^(m+1)*y(1)*...
y(2)-(Ha^2)*y(2)+(m+1)*(r/delta)^(m+1)*lambda*y(2))/velDenom-4*y(2)
y(5)
-Pr*((m+1)*(r^(m+1))*lambda*y(4)+(Ec)*(theta^(c*(n-1)))*...
(4*y(1)^2+y(2)^2))/tempDenom];

end
%% Boundary conditions for the model equations.
function res = bcFunction(ya,yb)
res = [ya(1) - Umax % - r*delta^(m+1) %

ya(2)
ya(4) - 1% - delta^(m+1)
yb(2) + gamma*yb(1)
yb(4)];

end
%% Initial Guess
function guess = initialguess(theta)
guess = [ 1

1
1
1
1];

end
end
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