

(11) Utility model Number: 377 (24) Registration date: 14/01/2022

(12) UTILITY MODEL

(21) Application Number: 2020/1294

(22) Filing Date: 28/01/2020

(30) Priority data: 2017/2614 06/03/2017 KE

(73) Owner:

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY of P.O. BOX 62000-00200, Nairobi, Kenya

(72) Inventor:
PAUL M. NJOGU, JOMO KENYATTA
UNIVERSITY OF AGRICULTURE AND
TECHNOLOGY, P. O. BOX 62000-00200
NAIROBI, Kenya

(74) Agent/address for correspondence: DIRECTORATE OF INTELLECTUAL PROPERTY MANAGEMENT AND UNIVERSITY-INDUSTRY LIAISON JKUAT, P. O. BOX 62000 - 00200 NAIROBI, KENYA

- (51) Int.Cl.2016.01: C 02F 11/04, B 09B 3/00, C 10L 3/10
- (54) Title: SYSTEM AND PROCESS FOR PURIFICATION OF BIOGAS TO HIGH GRADE FUEL BIOMETHANE USING LOCAL MATERIAL
- (57) Abstract: The present invention discloses a system for purification of high grade Biomethane fuel from Water hyacinth (Ecchnoria crassipes), an invasive weed that grows in polluted environments. The system comprises a bioreactor, water trap, hydrogen sulphide scrubber, dehydration unit, carbon dioxide scrubber, compressor and Biomethane fuel tank. The bioreactor operates within a range of 22 35 °C in a polyethene cover. Also disclosed is production of high quality bio- fertilizer from E. crassipes. The gas initially produced in biogas is a mixture of Carbon dioxide 30-40%, methane 45-50%, nitrogen 5-6%, hydrogen sulphide 0.001% and other traces. The biogas is upgraded to 95% Biomethane. The invention discloses a process for removal of CO₂, H₂S and H₂O with an efficiency of 95-99%, 100%, and 100% respectively using local materials. The removal of H₂S protects the metallic parts from corrosion by the acid gas.